1
|
Kojom Foko LP, Eboumbou Moukoko CE, Jakhan J, Narang G, Hawadak J, Kouemo Motse FD, Pande V, Singh V. Deletions of Histidine-Rich Protein 2/3 Genes in Natural Plasmodium falciparum Populations from Cameroon and India: Role of Asymptomatic and Submicroscopic Infections. Am J Trop Med Hyg 2024; 110:1100-1109. [PMID: 38688260 PMCID: PMC11154061 DOI: 10.4269/ajtmh.23-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
The bulk of malaria rapid diagnostic tests (RDTs) target histidine-rich protein 2 of Plasmodium falciparum, the deadliest malaria species. The WHO considers pfhrp2/3 deletions as one of the main threats to successful malaria control and/or elimination; as such, parasites that lack part or all of the pfhrp2 gene are missed by pfHRP2-targeting RDTs. Such deletions have been reported in several African and Asian countries, but little is known in Cameroon and India. Blood samples were collected from individuals living in four areas of Cameroon (Douala, Maroua, Mayo-Oulo, Pette) and India (Mewat, Raipur, Ranchi, Rourkela). Deletions in pfhrp2/3 genes were confirmed if samples 1) had ≥100 parasites/µL by quantitative polymerase chain reaction (PCR), 2) PCR negative for pfhrp2/3, and 3) PCR positive for at least two single-copy genes. The overall proportion of pfhrp2 and pfhrp3 deletions in Cameroon was 13.5% and 3.1%. In India, the overall proportion was 8% for pfhrp2 and 4% for pfhrp3. The overall proportions of samples with both gene deletions (pfhrp2-/3-) were 3.1% in Cameroon and 1.3% in India. In Cameroon, pfhrp2-/3+ and pfhrp2-/3- deletions were common in Maroua (P = 0.02), in asymptomatic parasitemia (P = 0.006) and submicroscopic parasitemia (P <0.0001). In both countries, pfhrp2/3 deletions, including pfhrp2-/3- deletions, were mainly seen in monoclonal infections. This study outlines that double deletions that result in false negative RDTs are uncommon in our settings, and highlights the importance of active molecular surveillance for pfhrp2/3 deletions in Cameroon and India.
Collapse
Affiliation(s)
- Loick Pradel Kojom Foko
- National Institute of Malaria Research, New Delhi, India
- Department of Biotechnology, Kumaun University, Bhimtal, India
| | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, The University of Douala, Douala, Cameroon
| | - Jahnvi Jakhan
- National Institute of Malaria Research, New Delhi, India
| | - Geetika Narang
- National Institute of Malaria Research, New Delhi, India
| | - Joseph Hawadak
- National Institute of Malaria Research, New Delhi, India
- Department of Biotechnology, Kumaun University, Bhimtal, India
| | | | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, India
| | - Vineeta Singh
- National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
2
|
Kojom Foko LP, Moun A, Singh V. Addressing low-density malaria infections in India and other endemic part of the world-the opportune time? Crit Rev Microbiol 2024:1-17. [PMID: 38632931 DOI: 10.1080/1040841x.2024.2339267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Shifting from high- to low-malaria transmission accompanies a higher proportion of asymptomatic low-density malaria infections (LDMI). Currently, several endemic countries, such as India, are experiencing this shift as it is striving to eliminate malaria. LDMI is a complex concept for which there are several important questions yet unanswered on its natural history, infectiousness, epidemiology, and pathological and clinical impact. India is on the right path to eliminating malaria, but it is facing the LDMI problem. A brief discussion on the concept and definitions of LDMI is beforehand presented. Also, an exhaustive review and critical analysis of the existing literature on LDMI in malaria-endemic areas, including India, are included in this review. Finally, we opine that addressing LDMI in India is ethically and pragmatically achievable, and a pool of sine qua non conditions is required to efficiently and sustainably eliminate malaria.
Collapse
Affiliation(s)
- Loick P Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Amit Moun
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Ansah F, Nyame K, Laryea R, Owusu R, Amon D, Boyetey MJB, Ayeke D, Razak N, Kornu VE, Ashitei S, Owusu-Appiah C, Chirawurah JD, Abugri J, Aniweh Y, Opoku N, Sutherland CJ, Binka FN, Kweku M, Awandare GA, Dinko B. The temporal dynamics of Plasmodium species infection after artemisinin-based combination therapy (ACT) among asymptomatic children in the Hohoe municipality, Ghana. Malar J 2023; 22:271. [PMID: 37710288 PMCID: PMC10500816 DOI: 10.1186/s12936-023-04712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The routine surveillance of asymptomatic malaria using nucleic acid-based amplification tests is essential in obtaining reliable data that would inform malaria policy formulation and the implementation of appropriate control measures. METHODS In this study, the prevalence rate and the dynamics of Plasmodium species among asymptomatic children (n = 1697) under 5 years from 30 communities within the Hohoe municipality in Ghana were determined. RESULTS AND DISCUSSION The observed prevalence of Plasmodium parasite infection by polymerase chain reaction (PCR) was 33.6% (571/1697), which was significantly higher compared to that obtained by microscopy [26.6% (451/1697)] (P < 0.0001). Based on species-specific analysis by nested PCR, Plasmodium falciparum infection [33.6% (570/1697)] was dominant, with Plasmodium malariae, Plasmodium ovale and Plasmodium vivax infections accounting for 0.1% (1/1697), 0.0% (0/1697), and 0.0% (0/1697), respectively. The prevalence of P. falciparum infection among the 30 communities ranged from 0.0 to 82.5%. Following artesunate-amodiaquine (AS + AQ, 25 mg/kg) treatment of a sub-population of the participants (n = 184), there was a substantial reduction in Plasmodium parasite prevalence by 100% and 79.2% on day 7 based on microscopy and nested PCR analysis, respectively. However, there was an increase in parasite prevalence from day 14 to day 42, with a subsequent decline on day 70 by both microscopy and nested PCR. For parasite clearance rate analysis, we found a significant proportion of the participants harbouring residual Plasmodium parasites or parasite genomic DNA on day 1 [65.0% (13/20)], day 2 [65.0% (13/20)] and day 3 [60.0% (12/20)] after initiating treatment. Of note, gametocyte carriage among participants was low before and after treatment. CONCLUSION Taken together, the results indicate that a significant number of individuals could harbour residual Plasmodium parasites or parasite genomic DNA after treatment. The study demonstrates the importance of routine surveillance of asymptomatic malaria using sensitive nucleic acid-based amplification techniques.
Collapse
Affiliation(s)
- Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kwamina Nyame
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Rukaya Laryea
- Department of Epidemiology and Biostatistics, Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Richard Owusu
- Department of Epidemiology and Biostatistics, Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Denick Amon
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Mark-Jefferson Buer Boyetey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Dzidzor Ayeke
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Nasibatu Razak
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Victor E Kornu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Sarah Ashitei
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Caleb Owusu-Appiah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Jersley D Chirawurah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Nicholas Opoku
- Department of Epidemiology and Biostatistics, Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fred N Binka
- Department of Epidemiology and Biostatistics, Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Margaret Kweku
- Department of Epidemiology and Biostatistics, Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Bismarck Dinko
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana.
- Department of Clinical Microbiology, School of Medicine and Dentistry College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, Ghana.
| |
Collapse
|
4
|
Mbacham HF, Mosume DM, Apinjoh TO, Ntui VN, Moyeh MN, Kalaji LN, Wepnje GB, Ghogomu SM, Dionne JA, Tita ATN, Achidi EA, Anchang-Kimbi JK. Sub-microscopic Plasmodium falciparum parasitaemia, dihydropteroate synthase (dhps) resistance mutations to sulfadoxine-pyrimethamine, transmission intensity and risk of malaria infection in pregnancy in Mount Cameroon Region. Malar J 2023; 22:73. [PMID: 36864514 PMCID: PMC9979436 DOI: 10.1186/s12936-023-04485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Plasmodium falciparum resistance to intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) continues to spread throughout sub-Saharan Africa. This study assessed the occurrence of microscopic and sub-microscopic P. falciparum parasitaemia, dihydropteroate synthase mutations associated with resistance to SP and maternal anaemia in the Mount Cameroon area. METHODS Consenting pregnant women living in semi-rural and semi-urban/urbanized settings were enrolled in this cross-sectional study. Socio-demographic, antenatal and clinical data were documented. Microscopic and sub-microscopic parasitaemia were diagnosed using peripheral blood microscopy and nested polymerase chain reaction (PCR) respectively. The dhps mutations were genotyped by restriction fragment length polymorphism analysis. The presence of A437G, K540E, and A581G was considered a marker for high-level resistance. Haemoglobin levels and anaemia status were determined. RESULTS Among the women, the prevalence of microscopic and sub-microscopic P. falciparum infection were 7.7% (67/874) and 18.6% (93/500) respectively. Predictors of microscopic infection were younger age (< 21 years) (AOR = 2.89; 95% CI 1.29-6.46) and semi-rural settings (AOR = 2.27; 95% CI 1.31-3.96). Determinants of sub-microscopic infection were the rainy season (AOR, 3.01; 95% CI 1.77-5.13), primigravidity (AOR = 0.45; 95% CI 0.21-0.94) and regular ITN usage (AOR = 0.49; 95% CI 0.27-0.90). Of the145 P. falciparum isolates genotyped, 66.9% (97) carried mutations associated with resistance to SP; 33.8% (49), 0%, 52.4% (76) and 19.3% (28) for A437G, K540E, A581G and A437G + A581G respectively. The A581G mutation was associated with ≥ 3 SP doses evident only among sub-microscopic parasitaemia (P = 0.027) and multigravidae (P = 0.009). Women with microscopic infection were more likely from semi-rural settings (AOR = 7.09; 95% CI 2.59-19.42), to report history of fever (AOR = 2.6; 95% CI 1.07-6.31), to harbour parasites with double resistant mutations (AOR = 6.65; 95% CI 1.85-23.96) and were less likely to have received 2 SP doses (AOR = 0.29; 95% CI 1.07-6.31). Microscopic infection decreased Hb levels more than sub-microscopic infection. CONCLUSION The occurrence of sub-microscopic P. falciparum parasites resistant to SP and intense malaria transmission poses persistent risk of malaria infection during pregnancy in the area. ITN usage and monitoring spread of resistance are critical.
Collapse
Affiliation(s)
- Harry F Mbacham
- Department of Animal Biology and Conservation, University of Buea, Buea, Cameroon
| | - Diange M Mosume
- Department of Animal Biology and Conservation, University of Buea, Buea, Cameroon
| | - Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Vincent N Ntui
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Marcel N Moyeh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Laken N Kalaji
- Department of Animal Biology and Conservation, University of Buea, Buea, Cameroon
| | - Godlove B Wepnje
- Department of Animal Biology and Conservation, University of Buea, Buea, Cameroon
| | - Stephen M Ghogomu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Jodie A Dionne
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Alan T N Tita
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, USA
| | - Eric A Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | | |
Collapse
|
5
|
Funwei RI, Uyaiabasi GN, Hammed WA, Ojurongbe O, Walker O, Falade CO. High prevalence of persistent residual parasitemia on days 3 and 14 after artemether-lumefantrine or pyronaridine-artesunate treatment of uncomplicated Plasmodium falciparum malaria in Nigeria. Parasitol Res 2023; 122:519-526. [PMID: 36510009 DOI: 10.1007/s00436-022-07753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Microscopic evaluation of parasite clearance is the gold standard in antimalarial drug efficacy trials. However, the presence of sub-microscopic residual parasitemia after artemisinin-based combination therapy (ACT) needs to be investigated. METHODS One hundred and twenty (AL: n = 60, PA: n = 60) days 3 and 14 dried blood spots, negative by microscopy were analysed for residual parasitemia using nested PCR. Isolates with residual parasitemia on days 3 and 14 were further genotyped with their corresponding day-0 isolates using merozoite surface proteins msp-1, msp-2, and glurp genes for allelic similarity. RESULTS Persistent PCR-determined sub-microscopic residual parasitemia at day 3 post ACT treatment was 83.3 (AL) and 88.3% (PA), respectively (ρ = 0.600), while 63.6 and 36.4% (ρ = 0.066) isolates were parasitemic at day 14 for AL and PA, respectively. Microscopy-confirmed gametocytemia persisted from days 0 to 7 and from days 0 to 21 for AL and PA. When the alleles of day 3 versus day 0 were compared according to base pair sizes, 59% of parasites shared identical alleles for glurp, 36% each for 3D7 and FC27, while K1 was 77%, RO33 64%, and MAD20 23%, respectively. Similarly, day 14 versus day 0 was 36% (glurp), 64% (3D7), and 32% (FC27), while 73% (K1), 77% (RO33), and 41% (MAD20), respectively. CONCLUSION The occurrence of residual parasitemia on days 3 and 14 following AL or PA treatment may be attributable to the presence of either viable asexual, gametocytes, or dead parasite DNAs, which requires further investigation.
Collapse
Affiliation(s)
- Roland I Funwei
- Department of Pharmacology, Babcock University, Ilishan-Remo, Ogun State, Nigeria. .,Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria.
| | - Gabriel N Uyaiabasi
- Department of Pharmacology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.,Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Wasiu A Hammed
- Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Olusola Ojurongbe
- Department of Medical Microbiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.,Center for Emerging and Re-Emerging Infectious Diseases (CERID), Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oladapo Walker
- Department of Pharmacology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.,Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Catherine O Falade
- Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria.,Institute for Advanced Medical Research and Training (IAMRAT), University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Persistence of Residual Submicroscopic P. falciparum Parasitemia following Treatment of Artemether-Lumefantrine in Ethio-Sudan Border, Western Ethiopia. Antimicrob Agents Chemother 2022; 66:e0000222. [PMID: 35993723 PMCID: PMC9487599 DOI: 10.1128/aac.00002-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of artemisinin-resistant parasites in Africa has had a devastating impact, causing most malaria cases and related deaths reported on the continent. In Ethiopia, artemether-lumefantrine (AL) is the first-line drug for the treatment of uncomplicated falciparum malaria. This study is one of the earliest evaluations of artemether-lumefantrine (AL) efficacy in western Ethiopia, 17 years after the introduction of this drug in the study area. This study aimed at assessing PCR- corrected clinical and parasitological responses at 28 days following AL treatment. Sixty uncomplicated falciparum malaria patients were enrolled, treated with standard doses of AL, and monitored for 28 days with clinical and parasitological assessments from September 15 to December 15, 2020. Microscopy was used for patient recruitment and molecular diagnosis of P. falciparum was performed by Var gene acidic terminal sequence (varATS) real-time PCR on dried blood spots collected from each patient from day 0 and on follow-up days 1, 2, 3, 7, 14, 21, and 28. MspI and msp2 genotyping was done to confirm occurrence of recrudescence. Data entry and analysis were done by using the WHO-designed Excel spreadsheet and SPSS version 20 for Windows. A P value of less or equal to 0.05 was considered significant. From a total of 60 patients enrolled in this efficacy study, 10 were lost to follow-up; the results were analyzed for 50 patients. All the patients were fever-free on day 3. The asexual parasite positivity rate on day 3 was zero. However; 60% of the patients were PCR positive on day 3. PCR positivity on day 3 was more common among patients <15 years old as compared with those ≥15 years old (AOR = 6.44, P = 0.027). Only two patients met the case definition of treatment failure. These patients were classified as a late clinical failure as they showed symptoms of malaria and asexual stages of the parasite detected by microscopy on day 14 of their follow-ups. Hence, the Kaplan-Meier analysis of PCR- corrected adequate clinical and parasitological response (ACPR) rate of AL among study participants was 96% (95% CI: 84.9-99). In seven patients, the residual submicroscopic parasitemia persists from day 0 to day 28 of the follow-up. In addition, 16% (8/50) of patients were PCR- and then turned PCR+ after day 7 of the follow-up. AL remains efficacious for the treatment of uncomplicated falciparum malaria in the study area. However, the persistence of PCR-detected residual submicroscopic parasitemia following AL might compromise this treatment and need careful monitoring.
Collapse
|
7
|
Topazian HM, Moser KA, Ngasala B, Oluoch PO, Forconi CS, Mhamilawa LE, Aydemir O, Kharabora O, Deutsch-Feldman M, Read AF, Denton M, Lorenzo A, Mideo N, Ogutu B, Moormann AM, Mårtensson A, Odwar B, Bailey JA, Akala H, Ong'echa JM, Juliano JJ. Low Complexity of Infection Is Associated With Molecular Persistence of Plasmodium falciparum in Kenya and Tanzania. FRONTIERS IN EPIDEMIOLOGY 2022; 2:852237. [PMID: 38455314 PMCID: PMC10910917 DOI: 10.3389/fepid.2022.852237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/06/2022] [Indexed: 03/09/2024]
Abstract
Background Plasmodium falciparum resistance to artemisinin-based combination therapies (ACTs) is a threat to malaria elimination. ACT-resistance in Asia raises concerns for emergence of resistance in Africa. While most data show high efficacy of ACT regimens in Africa, there have been reports describing declining efficacy, as measured by both clinical failure and prolonged parasite clearance times. Methods Three hundred children aged 2-10 years with uncomplicated P. falciparum infection were enrolled in Kenya and Tanzania after receiving treatment with artemether-lumefantrine. Blood samples were taken at 0, 24, 48, and 72 h, and weekly thereafter until 28 days post-treatment. Parasite and host genetics were assessed, as well as clinical, behavioral, and environmental characteristics, and host anti-malarial serologic response. Results While there was a broad range of clearance rates at both sites, 85% and 96% of Kenyan and Tanzanian samples, respectively, were qPCR-positive but microscopy-negative at 72 h post-treatment. A greater complexity of infection (COI) was negatively associated with qPCR-detectable parasitemia at 72 h (OR: 0.70, 95% CI: 0.53-0.94), and a greater baseline parasitemia was marginally associated with qPCR-detectable parasitemia (1,000 parasites/uL change, OR: 1.02, 95% CI: 1.01-1.03). Demographic, serological, and host genotyping characteristics showed no association with qPCR-detectable parasitemia at 72 h. Parasite haplotype-specific clearance slopes were grouped around the mean with no association detected between specific haplotypes and slower clearance rates. Conclusions Identifying risk factors for slow clearing P. falciparum infections, such as COI, are essential for ongoing surveillance of ACT treatment failure in Kenya, Tanzania, and more broadly in sub-Saharan Africa.
Collapse
Affiliation(s)
- Hillary M. Topazian
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Kara A. Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Peter O. Oluoch
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Center for Global Health Research, Kenyan Medical Research Institute, Kisumu, Kenya
| | - Catherine S. Forconi
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lwidiko E. Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Oksana Kharabora
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - Molly Deutsch-Feldman
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, United States
| | - Andrew F. Read
- Department of Entomology, Penn State University, University Park, PA, United States
| | - Madeline Denton
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - Antonio Lorenzo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Bernhards Ogutu
- Center for Global Health Research, Kenyan Medical Research Institute, Kisumu, Kenya
| | - Ann M. Moormann
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Boaz Odwar
- Center for Global Health Research, Kenyan Medical Research Institute, Kisumu, Kenya
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Hoseah Akala
- Center for Global Health Research, Kenyan Medical Research Institute, Kisumu, Kenya
| | | | - Jonathan J. Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, United States
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Noreen N, Ullah A, Salman SM, Mabkhot Y, Alsayari A, Badshah SL. New insights into the spread of resistance to artemisinin and its analogues. J Glob Antimicrob Resist 2021; 27:142-149. [PMID: 34517141 DOI: 10.1016/j.jgar.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, has been developing resistance to several drugs worldwide for more than five decades. Initially, resistance was against drugs such as chloroquine, pyrimethamine, sulfadoxine, mefloquine and quinine. Research studies are now reporting parasites with resistance to the most effective and novel drug used against malaria infection worldwide, namely artemisinin. For this reason, the first-line treatment strategy of artemisinin-based combination therapy is becoming unsuccessful in areas where drug resistance is highly prevalent. The increase in artemisinin-resistant P. falciparum strains has threatened international efforts to eliminate malarial infections and to reduce the disease burden. Detection of several phenotypes that display artemisinin resistance, specification of basic genetic factors, the discovery of molecular pathways, and evaluation of its clinical outcome are possible by the current series of research on genomics and transcriptomic levels in Asia and Africa. In artemisinin resistance, slow parasite clearance among malaria-infected patients and enhanced in vitro survival of parasites occurs at the early ring stage. This resistance is due to single nucleotide polymorphisms within the Kelch 13 gene of the parasite and is related to significantly upregulated resistance signalling pathways; thus, the pro-oxidant action of artemisinins can be antagonised. New strategies are required to halt the spread of artemisinin-resistant malarial parasites.
Collapse
Affiliation(s)
- Noreen Noreen
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| | | | - Yahia Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia.
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan.
| |
Collapse
|
9
|
Petersen E, Picot S. The End of the Artemisinin Era-We Should Aim at Malaria Eradication in Asia Using Free, Effective Treatment. Clin Infect Dis 2021; 73:414-415. [PMID: 32459304 DOI: 10.1093/cid/ciaa625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Eskild Petersen
- Institute for Clinical Medicine, University of Aarhus, Aarhus, Denmark.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stephane Picot
- University of Lyon, Malaria Research Unit, Institute for Molecular and Supramolecular Chemistry and Biochemistry, Lyon, France.,Institute of Parasitology and Medical Mycology, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
10
|
Persistent Submicroscopic Plasmodium falciparum Parasitemia 72 Hours after Treatment with Artemether-Lumefantrine Predicts 42-Day Treatment Failure in Mali and Burkina Faso. Antimicrob Agents Chemother 2021; 65:e0087321. [PMID: 34060901 PMCID: PMC8284475 DOI: 10.1128/aac.00873-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recent randomized controlled trial, the WANECAM (West African Network for Clinical Trials of Antimalarial Drugs) trial, conducted at seven centers in West Africa, found that artemether-lumefantrine, artesunate-amodiaquine, pyronaridine-artesunate, and dihydroartemisinin-piperaquine all displayed good efficacy. However, artemether-lumefantrine was associated with a shorter interval between clinical episodes than the other regimens. In a further comparison of these therapies, we identified cases of persisting submicroscopic parasitemia by quantitative PCR (qPCR) at 72 h posttreatment among WANECAM participants from 5 sites in Mali and Burkina Faso, and we compared treatment outcomes for this group to those with complete parasite clearance by 72 h. Among 552 evaluable patients, 17.7% had qPCR-detectable parasitemia at 72 h during their first treatment episode. This proportion varied among sites, reflecting differences in malaria transmission intensity, but did not differ among pooled drug treatment groups. However, patients who received artemether-lumefantrine and were qPCR positive at 72 h were significantly more likely to have microscopically detectable recurrent Plasmodium falciparum parasitemia by day 42 than those receiving other regimens and experienced, on average, a shorter interval before the next clinical episode. Haplotypes of pfcrt and pfmdr1 were also evaluated in persisting parasites. These data identify a possible threat to the parasitological efficacy of artemether-lumefantrine in West Africa, over a decade since it was first introduced on a large scale.
Collapse
|
11
|
Should deep-sequenced amplicons become the new gold-standard for analysing malaria drug clinical trials? Antimicrob Agents Chemother 2021; 65:e0043721. [PMID: 34252299 PMCID: PMC8448141 DOI: 10.1128/aac.00437-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Regulatory clinical trials are required to ensure the continued supply and deployment of effective antimalarial drugs. Patient follow-up in such trials typically lasts several weeks, as the drugs have long half-lives and new infections often occur during this period. “Molecular correction” is therefore used to distinguish drug failures from new infections. The current WHO-recommended method for molecular correction uses length-polymorphic alleles at highly diverse loci but is inherently poor at detecting low-density clones in polyclonal infections. This likely leads to substantial underestimates of failure rates, delaying the replacement of failing drugs with potentially lethal consequences. Deep-sequenced amplicons (AmpSeq) substantially increase the detectability of low-density clones and may offer a new “gold standard” for molecular correction. Pharmacological simulation of clinical trials was used to evaluate the suitability of AmpSeq for molecular correction. We investigated the impact of factors such as the number of amplicon loci analyzed, the informatics criteria used to distinguish genotyping “noise” from real low-density signals, the local epidemiology of malaria transmission, and the potential impact of genetic signals from gametocytes. AmpSeq greatly improved molecular correction and provided accurate drug failure rate estimates. The use of 3 to 5 amplicons was sufficient, and simple, nonstatistical criteria could be used to classify recurrent infections as drug failures or new infections. These results suggest AmpSeq is strongly placed to become the new standard for molecular correction in regulatory trials, with potential extension into routine surveillance once the requisite technical support becomes established.
Collapse
|
12
|
Mahamar A, Lanke K, Graumans W, Diawara H, Sanogo K, Diarra K, Niambele SM, Gosling R, Drakeley C, Chen I, Dicko A, Bousema T, Roh ME. Persistence of mRNA indicative of Plasmodium falciparum ring-stage parasites 42 days after artemisinin and non-artemisinin combination therapy in naturally infected Malians. Malar J 2021; 20:34. [PMID: 33422068 PMCID: PMC7797096 DOI: 10.1186/s12936-020-03576-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/31/2020] [Indexed: 11/10/2022] Open
Abstract
Background Malaria control in sub-Saharan Africa relies upon prompt case management with artemisinin-based combination therapy (ACT). Ring-stage parasite mRNA, measured by sbp1 quantitative reverse-transcriptase PCR (qRT-PCR), was previously reported to persist after ACT treatment and hypothesized to reflect temporary arrest of the growth of ring-stage parasites (dormancy) following exposure to artemisinins. Here, the persistence of ring-stage parasitaemia following ACT and non-ACT treatment was examined. Methods Samples were used from naturally infected Malian gametocyte carriers who received dihydroartemisinin–piperaquine (DP) or sulfadoxine–pyrimethamine (SP–AQ) with or without gametocytocidal drugs. Gametocytes and ring-stage parasites were quantified by qRT-PCR during 42 days of follow-up. Results At baseline, 89% (64/73) of participants had measurable ring-stage parasite mRNA. Following treatment, the proportion of ring-stage parasite-positive individuals and estimated densities declined for all four treatment groups. Ring-stage parasite prevalence and density was generally lower in arms that received DP compared to SP–AQ. This finding was most apparent days 1, 2, and 42 of follow-up (p < 0.01). Gametocytocidal drugs did not influence ring-stage parasite persistence. Ring-stage parasite density estimates on days 14 and 28 after initiation of treatment were higher among individuals who subsequently experienced recurrent parasitaemia compared to those who remained free of parasites until day 42 after initiation of treatment (pday 14 = 0.011 and pday 28 = 0.068). No association of ring-stage persistence with gametocyte carriage was observed. Conclusions The current findings of lower ring-stage persistence after ACT without an effect of gametocytocidal partner drugs affirms the use of sbp1 as ring-stage marker. Lower persistence of ring-stage mRNA after ACT treatment suggests the marker may not reflect dormant parasites whilst it was predictive of re-appearance of parasitaemia.
Collapse
Affiliation(s)
- Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, PO Box 9101, 6525GA, Nijmegen, The Netherlands
| | - Wouter Graumans
- Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, PO Box 9101, 6525GA, Nijmegen, The Netherlands
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kalifa Diarra
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sidi Mohamed Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Roly Gosling
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Chris Drakeley
- Department of Infection & Immunity, London School of Hygiene & Tropical Medicine, London, UK
| | - Ingrid Chen
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, PO Box 9101, 6525GA, Nijmegen, The Netherlands. .,Department of Infection & Immunity, London School of Hygiene & Tropical Medicine, London, UK.
| | - Michelle E Roh
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| |
Collapse
|