1
|
Greyling N, van der Watt M, Gwarinda H, van Heerden A, Greenhouse B, Leroy D, Niemand J, Birkholtz LM. Genetic complexity alters drug susceptibility of asexual and gametocyte stages of Plasmodium falciparum to antimalarial candidates. Antimicrob Agents Chemother 2024; 68:e0129123. [PMID: 38259087 PMCID: PMC10916389 DOI: 10.1128/aac.01291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.
Collapse
Affiliation(s)
- Nicola Greyling
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Hazel Gwarinda
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Bryan Greenhouse
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Schaffner SF, Badiane A, Khorgade A, Ndiop M, Gomis J, Wong W, Ndiaye YD, Diedhiou Y, Thwing J, Seck MC, Early A, Sy M, Deme A, Diallo MA, Sy N, Sene A, Ndiaye T, Sow D, Dieye B, Ndiaye IM, Gaye A, Ndiaye A, Battle KE, Proctor JL, Bever C, Fall FB, Diallo I, Gaye S, Sene D, Hartl DL, Wirth DF, MacInnis B, Ndiaye D, Volkman SK. Malaria surveillance reveals parasite relatedness, signatures of selection, and correlates of transmission across Senegal. Nat Commun 2023; 14:7268. [PMID: 37949851 PMCID: PMC10638404 DOI: 10.1038/s41467-023-43087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
We here analyze data from the first year of an ongoing nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal. The analysis is based on 1097 samples collected at health facilities during passive malaria case detection in 2019; it provides a baseline for analyzing parasite genetic metrics as they vary over time and geographic space. The study's goal was to identify genetic metrics that were informative about transmission intensity and other aspects of transmission dynamics, focusing on measures of genetic relatedness between parasites. We found the best genetic proxy for local malaria incidence to be the proportion of polygenomic infections (those with multiple genetically distinct parasites), although this relationship broke down at low incidence. The proportion of related parasites was less correlated with incidence while local genetic diversity was uninformative. The type of relatedness could discriminate local transmission patterns: two nearby areas had similarly high fractions of relatives, but one was dominated by clones and the other by outcrossed relatives. Throughout Senegal, 58% of related parasites belonged to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci and at one novel locus, reflective of ongoing selection pressure.
Collapse
Affiliation(s)
- Stephen F Schaffner
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Aida Badiane
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Akanksha Khorgade
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Medoune Ndiop
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Jules Gomis
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yaye Die Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Younouss Diedhiou
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Julie Thwing
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mame Cheikh Seck
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Angela Early
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Mouhamad Sy
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Awa Deme
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Mamadou Alpha Diallo
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Ngayo Sy
- Section de Lutte Anti-Parasitaire (SLAP) Clinic, Thies, Senegal
| | - Aita Sene
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Tolla Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Djiby Sow
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Baba Dieye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Amy Gaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Aliou Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Katherine E Battle
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Joshua L Proctor
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Caitlin Bever
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Ibrahima Diallo
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Seynabou Gaye
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Doudou Sene
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Dyann F Wirth
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Bronwyn MacInnis
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Daouda Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Sarah K Volkman
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA, USA.
| |
Collapse
|
3
|
Schaffner SF, Badiane A, Khorgade A, Ndiop M, Gomis J, Wong W, Ndiaye YD, Diedhiou Y, Thwing J, Seck MC, Early A, Sy M, Deme A, Diallo MA, Sy N, Sene A, Ndiaye T, Sow D, Dieye B, Ndiaye IM, Gaye A, Ndiaye A, Battle KE, Proctor JL, Bever C, Fall FB, Diallo I, Gaye S, Sene D, Hartl DL, Wirth DF, MacInnis B, Ndiaye D, Volkman SK. Malaria surveillance reveals parasite relatedness, signatures of selection, and correlates of transmission across Senegal. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.11.23288401. [PMID: 37131838 PMCID: PMC10153316 DOI: 10.1101/2023.04.11.23288401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Parasite genetic surveillance has the potential to play an important role in malaria control. We describe here an analysis of data from the first year of an ongoing, nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal, intended to provide actionable information for malaria control efforts. Looking for a good proxy for local malaria incidence, we found that the best predictor was the proportion of polygenomic infections (those with multiple genetically distinct parasites), although that relationship broke down in very low incidence settings (r = 0.77 overall). The proportion of closely related parasites in a site was more weakly correlated ( r = -0.44) with incidence while the local genetic diversity was uninformative. Study of related parasites indicated their potential for discriminating local transmission patterns: two nearby study areas had similarly high fractions of relatives, but one area was dominated by clones and the other by outcrossed relatives. Throughout the country, 58% of related parasites proved to belong to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci as well as at one novel locus, reflective of ongoing selection pressure.
Collapse
|
4
|
Li Y, Huang X, Qing L, Zeng W, Zeng X, Meng F, Wang G, Chen Y. Geographical origin of Plasmodium vivax in the Hainan Island, China: insights from mitochondrial genome. Malar J 2023; 22:84. [PMID: 36890523 PMCID: PMC9993381 DOI: 10.1186/s12936-023-04520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Hainan Province, China, has been an endemic region with high transmission of Plasmodium falciparum and Plasmodium vivax. Indigenous malaria caused by P. vivax was eliminated in Hainan in 2011, while imported vivax malaria remains. However, the geographical origin of P. vivax cases in Hainan remains unclear. METHODS Indigenous and imported P. vivax isolates (n = 45) were collected from Hainan Province, and the 6 kb mitochondrial genome was obtained. Nucleotide (π) and haplotype (h) diversity were estimated using DnaSP. The numbers of synonymous nucleotide substitutions per synonymous site (dS) and nonsynonymous nucleotide substitutions per nonsynonymous site (dN) were calculated using the SNAP program. Arlequin software was used to estimate the genetic diversity index and assess population differentiation. Bayesian phylogenetic analysis of P. vivax was performed using MrBayes. A haplotype network was generated using the NETWORK program. RESULTS In total, 983 complete mitochondrial genome sequences were collected, including 45 from this study and 938 publicly available from the NCBI. Thirty-three SNPs were identified, and 18 haplotypes were defined. The haplotype (0.834) and nucleotide (0.00061) diversity in the Hainan populations were higher than China's Anhui and Guizhou population, and the majority of pairwise FST values in Hainan exceeded 0.25, suggesting strong differentiation among most populations except in Southeast Asia. Most Hainan haplotypes were connected to South/East Asian and China's others haplotypes, but less connected with populations from China's Anhui and Guizhou provinces. Mitochondrial lineages of Hainan P. vivax belonged to clade 1 of four well-supported clades in a phylogenetic tree, most haplotypes of indigenous cases formed a subclade of clade 1, and the origin of seven imported cases (50%) could be inferred from the phylogenetic tree, but five imported cases (42.8%) could not be traced using the phylogenetic tree alone, necessitating epidemiological investigation. CONCLUSIONS Indigenous cases in Hainan display high genetic (haplotype and nucleotide) diversity. Haplotype network analysis also revealed most haplotypes in Hainan were connected to the Southeast Asian populations and divergence to a cluster of China's other populations. According to the mtDNA phylogenetic tree, some haplotypes were shared between geographic populations, and some haplotypes have formed lineages. Multiple tests are needed to further explore the origin and expansion of P. vivax populations.
Collapse
Affiliation(s)
- Yuchun Li
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| | - Xiaomin Huang
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China
| | - Ling Qing
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China
| | - Wen Zeng
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China
| | - Xiangjie Zeng
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China
| | - Feng Meng
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China
| | - GuangZe Wang
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| | - Yan Chen
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| |
Collapse
|
5
|
Atuh NI, Anong DN, Jerome FC, Oriero E, Mohammed NI, D’Alessandro U, Amambua-Ngwa A. High genetic complexity but low relatedness in Plasmodium falciparum infections from Western Savannah Highlands and coastal equatorial Lowlands of Cameroon. Pathog Glob Health 2022; 116:428-437. [PMID: 34308788 PMCID: PMC9518281 DOI: 10.1080/20477724.2021.1953686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the diversity and connectivity of infections in Northwestern and Southwestern Cameroon, 232 Plasmodium falciparum infections, collected in 2018 from the Ndop Health District (NHD) in the western savannah highlands in the Northwest and the Limbe Health District (LHD) in the coastal lowland forests in the Southwest of Cameroon were genotyped for nine neutral microsatellite markers. Overall infection complexity and genetic diversity was significantly (p < 0.05) lower in NHD than LHD, (Mean MOI = 2.45 vs. 2.97; Fws = 0.42 vs. 0.47; Mean He = 0.84 vs. 0.89, respectively). Multi-locus linkage disequilibrium was generally low but significantly higher in the NHD than LHD population (mean ISA= 0.376 vs 0.093). Consequently, highly related pairs of isolates were observed in NHD (mean IBS = 0.086) compared to those from the LHD (mean IBS = 0.059). Infections from the two regions were mostly unrelated (mean IBS = 0.059), though the overall genetic differentiation across the geographical range was low. Indices of differentiation between the populations were however significant (overall pairwise Fst = 0.048, Jost's D = 0.133, p < 0.01). Despite the high human migration across the 270km separating the study sites, these results suggest significant restrictions to gene flow against contiguous geospatial transmission of malaria in west Cameroon. Clonal infections in the highland sites could be driven by lower levels of malaria prevalence and seasonal transmission. How these differences in genetic diversity and complexity affect responses to interventions such as drugs will require further investigations from broader community sampling.
Collapse
Affiliation(s)
- Ngoh Ines Atuh
- Department of Biomedical Science, Faculty of Health Science, University of Buea, Buea, Cameroon
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| | - Damian Nota Anong
- Department of Microbiology & Parasitology, Faculty of Science, University of Buea, Molyko Buea, Cameroon
| | - Fru-Cho Jerome
- Department of Biomedical Science, Faculty of Health Science, University of Buea, Buea, Cameroon
| | - Eniyou Oriero
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| | - Nuredin Ibrahim Mohammed
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| | - Umberto D’Alessandro
- Department of Microbiology & Parasitology, Faculty of Science, University of Buea, Molyko Buea, Cameroon
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| |
Collapse
|
6
|
Fontecha G, Escobar D, Ortiz B, Pinto A. A PCR-RFLP Technique to Assess the Geographic Origin of Plasmodium falciparum Strains in Central America. Trop Med Infect Dis 2022; 7:tropicalmed7080149. [PMID: 35893657 PMCID: PMC9394469 DOI: 10.3390/tropicalmed7080149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
The elimination of malaria requires strengthening diagnosis and offering adequate and timely treatment. Imported cases of falciparum malaria represent a major challenge for pre-elimination areas, such as Central America, where chloroquine and primaquine continue to be used as first-line treatment. The pfs47 gene has been previously described as a precise molecular marker to track the geographic origin of the parasite. The aim of this study was to design a simple and low-cost technique using the polymorphic region of pfs47 to assess the geographic origin of P. falciparum strains. A PCR-RFLP technique was developed and evaluated using the MseI enzyme that proved capable of discriminating, with reasonable precision, the geographical origin of the parasites. This method could be used by national surveillance laboratories and malaria elimination programs in countries such as Honduras and Nicaragua in cases of malaria where an origin outside the Central American isthmus is suspected.
Collapse
|
7
|
Agaba BB, Anderson K, Gresty K, Prosser C, Smith D, Nankabirwa JI, Nsobya S, Yeka A, Namubiru R, Arinaitwe E, Mbaka P, Kissa J, Lim CS, Karamagi C, Nakayaga JK, Kamya MR, Cheng Q. Genetic diversity and genetic relatedness in Plasmodium falciparum parasite population in individuals with uncomplicated malaria based on microsatellite typing in Eastern and Western regions of Uganda, 2019-2020. Malar J 2021; 20:242. [PMID: 34059047 PMCID: PMC8165787 DOI: 10.1186/s12936-021-03763-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Genetic diversity and parasite relatedness are essential parameters for assessing impact of interventions and understanding transmission dynamics of malaria parasites, however data on its status in Plasmodium falciparum populations in Uganda is limited. Microsatellite markers and DNA sequencing were used to determine diversity and molecular characterization of P. falciparum parasite populations in Uganda. METHODS A total of 147 P. falciparum genomic DNA samples collected from cross-sectional surveys in symptomatic individuals of 2-10 years were characterized by genotyping of seven highly polymorphic neutral microsatellite markers (n = 85) and genetic sequencing of the Histidine Rich Protein 2 (pfhrp2) gene (n = 62). ArcGIS was used to map the geographical distribution of isolates while statistical testing was done using Student's t-test or Wilcoxon's rank-sum test and Fisher's exact test as appropriate at P ≤ 0.05. RESULTS Overall, 75.5% (95% CI 61.1-85.8) and 24.5% (95% CI14.2-38.9) of parasites examined were of multiclonal (mixed genotype) and single clone infections, respectively. Multiclonal infections occurred more frequently in the Eastern region 73.7% (95% CI 48.8-89.1), P < 0.05. Overall, multiplicity of infection (MOI) was 1.9 (95% CI 1.7-2.1), P = 0.01 that was similar between age groups (1.8 vs 1.9), P = 0.60 and regions (1.9 vs 1.8), P = 0.43 for the < 5 and ≥ 5 years and Eastern and Western regions, respectively. Genomic sequencing of the pfhrp2 exon2 revealed a high level of genetic diversity reflected in 96.8% (60/62) unique sequence types. Repeat type AHHAAAHHATD and HRP2 sequence Type C were more frequent in RDT-/PCR + samples (1.9% vs 1.5%) and (13% vs 8%), P < 0.05 respectively. Genetic relatedness analysis revealed small clusters of gene deleted parasites in Uganda, but no clustering with Eritrean parasites. CONCLUSION High level of genetic diversity of P. falciparum parasites reflected in the frequency of multiclonal infections, multiplicity of infection and variability of the pfhrp2 gene observed in this study is consistent with the high malaria transmission intensity in these settings. Parasite genetic analysis suggested spontaneous emergence and clonal expansion of pfhrp2 deleted parasites that require close monitoring to inform national malaria diagnosis and case management policies.
Collapse
Affiliation(s)
- Bosco B Agaba
- College of Health Sciences, Makerere University, Kampala, Uganda.
- National Malaria Control Division, Kampala, Uganda.
| | - Karen Anderson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Karryn Gresty
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Christiane Prosser
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - David Smith
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Joaniter I Nankabirwa
- College of Health Sciences, Makerere University, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Sam Nsobya
- College of Health Sciences, Makerere University, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Adoke Yeka
- College of Health Sciences, Makerere University, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Rhoda Namubiru
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Paul Mbaka
- World Health Organization Country Office, Kampala, Uganda
| | - John Kissa
- National Health Information Division, Ministry of Health, Kampala, Uganda
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Health Sciences, Korea University, Seoul, South Korea
| | - Charles Karamagi
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Joan K Nakayaga
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses R Kamya
- College of Health Sciences, Makerere University, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Qin Cheng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| |
Collapse
|
8
|
Amoah LE, Abukari Z, Dawson-Amoah ME, Dieng CC, Lo E, Afrane YA. Population structure and diversity of Plasmodium falciparum in children with asymptomatic malaria living in different ecological zones of Ghana. BMC Infect Dis 2021; 21:439. [PMID: 33985447 PMCID: PMC8120845 DOI: 10.1186/s12879-021-06120-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic diversity in Plasmodium falciparum populations can be used to describe the resilience and spatial distribution of the parasite in the midst of intensified intervention efforts. This study used microsatellite analysis to evaluate the genetic diversity and population dynamics of P. falciparum parasites circulating in three ecological zones of Ghana. METHODS A total of 1168 afebrile children aged between 3 to 13 years were recruited from five (5) Primary schools in 3 different ecological zones (Sahel (Tamale and Kumbungu), Forest (Konongo) and Coastal (Ada and Dodowa)) of Ghana. Asymptomatic malaria parasite carriage was determined using microscopy and PCR, whilst fragment analysis of 6 microsatellite loci was used to determine the diversity and population structure of P. falciparum parasites. RESULTS Out of the 1168 samples examined, 16.1 and 39.5% tested positive for P. falciparum by microscopy and nested PCR respectively. The genetic diversity of parasites in the 3 ecological zones was generally high, with an average heterozygosity (He) of 0.804, 0.787 and 0.608 the rainy (peak) season for the Sahel, Forest and Coastal zones respectively. The mean He for the dry (off-peak) season were 0.562, 0.693 and 0.610 for the Sahel, Forest and Coastal zones respectively. Parasites from the Forest zone were more closely related to those from the Sahel than from the Coastal zone, despite the Coastal zone being closer in physical distance to the Forest zone. The fixation indexes among study sites ranged from 0.049 to 0.112 during the rainy season and 0.112 to 0.348 during the dry season. CONCLUSION A large asymptomatic parasite reservoir was found in the school children during both rainy and dry seasons, especially those in the Forest and Sahel savannah zones where parasites were also found to be related compared to those from the Coastal zone. Further studies are recommended to understand why despite the roll out of several malaria interventions in Ghana, high transmission still persist.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Zakaria Abukari
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Maame Esi Dawson-Amoah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Cheikh Cambel Dieng
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
9
|
Gwarinda HB, Tessema SK, Raman J, Greenhouse B, Birkholtz LM. Parasite genetic diversity reflects continued residual malaria transmission in Vhembe District, a hotspot in the Limpopo Province of South Africa. Malar J 2021; 20:96. [PMID: 33593382 PMCID: PMC7885214 DOI: 10.1186/s12936-021-03635-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND South Africa aims to eliminate malaria transmission by 2023. However, despite sustained vector control efforts and case management interventions, the Vhembe District remains a malaria transmission hotspot. To better understand Plasmodium falciparum transmission dynamics in the area, this study characterized the genetic diversity of parasites circulating within the Vhembe District. METHODS A total of 1153 falciparum-positive rapid diagnostic tests (RDTs) were randomly collected from seven clinics within the district, over three consecutive years (2016, 2017 and 2018) during the wet and dry malaria transmission seasons. Using 26 neutral microsatellite markers, differences in genetic diversity were described using a multiparameter scale of multiplicity of infection (MOI), inbreeding metric (Fws), number of unique alleles (A), expected heterozygosity (He), multilocus linkage disequilibrium (LD) and genetic differentiation, and were associated with temporal and geospatial variances. RESULTS A total of 747 (65%) samples were successfully genotyped. Moderate to high genetic diversity (mean He = 0.74 ± 0.03) was observed in the parasite population. This was ascribed to high allelic richness (mean A = 12.2 ± 1.2). The majority of samples (99%) had unique multi-locus genotypes, indicating high genetic diversity in the sample set. Complex infections were observed in 66% of samples (mean MOI = 2.13 ± 0.04), with 33% of infections showing high within-host diversity as described by the Fws metric. Low, but significant LD (standardised index of association, ISA = 0.08, P < 0.001) was observed that indicates recombination of distinct clones. Limited impact of temporal (FST range - 0.00005 to 0.0003) and spatial (FST = - 0.028 to 0.023) variation on genetic diversity existed during the sampling timeframe and study sites respectively. CONCLUSIONS Consistent with the Vhembe District's classification as a 'high' transmission setting within South Africa, P. falciparum diversity in the area was moderate to high and complex. This study showed that genetic diversity within the parasite population reflects the continued residual transmission observed in the Vhembe District. This data can be used as a reference point for the assessment of the effectiveness of on-going interventions over time, the identification of imported cases and/or outbreaks, as well as monitoring for the potential spread of anti-malarial drug resistance.
Collapse
Affiliation(s)
- Hazel B Gwarinda
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Sofonias K Tessema
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jaishree Raman
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Gauteng, South Africa.,Wits Research Institute for Malaria, Faculty of Health Sciences,, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Bryan Greenhouse
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Lyn-Marié Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| |
Collapse
|
10
|
Briggs J, Kuchta A, Murphy M, Tessema S, Arinaitwe E, Rek J, Chen A, Nankabirwa JI, Drakeley C, Smith D, Bousema T, Kamya M, Rodriguez-Barraquer I, Staedke S, Dorsey G, Rosenthal PJ, Greenhouse B. Within-household clustering of genetically related Plasmodium falciparum infections in a moderate transmission area of Uganda. Malar J 2021; 20:68. [PMID: 33531029 PMCID: PMC8042884 DOI: 10.1186/s12936-021-03603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Evaluation of genetic relatedness of malaria parasites is a useful tool for understanding transmission patterns, but patterns are not easily detectable in areas with moderate to high malaria transmission. To evaluate the feasibility of detecting genetic relatedness in a moderate malaria transmission setting, relatedness of Plasmodium falciparum infections was measured in cohort participants from randomly selected households in the Kihihi sub-county of Uganda (annual entomological inoculation rate of 27 infectious bites per person). METHODS All infections detected via microscopy or Plasmodium-specific loop mediated isothermal amplification from passive and active case detection during August 2011-March 2012 were genotyped at 26 microsatellite loci, providing data for 349 samples from 230 participants living in 80 households. Pairwise genetic relatedness was calculated using identity by state (IBS). RESULTS As expected, genetic diversity was high (mean heterozygosity [He] = 0.73), and the majority (76.5 %) of samples were polyclonal. Despite the high genetic diversity, fine-scale population structure was detectable, with significant spatiotemporal clustering of highly related infections. Although the difference in malaria incidence between households at higher (mean 1127 metres) versus lower elevation (mean 1015 metres) was modest (1.4 malaria cases per person-year vs. 1.9 per person-year, respectively), there was a significant difference in multiplicity of infection (2.2 vs. 2.6, p = 0.008) and, more strikingly, a higher proportion of highly related infections within households (6.3 % vs. 0.9 %, p = 0.0005) at higher elevation compared to lower elevation. CONCLUSIONS Genetic data from a relatively small number of diverse, multiallelic loci reflected fine scale patterns of malaria transmission. Given the increasing interest in applying genetic data to augment malaria surveillance, this study provides evidence that genetic data can be used to inform transmission patterns at local spatial scales even in moderate transmission areas.
Collapse
Affiliation(s)
- Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Alison Kuchta
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Max Murphy
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sofonias Tessema
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Anna Chen
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - David Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, WA, USA
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Sarah Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Spatial and genetic clustering of Plasmodium falciparum and Plasmodium vivax infections in a low-transmission area of Ethiopia. Sci Rep 2020; 10:19975. [PMID: 33203956 PMCID: PMC7672087 DOI: 10.1038/s41598-020-77031-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
The distribution of malaria infections is heterogeneous in space and time, especially in low transmission settings. Understanding this clustering may allow identification and targeting of pockets of transmission. In Adama district, Ethiopia, Plasmodium falciparum and P. vivax malaria patients and controls were examined, together with household members and immediate neighbors. Rapid diagnostic test and quantitative PCR (qPCR) were used for the detection of infections that were genetically characterized by a panel of microsatellite loci for P. falciparum (26) and P. vivax (11), respectively. Individuals living in households of clinical P. falciparum patients were more likely to have qPCR detected P. falciparum infections (22.0%, 9/41) compared to individuals in control households (8.7%, 37/426; odds ratio, 2.9; 95% confidence interval, 1.3–6.4; P = .007). Genetically related P. falciparum, but not P. vivax infections showed strong clustering within households. Genotyping revealed a marked temporal cluster of P. falciparum infections, almost exclusively comprised of clinical cases. These findings uncover previously unappreciated transmission dynamics and support a rational approach to reactive case detection strategies for P. falciparum in Ethiopia.
Collapse
|