1
|
Siegel SV, Trimarsanto H, Amato R, Murie K, Taylor AR, Sutanto E, Kleinecke M, Whitton G, Watson JA, Imwong M, Assefa A, Rahim AG, Nguyen HC, Tran TH, Green JA, Koh GCKW, White NJ, Day N, Kwiatkowski DP, Rayner JC, Price RN, Auburn S. Lineage-informative microhaplotypes for recurrence classification and spatio-temporal surveillance of Plasmodium vivax malaria parasites. Nat Commun 2024; 15:6757. [PMID: 39117628 PMCID: PMC11310204 DOI: 10.1038/s41467-024-51015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Challenges in classifying recurrent Plasmodium vivax infections constrain surveillance of antimalarial efficacy and transmission. Recurrent infections may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or reinfection. Molecular inference of familial relatedness (identity-by-descent or IBD) can help resolve the probable origin of recurrences. As whole genome sequencing of P. vivax remains challenging, targeted genotyping methods are needed for scalability. We describe a P. vivax marker discovery framework to identify and select panels of microhaplotypes (multi-allelic markers within small, amplifiable segments of the genome) that can accurately capture IBD. We evaluate panels of 50-250 microhaplotypes discovered in a global set of 615 P. vivax genomes. A candidate global 100-microhaplotype panel exhibits high marker diversity in the Asia-Pacific, Latin America and horn of Africa (median HE = 0.70-0.81) and identifies 89% of the polyclonal infections detected with genome-wide datasets. Data simulations reveal lower error in estimating pairwise IBD using microhaplotypes relative to traditional biallelic SNP barcodes. The candidate global panel also exhibits high accuracy in predicting geographic origin and captures local infection outbreak and bottlenecking events. Our framework is open-source enabling customised microhaplotype discovery and selection, with potential for porting to other species or data resources.
Collapse
Affiliation(s)
- Sasha V Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jakarta, 10430, Indonesia
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Kathryn Murie
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Aimee R Taylor
- Institut Pasteur, University de Paris, Infectious Disease Epidemiology and Analytics Unit, Paris, France
| | - Edwin Sutanto
- Exeins Health Initiative, Jakarta Selatan, 12870, Indonesia
| | - Mariana Kleinecke
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | | | - James A Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Awab Ghulam Rahim
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Afghan International Islamic University, Kabul, Afghanistan
| | - Hoang Chau Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Tinh Hien Tran
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | | | - Gavin C K W Koh
- Department of Infectious Diseases, Northwick Park Hospital, Harrow, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nicholas Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK.
| |
Collapse
|
2
|
Hu Y, Li Y, Brashear AM, Zeng W, Wu Z, Wang L, Wei H, Soe MT, Aung PL, Sattabongkot J, Kyaw MP, Yang Z, Zhao Y, Cui L, Cao Y. Plasmodium vivax populations in the western Greater Mekong Subregion evaluated using a genetic barcode. PLoS Negl Trop Dis 2024; 18:e0012299. [PMID: 38959285 PMCID: PMC11251639 DOI: 10.1371/journal.pntd.0012299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/16/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
An improved understanding of the Plasmodium vivax populations in the Great Mekong Subregion (GMS) is needed to monitor the progress of malaria elimination. This study aimed to use a P. vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics and explore the gene flow among P. vivax parasite populations in the western GMS (China, Myanmar and Thailand). A total of 315 P. vivax patient samples collected in 2011 and 2018 from four regions of the western GMS were genotyped for 42 SNPs using the high-throughput MassARRAY SNP genotyping technology. Population genetic analysis was conducted to estimate the genetic diversity, effective population size, and population structure among the P. vivax populations. Overall, 291 samples were successfully genotyped at 39 SNPs. A significant difference was observed in the proportion of polyclonal infections among the five P. vivax populations (P = 0.0012, Pearson Chi-square test, χ2 = 18.1), with western Myanmar having the highest proportion (96.2%, 50/52) in 2018. Likewise, the average complexity of infection was also highest in western Myanmar (1.31) and lowest in northeast Myanmar (1.01) in 2018. The older samples from western China in 2011 had the highest pairwise nucleotide diversity (π, 0.388 ± 0.046), expected heterozygosity (He, 0.363 ± 0.02), and the largest effective population size. In comparison, in the neighboring northeast Myanmar, the more recent samples in 2018 showed the lowest values (π, 0.224 ± 0.036; He, 0.220 ± 0.026). Furthermore, the 2018 northeast Myanmar parasites showed high and moderate genetic differentiation from other populations with FST values of 0.162-0.252, whereas genetic differentiation among other populations was relatively low (FST ≤ 0.059). Principal component analysis, phylogeny, and STRUCTURE analysis showed that the P. vivax population in northeast Myanmar in 2018 substantially diverged from other populations. Although the 42 SNP barcode is a valuable tool for tracking parasite origins of worldwide parasite populations, a more extended barcode with additional SNPs is needed to distinguish the more related parasite populations in the western GMS.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Awtum M. Brashear
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Zifang Wu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Haichao Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Ruybal-Pesántez S, McCann K, Vibin J, Siegel S, Auburn S, Barry AE. Molecular markers for malaria genetic epidemiology: progress and pitfalls. Trends Parasitol 2024; 40:147-163. [PMID: 38129280 DOI: 10.1016/j.pt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kirsty McCann
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jessy Vibin
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
4
|
Siegel SV, Amato R, Trimarsanto H, Sutanto E, Kleinecke M, Murie K, Whitton G, Taylor AR, Watson JA, Imwong M, Assefa A, Rahim AG, Chau NH, Hien TT, Green JA, Koh G, White NJ, Day N, Kwiatkowski DP, Rayner JC, Price RN, Auburn S. Lineage-informative microhaplotypes for spatio-temporal surveillance of Plasmodium vivax malaria parasites. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.13.23287179. [PMID: 36993192 PMCID: PMC10055443 DOI: 10.1101/2023.03.13.23287179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Challenges in understanding the origin of recurrent Plasmodium vivax infections constrains the surveillance of antimalarial efficacy and transmission of this neglected parasite. Recurrent infections within an individual may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or new inoculations (reinfection). Molecular inference of familial relatedness (identity-by-descent or IBD) based on whole genome sequence data, together with analysis of the intervals between parasitaemic episodes ("time-to-event" analysis), can help resolve the probable origin of recurrences. Whole genome sequencing of predominantly low-density P. vivax infections is challenging, so an accurate and scalable genotyping method to determine the origins of recurrent parasitaemia would be of significant benefit. We have developed a P. vivax genome-wide informatics pipeline to select specific microhaplotype panels that can capture IBD within small, amplifiable segments of the genome. Using a global set of 615 P. vivax genomes, we derived a panel of 100 microhaplotypes, each comprising 3-10 high frequency SNPs within <200 bp sequence windows. This panel exhibits high diversity in regions of the Asia-Pacific, Latin America and the horn of Africa (median HE = 0.70-0.81) and it captured 89% (273/307) of the polyclonal infections detected with genome-wide datasets. Using data simulations, we demonstrate lower error in estimating pairwise IBD using microhaplotypes, relative to traditional biallelic SNP barcodes. Our panel exhibited high accuracy in predicting the country of origin (median Matthew's correlation coefficient >0.9 in 90% countries tested) and it also captured local infection outbreak and bottlenecking events. The informatics pipeline is available open-source and yields microhaplotypes that can be readily transferred to high-throughput amplicon sequencing assays for surveillance in malaria-endemic regions.
Collapse
Affiliation(s)
- Sasha V. Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta 10430, Indonesia
| | - Edwin Sutanto
- Exeins Health Initiative, Jakarta Selatan 12870, Indonesia
| | - Mariana Kleinecke
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Kathryn Murie
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Aimee R. Taylor
- Institut Pasteur, University de Paris, Infectious Disease Epidemiology and Analytics Unit, Paris, France
| | - James A. Watson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Awab Ghulam Rahim
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Nangarhar Medical Faculty, Nangarhar University, Ministry of Higher Education, Afghanistan
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | | | | | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Nicholas Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Ric N. Price
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Trimarsanto H, Amato R, Pearson RD, Sutanto E, Noviyanti R, Trianty L, Marfurt J, Pava Z, Echeverry DF, Lopera-Mesa TM, Montenegro LM, Tobón-Castaño A, Grigg MJ, Barber B, William T, Anstey NM, Getachew S, Petros B, Aseffa A, Assefa A, Rahim AG, Chau NH, Hien TT, Alam MS, Khan WA, Ley B, Thriemer K, Wangchuck S, Hamedi Y, Adam I, Liu Y, Gao Q, Sriprawat K, Ferreira MU, Laman M, Barry A, Mueller I, Lacerda MVG, Llanos-Cuentas A, Krudsood S, Lon C, Mohammed R, Yilma D, Pereira DB, Espino FEJ, Chu CS, Vélez ID, Namaik-Larp C, Villegas MF, Green JA, Koh G, Rayner JC, Drury E, Gonçalves S, Simpson V, Miotto O, Miles A, White NJ, Nosten F, Kwiatkowski DP, Price RN, Auburn S. A molecular barcode and web-based data analysis tool to identify imported Plasmodium vivax malaria. Commun Biol 2022; 5:1411. [PMID: 36564617 PMCID: PMC9789135 DOI: 10.1038/s42003-022-04352-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.
Collapse
Affiliation(s)
- Hidayat Trimarsanto
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Roberto Amato
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Edwin Sutanto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Exeins Health Initiative, Jakarta, Indonesia
| | | | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Diego F Echeverry
- International Training and Medical Research Center (CIDEIM), Cali, Colombia
- Departamento de Microbiología, Universidad del Valle, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | | | | | | | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Bridget Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Beyene Petros
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Awab G Rahim
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nangarhar Medical Faculty, Nangarhar University, Ministry of Higher Education, Jalalabad, Afghanistan
| | - Nguyen H Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Tran T Hien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Mohammad S Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Dhaka, Bangladesh
| | - Wasif A Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Dhaka, Bangladesh
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sonam Wangchuck
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Yaghoob Hamedi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Ishag Adam
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Gao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Alyssa Barry
- Deakin University, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical, Manaus, Brazil
- Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | | | | | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | | | - Fe E J Espino
- Research Institute for Tropical Medicine, Manilla, Philippines
| | - Cindy S Chu
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Iván D Vélez
- Malaria Group, Universidad de Antioquia, Medellin, Colombia
| | | | | | | | | | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Eleanor Drury
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sónia Gonçalves
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Victoria Simpson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francois Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Kattenberg JH, Nguyen HV, Nguyen HL, Sauve E, Nguyen NTH, Chopo-Pizarro A, Trimarsanto H, Monsieurs P, Guetens P, Nguyen XX, Esbroeck MV, Auburn S, Nguyen BTH, Rosanas-Urgell A. Novel highly-multiplexed AmpliSeq targeted assay for Plasmodium vivax genetic surveillance use cases at multiple geographical scales. Front Cell Infect Microbiol 2022; 12:953187. [PMID: 36034708 PMCID: PMC9403277 DOI: 10.3389/fcimb.2022.953187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of Plasmodium vivax. Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). P. vivax parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the pvmdr1 and pvcrt genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.
Collapse
Affiliation(s)
| | - Hong Van Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Hieu Luong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Erin Sauve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ngoc Thi Hong Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Ana Chopo-Pizarro
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hidayat Trimarsanto
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Pieter Monsieurs
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xa Xuan Nguyen
- Department of Epidemiology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Marjan Van Esbroeck
- Clinical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Binh Thi Huong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
7
|
Pegoraro M, Weedall GD. Malaria in the 'Omics Era'. Genes (Basel) 2021; 12:843. [PMID: 34070769 PMCID: PMC8228830 DOI: 10.3390/genes12060843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Genomics has revolutionised the study of the biology of parasitic diseases. The first Eukaryotic parasite to have its genome sequenced was the malaria parasite Plasmodium falciparum. Since then, Plasmodium genomics has continued to lead the way in the study of the genome biology of parasites, both in breadth-the number of Plasmodium species' genomes sequenced-and in depth-massive-scale genome re-sequencing of several key species. Here, we review some of the insights into the biology, evolution and population genetics of Plasmodium gained from genome sequencing, and look at potential new avenues in the future genome-scale study of its biology.
Collapse
Affiliation(s)
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
8
|
Labadie-Bracho MY, Adhin MR. Reconstruction of Plasmodium vivax outbreaks in a low malaria endemic setting utilizing conventional restriction fragment length polymorphism. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2021; 12:9-15. [PMID: 33859783 PMCID: PMC8044709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Suriname is on track to eliminate local malaria transmission. P. vivax malaria reemerged in March and September 2019 in the Amerindian village Palumeu, free of malaria for two years and concurrently, a case was reported in another village Alalaparoe. The outbreaks were contained through targeted interventions including Mass Drug Administration (MDA). Molecular outbreak analysis was performed on 23 dried blood spots (DBS) using combined polymerase chain reaction/restriction fragment length polymorphism (PCR-RFLP) with Pvmsp-1 F2 and Pvmsp-3α as polymorphic marker genes. Independent controls substantiated the discriminating capacities of the utilized PCR-RFLP method. All isolates from the first and second Palumeu outbreak shared a distinctive haplotype presuming single clonal lineage. An imported case probably triggered the first outbreak, while a delayed episode, prompted by withdrawal of drug pressure at the end of the prophylactic MDA, was suggested as source of the second outbreak. A diverging variant was demonstrated in Alalaparoe, implicating an infection from a different source. PCR-RFLP proved to be a useful molecular tool for P. vivax outbreak management in low endemic malaria settings.
Collapse
Affiliation(s)
| | - Malti R Adhin
- Anton de Kom Universiteit van Suriname, Faculty of Medical Sciences, Department of BiochemistryKernkampweg 5, Paramaribo, Suriname
| |
Collapse
|