1
|
Shah SS, Stone EF, Francis RO, Karafin MS. The global role of G6PD in infection and immunity. Front Immunol 2024; 15:1393213. [PMID: 38938571 PMCID: PMC11208698 DOI: 10.3389/fimmu.2024.1393213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. G6PD is an essential enzyme in the pentose phosphate pathway (PPP), generating NADPH needed for cellular biosynthesis and reactive oxygen species (ROS) homeostasis, the latter especially key in red blood cells (RBCs). Beyond the RBC, there is emerging evidence that G6PD exerts an immunologic role by virtue of its functions in leukocyte oxidative metabolism and anabolic synthesis necessary for immune effector function. We review these here, and consider the global immunometabolic role of G6PD activity and G6PD deficiency in modulating inflammation and immunopathology.
Collapse
Affiliation(s)
- Shivang S. Shah
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Elizabeth F. Stone
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Matthew S. Karafin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Decreased parasite burden and altered host response in children with sickle cell anemia and severe anemia with malaria. Blood Adv 2021; 5:4710-4720. [PMID: 34470050 PMCID: PMC8759120 DOI: 10.1182/bloodadvances.2021004704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum malaria causes morbidity and mortality in African children with sickle cell anemia (SCA), but comparisons of host responses to P falciparum between children with SCA (homozygous sickle cell disease/hemoglobin SS [HbSS]) and normal hemoglobin genotype/hemoglobin AA (HbAA) are limited. We assessed parasite biomass and plasma markers of inflammation and endothelial activation in children with HbAA (n = 208) or HbSS (n = 22) who presented with severe anemia and P falciparum parasitemia to Mulago Hospital in Kampala, Uganda. Genotyping was performed at study completion. No child had known SCA at enrollment. Children with HbSS did not differ from children with HbAA in peripheral parasite density, but had significantly lower sequestered parasite biomass. Children with HbSS had greater leukocytosis but significantly lower concentrations of several plasma inflammatory cytokines, including tumor necrosis factor α (TNF-α). In contrast, children with HbSS had threefold greater concentrations of angiopoietin-2 (Angpt-2), a marker of endothelial dysregulation associated with mortality in severe malaria. Lower TNF-α concentrations were associated with increased risk of postdischarge mortality or readmission, whereas higher Angpt-2 concentrations were associated with increased risk of recurrent clinical malaria. Children with SCA have decreased parasite sequestration and inflammation but increased endothelial dysregulation during severe anemia with P falciparum parasitemia, which may ameliorate acute infectious complications but predispose to harmful long-term sequelae.
Collapse
|
3
|
Barry A, Bradley J, Stone W, Guelbeogo MW, Lanke K, Ouedraogo A, Soulama I, Nébié I, Serme SS, Grignard L, Patterson C, Wu L, Briggs JJ, Janson O, Awandu SS, Ouedraogo M, Tarama CW, Kargougou D, Zongo S, Sirima SB, Marti M, Drakeley C, Tiono AB, Bousema T. Higher gametocyte production and mosquito infectivity in chronic compared to incident Plasmodium falciparum infections. Nat Commun 2021; 12:2443. [PMID: 33903595 PMCID: PMC8076179 DOI: 10.1038/s41467-021-22573-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
Plasmodium falciparum gametocyte kinetics and infectivity may differ between chronic and incident infections. In the current study, we assess parasite kinetics and infectivity to mosquitoes among children (aged 5-10 years) from Burkina Faso with (a) incident infections following parasite clearance (n = 48) and (b) chronic asymptomatic infections (n = 60). In the incident infection cohort, 92% (44/48) of children develop symptoms within 35 days, compared to 23% (14/60) in the chronic cohort. All individuals with chronic infection carried gametocytes or developed them during follow-up, whereas only 35% (17/48) in the incident cohort produce gametocytes before becoming symptomatic and receiving treatment. Parasite multiplication rate (PMR) and the relative abundance of ap2-g and gexp-5 transcripts are positively associated with gametocyte production. Antibody responses are higher and PMR lower in chronic infections. The presence of symptoms and sexual stage immune responses are associated with reductions in gametocyte infectivity to mosquitoes. We observe that most incident infections require treatment before the density of mature gametocytes is sufficient to infect mosquitoes. In contrast, chronic, asymptomatic infections represent a significant source of mosquito infections. Our observations support the notion that malaria transmission reduction may be expedited by enhanced case management, involving both symptom-screening and infection detection.
Collapse
Affiliation(s)
- Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Will Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Moussa W Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alphonse Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Issa Nébié
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Samuel S Serme
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Catriona Patterson
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Lindsey Wu
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Jessica J Briggs
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Owen Janson
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Shehu S Awandu
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mireille Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Casimire W Tarama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Chris Drakeley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Teun Bousema
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Chauvet M, Chhuon C, Lipecka J, Dechavanne S, Dechavanne C, Lohezic M, Ortalli M, Pineau D, Ribeil JA, Manceau S, Le Van Kim C, Luty AJF, Migot-Nabias F, Azouzi S, Guerrera IC, Merckx A. Sickle Cell Trait Modulates the Proteome and Phosphoproteome of Plasmodium falciparum-Infected Erythrocytes. Front Cell Infect Microbiol 2021; 11:637604. [PMID: 33842387 PMCID: PMC8024585 DOI: 10.3389/fcimb.2021.637604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
The high prevalence of sickle cell disease in some human populations likely results from the protection afforded against severe Plasmodium falciparum malaria and death by heterozygous carriage of HbS. P. falciparum remodels the erythrocyte membrane and skeleton, displaying parasite proteins at the erythrocyte surface that interact with key human proteins in the Ankyrin R and 4.1R complexes. Oxidative stress generated by HbS, as well as by parasite invasion, disrupts the kinase/phosphatase balance, potentially interfering with the molecular interactions between human and parasite proteins. HbS is known to be associated with abnormal membrane display of parasite antigens. Studying the proteome and the phosphoproteome of red cell membrane extracts from P. falciparum infected and non-infected erythrocytes, we show here that HbS heterozygous carriage, combined with infection, modulates the phosphorylation of erythrocyte membrane transporters and skeletal proteins as well as of parasite proteins. Our results highlight modifications of Ser-/Thr- and/or Tyr- phosphorylation in key human proteins, such as ankyrin, β-adducin, β-spectrin and Band 3, and key parasite proteins, such as RESA or MESA. Altered phosphorylation patterns could disturb the interactions within membrane protein complexes, affect nutrient uptake and the infected erythrocyte cytoadherence phenomenon, thus lessening the severity of malaria symptoms.
Collapse
Affiliation(s)
- Margaux Chauvet
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cerina Chhuon
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Joanna Lipecka
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Sébastien Dechavanne
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | | | | | - Margherita Ortalli
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Damien Pineau
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Antoine Ribeil
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sandra Manceau
- Laboratoire d'Excellence GR-Ex, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Le Van Kim
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | | | | | - Slim Azouzi
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Ida Chiara Guerrera
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Anaïs Merckx
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
5
|
Loiseau C, Traore B, Ongoiba A, Kayentao K, Doumbo S, Doumtabe D, de Sousa KP, Brady JL, Proietti C, Crompton PD, Doolan DL. Memory CD8 + T cell compartment associated with delayed onset of Plasmodium falciparum infection and better parasite control in sickle-cell trait children. Clin Transl Immunology 2021; 10:e1265. [PMID: 33763229 PMCID: PMC7979311 DOI: 10.1002/cti2.1265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives Study of individuals with protection from Plasmodium falciparum (Pf) infection and clinical malaria, including individuals affected by the sickle‐cell trait (HbAS), offers the potential to identify cellular targets that could be translated for therapeutic development. We previously reported the first involvement of cellular immunity in HbAS‐associated relative protection and identified a novel subset of memory‐activated NK cells that was enriched in HbAS children and associated with parasite control. We hypothesised that other memory cell subsets might distinguish the baseline profile of HbAS children and children with normal haemoglobin (HbAA). Methods Subsets of memory T cells and NK cells were analysed by flow cytometry in paired samples collected from HbAS and HbAA children, at baseline and during the first malaria episode of the ensuing transmission season. Correlations between cell frequencies and features of HbAS‐mediated protection from malaria were determined. Results HbAS children displayed significantly higher frequency of memory CD8+ T cells at baseline than HbAA children. Baseline frequency of memory CD8+ T cells correlated with features of HbAS‐mediated protection from malaria. Exploration of memory CD8+ T cell subsets revealed that central memory CD8+ T cell frequency was higher in HbAS children than in HbAA children. Conclusion This study shows that HbAS children develop a larger memory CD8+ T cell compartment than HbAA children, and associates this compartment with better control of subsequent onset of infection and parasite density. Our data suggest that central memory CD8+ T cells may play an important role in the relative protection against malaria experienced by HbAS individuals, and further work to investigate this is warranted.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Boubacar Traore
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Karina P de Sousa
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia.,Present address: School of Life and Medical Sciences Biosciences Research Group University of Hertfordshire Hatfield AL UK
| | - Jamie L Brady
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Carla Proietti
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section Laboratory of Immunogenetics National Institute of Allergy and Infectious Diseases National Institutes of Health Rockville MD USA
| | - Denise L Doolan
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| |
Collapse
|
6
|
Kosiyo P, Otieno W, Gitaka J, Munde EO, Ouma C. Association between haematological parameters and sickle cell genotypes in children with Plasmodium falciparum malaria resident in Kisumu County in Western Kenya. BMC Infect Dis 2020; 20:887. [PMID: 33238928 PMCID: PMC7690073 DOI: 10.1186/s12879-020-05625-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Sickle cell disease (SCD) is a monogenic disorder due to point mutation in the β-globin gene resulting in substitution of Valine for Glutamic acid. The SCD is prevalent in P. falciparum endemic regions such as western Kenya. Carriage of different sickle cell genotypes may influence haematological parameter during malaria. Children resident in malaria holoendemic regions suffer more from malaria-related complications and this is moderated by the presence of the SCD. In the current study, we determined the association between sickle cell genotypes and haematological parameters in children with P. falciparum malaria resident in Kisumu County in Western Kenya. Methodology Children (n = 217, aged 1–192 months) with acute febrile condition were recruited at Jaramogi Oginga Odinga Teaching and Referral Hospital. Chi-square (χ2) analysis was used to determine differences between proportions. Differences in haematological parameters were compared across groups using Kruskal Wallis test and between groups using Mann Whitney U test. Multivariate logistic regression analysis controlling for infection status was used to determine the association between sickle cell genotypes and haematological parameters. Results Using HbAA as the reference group, multivariate logistic regression analysis revealed that carriage of HbSS was associated with reduced haemoglobin [OR = 0.310, 95% CI = 0.101–0.956, P = 0.041], reduced haematocrit [OR = 0.318, 95% CI = 0.128–0.793, P = 0.014], reduced RBC count [OR = 0.124, 95% CI = 0.045–0.337, P = 0.001], reduced MCHC [OR = 0.325, 95% CI = 0.118–0.892, P = 0.029], increased leucocytosis [OR = 9.283, 95% CI = 3.167–27.210, P = 0.001] and reduced monocytosis [OR = 0.319, 95% CI = 0.123–0.830, P = 0.019]. However, carriage of HbAS was only associated with increased micro-platelets [OR = 3.629, 95% CI = 1.291–8.276, P = 0.012]. Conclusion Results show that carriage of HbSS in children influence the levels of haemoglobin, haematocrit, RBC, MCHC, WBC and Monocytes. Therefore prior knowledge of HbSS should be considered to improve clinical management of haematological alterations during malaria in children. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-020-05625-z.
Collapse
Affiliation(s)
- Paul Kosiyo
- Department of Biomedical Science and Technology, School of Pub;ic Health and Community Development, Maseno University, Maseno, Kenya.,Department of Medical Laboratory Sciences, School of Medicine, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Walter Otieno
- Department of Paediatrics and Child Health, School of Medicine, Maseno University, Private Bag, Maseno, Kenya
| | - Jesse Gitaka
- School of Clinical Medicine, Mount Kenya University, Gen Kago Rd, P.O. Box 342 01000, Thika, Kenya
| | - Elly O Munde
- Department of Clinical Medicine, School of Health Sciences, Kirinyaga University, P.O Box 143-10300, Kerugoya, Kenya
| | - Collins Ouma
- Department of Biomedical Science and Technology, School of Pub;ic Health and Community Development, Maseno University, Maseno, Kenya.
| |
Collapse
|
7
|
Loiseau C, Doumbo OK, Traore B, Brady JL, Proietti C, de Sousa KP, Crompton PD, Doolan DL. A novel population of memory-activated natural killer cells associated with low parasitaemia in Plasmodium falciparum-exposed sickle-cell trait children. Clin Transl Immunology 2020; 9:e1125. [PMID: 32257211 PMCID: PMC7114700 DOI: 10.1002/cti2.1125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/10/2023] Open
Abstract
Objectives The sickle‐cell trait phenotype is associated with protection from malaria. Multiple molecular mechanisms have been proposed to explain this protection, but the role of the host immune system has been poorly investigated. We hypothesised that cellular immunity to malaria may develop differently in sickle‐cell trait children (HbAS) and children with normal haemoglobin (HbAA) repeatedly exposed to Plasmodium falciparum (Pf). Methods Paired samples collected prior to the Pf transmission season and during the first malaria episode of the ensuing transmission season from HbAS and HbAA children were analysed by multiplex bead‐based assay and comprehensive multi‐dimensional flow cytometry profiling. Results Cellular immune profiles were enriched in HbAS relative to HbAA children before the start of the Pf transmission season, with a distinct NK subset. These cells were identified as a novel subset of memory‐activated NK cells characterised by reduced expression of the ecto‐enzyme CD38 as well as co‐expression of high levels of HLA‐DR and CD45RO. The frequency of this NK subset before the transmission season was negatively correlated with parasite density quantified during the first malaria episode of the ensuing transmission season. Functional assessment revealed that these CD38dim CD45RO+ HLA‐DR+ NK cells represent a important source of IFN‐γ. Conclusion Our data suggest that this novel memory‐activated NK cell subset may contribute to an accelerated and enhanced IFN‐γ‐mediated immune response and to control of parasite density in individuals with the sickle‐cell trait. This distinct cellular immune profile may contribute to predispose HbAS children to a relative protection from malaria.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics Australian Institute of Tropical Health & Medicine James Cook University Cairns QLD Australia
| | - Ogobara K Doumbo
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Jamie L Brady
- Centre for Molecular Therapeutics Australian Institute of Tropical Health & Medicine James Cook University Cairns QLD Australia
| | - Carla Proietti
- Centre for Molecular Therapeutics Australian Institute of Tropical Health & Medicine James Cook University Cairns QLD Australia
| | - Karina P de Sousa
- Centre for Molecular Therapeutics Australian Institute of Tropical Health & Medicine James Cook University Cairns QLD Australia.,Present address: School of Life and Medical Sciences Biosciences Research Group University of Hertfordshire Hatfield UK
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section Laboratory of Immunogenetics National Institute of Allergy and Infectious Diseases National Institutes of Health Rockville MD USA
| | - Denise L Doolan
- Centre for Molecular Therapeutics Australian Institute of Tropical Health & Medicine James Cook University Cairns QLD Australia
| |
Collapse
|