1
|
Stopard IJ, Sanou A, Suh E, Cator LJ, Thomas MB, Guelbéogo WM, Sagnon N, Lambert B, Churcher TS. Modelling the effects of diurnal temperature variation on malaria infection dynamics in mosquitoes. Commun Biol 2025; 8:581. [PMID: 40199955 PMCID: PMC11979013 DOI: 10.1038/s42003-025-07949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
Mosquito infection experiments that characterise how sporogony changes with temperature are increasingly being used to parameterise malaria transmission models. In these experiments, mosquitoes are exposed to a range of temperatures, with each group experiencing a single temperature. Diurnal temperature variation can, however, affect the sporogonic cycle of Plasmodium parasites. Mosquito dissection data is not available for all temperature profiles, so we investigate whether mathematical models of mosquito infection parameterised with constant temperature thermal performance curves can predict the effects of diurnal temperature variation. We use this model to predict two key parameters governing disease transmission: the human-to-mosquito transmission probability and extrinsic incubation period - and, embed this model into a malaria transmission model to simulate sporozoite prevalence with and without the effects of diurnal and seasonal temperature variation for a single site in Burkina Faso. Simulations incorporating diurnal temperature variation better predict changes in sporogony in laboratory mosquitoes, indicating that constant temperature experiments can be used to predict the effects of fluctuating temperatures. Including the effects of diurnal temperature variation, however, did not substantially improve the predictive ability of the transmission model to predict changes in sporozoite prevalence in wild mosquitoes, indicating further research is needed in more settings.
Collapse
Affiliation(s)
- Isaac J Stopard
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK.
| | - Antoine Sanou
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
- Université Yembila-Abdoulaye-Toguyeni (UYAT), Fada N'Gourma, Burkina Faso
| | - Eunho Suh
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA
| | - Lauren J Cator
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA
- York Environmental Sustainability Institute, Department of Biology, University of York, York, UK
- Invasion Science Research Institute and Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - W Moussa Guelbéogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - N'Falé Sagnon
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Ben Lambert
- Department of Statistics, University of Oxford, Oxford, UK
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
2
|
Colston JM, Fang B, Nong MK, Chernyavskiy P, Annapareddy N, Lakshmi V, Kosek MN. Spatial variation in housing construction material in low- and middle-income countries: A Bayesian spatial prediction model of a key infectious diseases risk factor and social determinant of health. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003338. [PMID: 39693286 DOI: 10.1371/journal.pgph.0003338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/17/2024] [Indexed: 12/20/2024]
Abstract
Housing infrastructure and quality is a major determinant of infectious disease risk and other health outcomes in regions where vector borne, waterborne and neglected tropical diseases are endemic. It is important to quantify the geographical distribution of improvements to dwelling components to identify and target resources towards populations at risk. This study aimed to model the sub-national spatial variation in housing materials using covariates with quasi-global coverage and use the resulting estimates to map predicted coverage across the world's low- and middle-income countries. Data on materials used in dwelling construction were sourced from nationally representative household surveys conducted since 2005. Materials used for construction of flooring, walls, and roofs were reclassified as improved or unimproved. Households lacking location information were georeferenced using a novel methodology. Environmental and demographic spatial covariates were extracted at those locations for use as model predictors. Integrated nested Laplace approximation models were fitted to obtain, and map predicted probabilities for each dwelling component. The dataset compiled included information from households in 283,000 clusters from 350 surveys. Low coverage of improved housing was predicted across the Sahel and southern Sahara regions of Africa, much of inland Amazonia, and areas of the Tibetan plateau. Coverage of improved roofs and walls was high in the Central Asia, East Asia and Pacific and Latin America and the Caribbean regions. Improvements in all three components, but most notably floors, was low in Sub-Saharan Africa. The strongest determinants of dwelling component quality related to urbanization and economic development, suggesting that programs should focus on supply-side interventions, providing resources for housing improvements directly to the populations that need them. These findings are made available to researchers as files that can be imported into a GIS for integration into relevant analyses to derive improved estimates of preventable health burdens attributed to housing.
Collapse
Affiliation(s)
- Josh M Colston
- Department of Medicine, Division of Infectious Disease and International Health, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Bin Fang
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Malena K Nong
- College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Pavel Chernyavskiy
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Navya Annapareddy
- School of Data Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Venkataraman Lakshmi
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Margaret N Kosek
- Department of Medicine, Division of Infectious Disease and International Health, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
3
|
Limwagu AJ, Msugupakulya BJ, Ngowo HS, Mwalugelo YA, Kilalangongono MS, Samli FA, Abbasi SK, Okumu FO, Ngasala BE, Lyimo IN. The bionomics of Anopheles arabiensis and Anopheles funestus inside local houses and their implications for vector control strategies in areas with high coverage of insecticide-treated nets in South-eastern Tanzania. PLoS One 2024; 19:e0295482. [PMID: 39637234 PMCID: PMC11620649 DOI: 10.1371/journal.pone.0295482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Residual malaria transmissions in Africa may be associated with improved coverage of insecticide-treated nets, house features, and livestock husbandry. These human-land use activities may drive the ecology and behaviour of malaria vectors which sustain residual malaria transmission. This study was conducted to assess changes in the ecology and behaviour of Anopheles funestus and Anopheles arabiensis in villages with high coverage of insecticide-treated nets to guide the selection of complementary vector control strategies against residual malaria transmission. METHODS Mosquitoes were collected using a CDC-light trap, miniaturized double net trap, and Prokopack aspirator from 222 households in three villages (Ebuyu, Chirombora, and Mzelezi) within Kilombero Valley. Anopheles mosquitoes were morphologically identified to their physiological status and species-complex levels. A sub-sample of Anopheles mosquitoes was exposed to laboratory analyses of sibling species, host preference, and sporozoite rates. Additionally, the local houses were geo-referenced using Global Positioning Systems (GPS) devise, and house features were recorded and associated with vector abundance. RESULTS The population of An. funestus s.s was abundant with high Plasmodium sporozoite rates inside houses compared to An. arabiensis. However, these vector species equally blood-fed on humans inside houses, but they also flexibly mixed human and animal blood meal. Fewer An. funestus were caught in houses with metal- than grass roofs and houses with and without animals. Contrastingly, fewer An. arabiensis were caught from houses with screened eaves compared to houses with open eaves. CONCLUSIONS This study confirms that An. funestus dominates residual malaria transmission over An. arabiensis. These vector species exhibit anthropophily and opportunistic blood-feeding behaviour in areas with high coverage of insecticide-treated nets, but they numerically respond differently to local house improvements. These results imply that integrating mosquito-proof houses, improved insecticide-treated nets, and livestock-based interventions could effectively reduce and eventually eliminate residual malaria transmission.
Collapse
Affiliation(s)
- Alex J. Limwagu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- Parasitology and Medical Entomology Department, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Betwel J. Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Halfan S. Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Yohana A. Mwalugelo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Masoud S. Kilalangongono
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Faraji A. Samli
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Said K. Abbasi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science & Technology, Arusha, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G128QQ, University of Glasgow, Glasgow, United Kingdom
| | - Billy E. Ngasala
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- Parasitology and Medical Entomology Department, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Issa N. Lyimo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science & Technology, Arusha, Tanzania
| |
Collapse
|
4
|
Aninagyei E, Adedia D, Larbi G, Acheampong SO, Nyarko M, Abbew GA, Tuwarlba I, Acheampong DO. Epidemiology and likelihood of asymptomatic malaria among community dwellers in the Fanteakwa south district of Ghana. Parasite Epidemiol Control 2024; 27:e00378. [PMID: 39291102 PMCID: PMC11407027 DOI: 10.1016/j.parepi.2024.e00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/18/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Background Data on the asymptomatic burden of malaria in endemic areas is essential for Ghana's malaria elimination efforts. Consequently, the situation of asymptomatic malaria in the Fanteakwa South District (FSD) is determined in this study. The FSD is predominantly forested with more rural than peri-urban communities. Additionally, artisanal mining is prevalent in the district. Despite that the forgoing could promote high incidence of malaria, the burden of asymptomatic malaria and associated factors in the district have never been determined. Methods This community-based cross-sectional study was conducted in four randomly selected communities in the FSD in the Eastern region of Ghana. The participating households were systematically selected, of which one household member was randomly enrolled in the study. With prior consent, 2 mL of whole blood was collected from the participants. Subsequently, the study variables were obtained from the enrolees using a structured questionnaire. The malaria status of the enrolled participants was determined using the CareStart™ malaria rapid diagnostic test kit (mRDT) (USA). The multiple logistic regression model was used to fit the model to predict the groups at risk of P. falciparum infection in the district. Results In total, 412 study participants were enrolled. The overall prevalence of asymptomatic malaria in the district was 43.4 % (179/412). The prevalence rate was 36.9 %, 27.7 %, 50 % and 58.8 % (<0.001) respectively for the Dwenase, Bosusu, Nsutam and Osino communities. Living at Bosusu (p = 0.045, AOR = 0.23, 95 % CI: 0.05-0.96), Dwenase (p < 0.001, AOR = 0.12, 95 % CI: 0.04-0.30) and Nsutam (p < 0.001, AOR = 0.19, 95 % CI: 0.08-0.45) were less likely to contract malaria compared to Osino dwellers. Furthermore, pregnant women (p = 0.024, COR = 0.35, 95 % CI: 0.14-0.9) and individuals who do not share mosquito nets with others (p = 0.017, COR = 0.47, 95 % CI: 0.25-0.88) were less likely to contract malaria. Moreover, being an adolescent (p = 0.048, COR = 1.93, 95 % CI: 1.00-3.73), living in mining communities (p = 0.002, COR = 1.97, 95 % CI: 1.27-3.05), being nocturnally active (p = 0.001, AOR = 4.64, 95 % CI: 1.97-11.31), living in a medium quality house (p = 0.031, AOR = 2.31, 95 % CI: 1.09-5.00), schooling in the district (p < 0.001) and body temperature above >37.5 °C (<0.001), were predictors of asymptomatic malaria. Conclusions The burden of asymptomatic malaria is high in the Fanteakwa South district. In this context, the implementation of the 'mass strategy' recommended by the World Health Organization will play a key role in eliminating malaria in the district.
Collapse
Affiliation(s)
- Enoch Aninagyei
- School of Basic and Biomedical Sciences, Department of Biomedical Sciences, University of Health and Allied Sciences, PMB 31 Ho, Volta Region, Ghana
| | - David Adedia
- School of Basic and Biomedical Sciences, Department of Basic, University of Health and Allied Sciences, PMB 31 Ho, Volta Region, Ghana
| | - Gifty Larbi
- School of Allied Health Sciences, Department of Biomedical Sciences, University of Cape Coast, Central Region, Ghana
| | - Stella Omane Acheampong
- School of Physical Sciences, Department of Statistics, University of Cape Coast, Central Region, Ghana
| | - Margaret Nyarko
- Ghana Health Service, Fanteakwa South District Health Directorate, Eastern Region, Ghana
| | - George Abeiku Abbew
- School of Allied Health Sciences, Department of Biomedical Sciences, University of Cape Coast, Central Region, Ghana
| | - Isaac Tuwarlba
- School of Allied Health Sciences, Department of Biomedical Sciences, University of Cape Coast, Central Region, Ghana
| | - Desmond Omane Acheampong
- School of Allied Health Sciences, Department of Biomedical Sciences, University of Cape Coast, Central Region, Ghana
| |
Collapse
|
5
|
Mukisa MC, Kassano JJ, Mwalugelo YA, Ntege C, Kahamba NF, Finda MF, Msugupakulya BJ, Ngowo HS, Okumu FO. Analysis of the 24-h biting patterns and human exposures to malaria vectors in south-eastern Tanzania. Parasit Vectors 2024; 17:445. [PMID: 39478627 PMCID: PMC11526538 DOI: 10.1186/s13071-024-06521-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Afrotropical malaria vectors are generally believed to bite nocturnally, leading to the predominant use of insecticide-treated nets (ITNs), which target indoor, nighttime-biting mosquitoes. This focus is reinforced by biases in entomological surveys, which largely overlook daytime mosquito activity. However, recent evidence challenges this paradigm, showing that Anopheles biting can extend way into the daytime, coinciding with human activities at dawn, daytime and evenings, suggesting a broader risk spectrum and potential protection gaps. We have therefore investigated the diurnal and nocturnal biting patterns of the malaria vectors Anopheles arabiensis and Anopheles funestus in south-eastern Tanzania, to better understand the scope of residual transmission and inform strategies for improved control. METHODS Host-seeking mosquitoes were collected hourly using miniaturized double net traps, both indoors and outdoors over 24-h periods between June 2023 and February 2024. Concurrently, human activities indoors and outdoors were monitored half-hourly to correlate with mosquito collections. A structured questionnaire was used to assess household members' knowledge, perceptions and experiences regarding exposure to mosquito bites during both nighttime and daytime. RESULTS Nocturnal biting by An. arabiensis peaked between 7 p.m. and 11 p.m. while that of An. funestus peaked later, between 1 a.m. and 3 a.m. Daytime biting accounted for 15.03% of An. arabiensis catches, with peaks around 7-11 a.m. and after 4 p.m., and for 14.15% of An. funestus catches, peaking around mid-mornings, from 10 a.m. to 12 p.m. Nighttime exposure to An. arabiensis was greater outdoors (54.5%), while daytime exposure was greater indoors (80.4%). For An. funestus, higher exposure was observed indoors, both at nighttime (57.1%) and daytime (69%). Plasmodium falciparum sporozoites were detected in both day-biting and night-biting An. arabiensis. Common daytime activities potentially exposing residents during peak biting hours included household chores, eating, sleeping (including due to sickness), resting in the shade or under verandas and playing (children). From evenings onwards, exposures coincided with resting, socializing before bedtime and playtime (children). Nearly all survey respondents (95.6%) reported experiencing daytime mosquito bites, but only 28% believed malaria was transmissible diurnally. CONCLUSIONS This study updates our understanding of malaria vector biting patterns in south-eastern Tanzania, revealing considerable additional risk in the mornings, daytime and evenings. Consequently, there may be more gaps in the protection provided by ITNs, which primarily target nocturnal mosquitoes, than previously thought. Complementary strategies are needed to holistically suppress vectors regardless of biting patterns (e.g. using larval source management) and to extend personal protection limits (e.g. using repellents). Additionally, community engagement and education on mosquito activity and protective measures could significantly reduce malaria transmission risk.
Collapse
Affiliation(s)
- Muwonge C Mukisa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
- National Malaria Control Division, Ministry of Health, P.O. Box 7272, Kampala, Uganda.
| | - Jibsam J Kassano
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Yohana A Mwalugelo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Department of Biomedical Science, Jaramogi Oginga Odinga University of Science and Technology, Bando, Kenya
| | - Charles Ntege
- National Malaria Control Division, Ministry of Health, P.O. Box 7272, Kampala, Uganda
- Department of Animal Biology and Conservation Science, School of African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Accra, Ghana
| | - Najat F Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Marceline F Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Betwel J Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK.
- Faculty of Health Science, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
6
|
Irish SR, Nimmo D, Bharmel J, Tripet F, Müller P, Manrique-Saide P, Moore SJ. A review of selective indoor residual spraying for malaria control. Malar J 2024; 23:252. [PMID: 39175014 PMCID: PMC11342629 DOI: 10.1186/s12936-024-05053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/20/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is one of the most effective malaria control tools. However, its application has become limited to specific contexts due to the increased costs of IRS products and implementation programmes. Selective spraying-selective spray targeted to particular areas/surfaces of dwellings-has been proposed to maintain the malaria control and resistance-management benefits of IRS while decreasing the costs of the intervention. METHODS A literature search was conducted to find (1) studies that assessed the resting behaviour of Anopheles mosquitoes and (2) studies that evaluated the impact of selective spraying on entomological and malaria outcomes. Additional articles were identified through hand searches of all references cited in articles identified through the initial search. A cost model was developed from PMI VectorLink IRS country programmes, and comparative cost analysis reports to describe the overall cost benefits of selective IRS. RESULTS In some studies, there appeared to be a clear resting preference for certain Anopheles species in terms of the height at which they rested. However, for other species, and particularly the major African malaria vectors, a clear resting pattern was not detected. Furthermore, resting behaviour was not measured in a standardized way. For the selective spray studies that were assessed, there was a wide range of spray configurations, which complicates the comparison of methods. Many of these spray techniques were effective and resulted in reported 25-68% cost savings and reduced use of insecticide. The reported cost savings in the literature do not always consider all of the IRS implementation costs. Using the IRS cost model, these savings ranged from 17 to 29% for programs that targeted Anopheles spp. and 18-41% for programmes that targeted Aedes aegypti. CONCLUSIONS Resting behaviour is generally measured in a simplistic way; noting the resting spot of mosquitoes in the morning. This is likely an oversimplification, and there is a need for better monitoring of resting mosquitoes. This may improve the target surface for selective spray techniques, which could reduce the cost of IRS while maintaining its effectiveness. Reporting of cost savings should be calculated considering the entire implementation costs, and a cost model was provided for future calculations.
Collapse
Affiliation(s)
- Seth R Irish
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
| | - Derric Nimmo
- IVCC, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jameel Bharmel
- IVCC, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Frederic Tripet
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Sarah J Moore
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
7
|
Msugupakulya BJ, Ngajuma SK, Ngayambwa AN, Kidwanga BE, Mpasuka IR, Selvaraj P, Wilson AL, Okumu FO. Influence of larval growth and habitat shading on retreatment frequencies of biolarvicides against malaria vectors. Sci Rep 2024; 14:1002. [PMID: 38200070 PMCID: PMC10781946 DOI: 10.1038/s41598-024-51152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Effective larviciding for malaria control requires detailed studies of larvicide efficacies, aquatic habitat characteristics, and life history traits of target vectors. Mosquitoes with brief larval phases present narrower timeframes for biolarvicidal effects than mosquitoes with extended periods. We evaluated two biolarvicides, VectoBac (Bacillus thuringiensis israelensis (Bti)) and VectoMax (Bti and Bacillus sphaericus) against Anopheles funestus and Anopheles arabiensis in shaded and unshaded habitats; and explored how larval development might influence retreatment intervals. These tests were done in semi-natural habitats using field-collected larvae, with untreated habitats as controls. Additionally, larval development was assessed in semi-natural and natural habitats in rural Tanzania, by sampling daily and recording larval developmental stages. Both biolarvicides reduced larval densities of both species by >98% within 72 h. Efficacy lasted one week in sun-exposed habitats but remained >50% for two weeks in shaded habitats. An. funestus spent up to two weeks before pupating (13.2(10.4-16.0) days in semi-natural; 10.0(6.6-13.5) in natural habitats), while An. arabiensis required slightly over one week (8.2 (5.8-10.6) days in semi-natural; 8.3 (5.0-11.6) in natural habitats). The findings suggest that weekly larviciding, which is essential for An. arabiensis might be more effective for An. funestus whose prolonged aquatic growth allows for repeated exposures. Additionally, the longer residual effect of biolarvicides in shaded habitats indicates they may require less frequent treatments compared to sun-exposed areas.
Collapse
Affiliation(s)
- Betwel J Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Swedi K Ngajuma
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Athuman N Ngayambwa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Baraka E Kidwanga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Ibrahim R Mpasuka
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, USA
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
| | - Anne L Wilson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Msugupakulya BJ, Urio NH, Jumanne M, Ngowo HS, Selvaraj P, Okumu FO, Wilson AL. Changes in contributions of different Anopheles vector species to malaria transmission in east and southern Africa from 2000 to 2022. Parasit Vectors 2023; 16:408. [PMID: 37936155 PMCID: PMC10631025 DOI: 10.1186/s13071-023-06019-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Malaria transmission in Africa is facilitated by multiple species of Anopheles mosquitoes. These vectors have different behaviors and vectorial capacities and are affected differently by vector control interventions, such as insecticide-treated nets and indoor residual spraying. This review aimed to assess changes in the contribution of different vector species to malaria transmission in east and southern Africa over 20 years of widespread insecticide-based vector control. METHODS We searched PubMed, Global Health, and Web of Science online databases for articles published between January 2000 and April 2023 that provided species-specific sporozoite rates for different malaria vectors in east and southern Africa. We extracted data on study characteristics, biting rates, sporozoite infection proportions, and entomological inoculation rates (EIR). Using EIR data, the proportional contribution of each species to malaria transmission was estimated. RESULTS Studies conducted between 2000 and 2010 identified the Anopheles gambiae complex as the primary malaria vector, while studies conducted from 2011 to 2021 indicated the dominance of Anopheles funestus. From 2000 to 2010, in 57% of sites, An. gambiae demonstrated higher parasite infection prevalence than other Anopheles species. Anopheles gambiae also accounted for over 50% of EIR in 76% of the study sites. Conversely, from 2011 to 2021, An. funestus dominated with higher infection rates than other Anopheles in 58% of sites and a majority EIR contribution in 63% of sites. This trend coincided with a decline in overall EIR and the proportion of sporozoite-infected An. gambiae. The main vectors in the An. gambiae complex in the region were Anopheles arabiensis and An. gambiae sensu stricto (s.s.), while the important member of the An. funestus group was An. funestus s.s. CONCLUSION The contribution of different vector species in malaria transmission has changed over the past 20 years. As the role of An. gambiae has declined, An. funestus now appears to be dominant in most settings in east and southern Africa. Other secondary vector species may play minor roles in specific localities. To improve malaria control in the region, vector control should be optimized to match these entomological trends, considering the different ecologies and behaviors of the dominant vector species.
Collapse
Affiliation(s)
- Betwel J Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Naomi H Urio
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
| | - Mohammed Jumanne
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, USA
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Johannesburg, Republic of South Africa.
| | - Anne L Wilson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
9
|
Mponzi WP, Msaky DS, Binyaruka P, Kaindoa EW. Exploring the potential of village community banking as a community-based financing system for house improvements and malaria vector control in rural Tanzania. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002395. [PMID: 37922222 PMCID: PMC10624283 DOI: 10.1371/journal.pgph.0002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2023]
Abstract
House improvement is associated with remarkable reductions in indoor mosquito bites and disease incidences, even in typical rural houses. However, its exploitation remains extremely poor in Tanzania and other endemic countries due to limited financial resources. Nevertheless, village community banks (VICOBA), practiced in Tanzania for nearly two decades, have proven to provide financial services to rural communities that would otherwise not be able to get them from formal financial institutions. This study explored the need, opinion, and willingness of VICOBA members to use VICOBA platforms as a source of finance for improving local houses and eventually controlling mosquito-borne diseases. A mixed-methods approach was used in this study, whereby a survey was administered to 150 participants and twelve focus group discussions were done in three villages in Ulanga district, rural Tanzania. The FGDs comprised eight participants each, with equal representation of males and females. The FGD guide was used to probe the opinions of study participants on malaria transmission, housing condition improvements, and financial resources. About 99% of all participants indicated the urgent need to improve their houses to prevent mosquito bites and were willing to utilize VICOBA for improving their houses. In the focus group discussion, the majority of people who participated were also in need of improving their houses. All participants confirmed that they were at the highest risk of getting mosquito-borne diseases, and they were willing to use money that was either saved or borrowed from their VICOBA for housing improvements and vector control. A self-sustaining financial system destined for house improvement and related interventions against malaria and other mosquito-borne diseases is crucial. The community members were willing to use VICOBA as a source of finance for house improvement and disease control; however, there was limited knowledge and sensitization on how they could utilize VICOBA for disease control.
Collapse
Affiliation(s)
- Winifrida P. Mponzi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Dickson S. Msaky
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and Bio Engineering, Tengeru, Arusha, United Republic of Tanzania
| | - Peter Binyaruka
- Department of Health System, Impact Evaluation and Policy, Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Emmanuel W. Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and Bio Engineering, Tengeru, Arusha, United Republic of Tanzania
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
10
|
Kunambi HJ, Ngowo H, Ali A, Urio N, Ngonzi AJ, Mwalugelo YA, Jumanne M, Mmbaga A, Tarimo FS, Swilla J, Okumu F, Lwetoijera D. Sterilized Anopheles funestus can autodisseminate sufficient pyriproxyfen to the breeding habitat under semi-field settings. Malar J 2023; 22:280. [PMID: 37735680 PMCID: PMC10515043 DOI: 10.1186/s12936-023-04699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Anopheles funestus, the main malaria vector, prefer to oviposit in permanent and/or semi-permanent breeding habitats located far from human dwellings. Difficulties in identifying and accessing these habitats jeopardize the feasibility of conventional larviciding. In this way, a semi-field study was conducted to assess the potential of autodissemination of pyriproxyfen (PPF) by An. funestus for its control. METHODS The study was conducted inside a semi-field system (SFS). Therein, two identical separate chambers, the treatment chamber with a PPF-treated clay pot (0.25 g AI), and the control chamber with an untreated clay pot. In both chambers, one artificial breeding habitat made of a plastic basin with one litre of water was provided. Three hundred blood-fed female An. funestus aged 5-9 days were held inside untreated and treated clay pots for 30 min and 48 h before being released for oviposition. The impact of PPF on adult emergence, fecundity, and fertility through autodissemination and sterilization effects were assessed by comparing the treatment with its appropriate control group. RESULTS Mean (95% CI) percentage of adult emergence was 15.5% (14.9-16.1%) and 70.3% (69-71%) in the PPF and control chamber for females exposed for 30 min (p < 0.001); and 19% (12-28%) and 95% (88-98%) in the PPF and control chamber for females exposed for 48 h (p < 0.001) respectively. Eggs laid by exposed mosquitoes and their hatch rate were significantly reduced compared to unexposed mosquitoes (p < 0.001). Approximately, 90% of females exposed for 48 h retained abnormal ovarian follicles and only 42% in females exposed for 30 min. CONCLUSION The study demonstrated sterilization and adult emergence inhibition via autodissemination of PPF by An. funestus. Also, it offers proof that sterilized An. funestus can transfer PPF to prevent adult emergence at breeding habitats. These findings warrant further assessment of the autodissemination of PPF in controlling wild population of An. funestus, and highlights its potential for complementing long-lasting insecticidal nets.
Collapse
Affiliation(s)
- Hamisi J Kunambi
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
- Tanzania Biotech Products Limited, The National Development Cooperation, P.O. Box 30119, Kibaha, Tanzania.
| | - Halfan Ngowo
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Ali Ali
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Naomi Urio
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Amos J Ngonzi
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Yohana A Mwalugelo
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210-40601, Bondo, Kenya
| | - Mohamed Jumanne
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Augustino Mmbaga
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Felista S Tarimo
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Joseph Swilla
- School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Fredros Okumu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
- School of Public of Health, Faculty of Health Science, University of Witwatersrand, Johannesburg, South Africa
- Institute of Biodiversity, Animal Health and, Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dickson Lwetoijera
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| |
Collapse
|
11
|
Jobe NB, Huijben S, Paaijmans KP. Non-target effects of chemical malaria vector control on other biological and mechanical infectious disease vectors. Lancet Planet Health 2023; 7:e706-e717. [PMID: 37558351 DOI: 10.1016/s2542-5196(23)00136-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 08/11/2023]
Abstract
Public health insecticides play a crucial role in malaria control and elimination programmes. Many other arthropods, including mechanical and biological vectors of infectious diseases, have similar indoor feeding or resting behaviours, or both, as malaria mosquitoes, and could be exposed to the same insecticides. In this Personal View, we show that little is known about the insecticide susceptibility status and the extent of exposure to malaria interventions of other arthropod species. We highlight that there is an urgent need to better understand the selection pressure for insecticide resistance in those vectors, to ensure current and future active ingredients remain effective in targeting a broad range of arthropod species, allowing us to prevent and control future outbreaks of infectious diseases other than malaria.
Collapse
Affiliation(s)
- Ndey Bassin Jobe
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Simon A Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Simon A Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA; The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA; ISGlobal, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.
| |
Collapse
|
12
|
Chabi J, Seyoum A, Edi CVA, Kouassi BL, Yihdego Y, Oxborough R, Gbalegba CGN, Johns B, Desale S, Irish SR, Gimnig JE, Carlson JS, Yoshimizu M, Armistead JS, Belemvire A, Gerberg L, George K, Kirby M. Efficacy of partial spraying of SumiShield, Fludora Fusion and Actellic against wild populations of Anopheles gambiae s.l. in experimental huts in Tiassalé, Côte d'Ivoire. Sci Rep 2023; 13:11364. [PMID: 37443329 PMCID: PMC10344869 DOI: 10.1038/s41598-023-38583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
From August 2020 to June 2021, we assessed the efficacy of SumiShield 50WG (clothianidin), Fludora Fusion 56.25WP-SB (mixture of clothianidin and deltamethrin) and Actellic 300CS (pirimiphos-methyl) in experimental huts when partially sprayed against wild, free-flying populations of Anopheles gambiae s.l. in Tiassalé, Côte d'Ivoire. A one-month baseline period of mosquito collections was conducted to determine mosquito density and resting behavior in unsprayed huts, after which two treatments of partial indoor residual spraying (IRS) were tested: spraying only the top half of walls + ceilings or only the bottom half of walls + ceilings. These were compared to fully sprayed applications using the three IRS insecticide formulations, during twenty nights per month of collection for nine consecutive months. Mortality was assessed at the time of collection, and after a 24 h holding period (Actellic) or up to 120 h (SumiShield and Fludora Fusion). Unsprayed huts were used as a negative control. The efficacy of each partially sprayed treatment of each insecticide was compared monthly to the fully sprayed huts over the study period with a non-inferiority margin set at 10%. The residual efficacy of each insecticide sprayed was also monitored. A total of 2197 Anopheles gambiae s.l. were collected during the baseline and 17,835 during the 9-month period after spraying. During baseline, 42.6% were collected on the bottom half versus 24.3% collected on the top half of the walls, and 33.1% on the ceilings. Over the nine-month post treatment period, 73.5% were collected on the bottom half of the wall, 11.6% collected on the top half and 14.8% on the ceilings. For Actellic, the mean mortality over the nine-month period was 88.5% [87.7, 89.3] for fully sprayed huts, 88.3% [85.1, 91.4] for bottom half + ceiling sprayed walls and 80.8% [74.5, 87.1] for the top half + ceiling sprayed huts. For Fludora Fusion an overall mean mortality of 85.6% [81.5, 89.7] was recorded for fully sprayed huts, 83.7% [82.9, 84.5] for bottom half + ceiling sprayed huts and 81.3% [79.6, 83.0] for the top half + ceiling sprayed huts. For SumiShield, the overall mean mortality was 86.7% [85.3, 88.1] for fully sprayed huts, 85.6% [85.4, 85.8] for the bottom half + ceiling sprayed huts and 76.9% [76.6, 77.3] for the top half + ceiling sprayed huts. For Fludora Fusion, both iterations of partial IRS were non-inferior to full spraying. However, for SumiShield and Actellic, this was true only for the huts with the bottom half + ceiling, reflecting the resting site preference of the local vectors. The results of this study suggest that partial spraying may be a way to reduce the cost of IRS without substantially compromising IRS efficacy.
Collapse
Affiliation(s)
- Joseph Chabi
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA.
| | - Aklilu Seyoum
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| | - Constant V A Edi
- Swiss Center of Scientific Research in Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | - Yemane Yihdego
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| | - Richard Oxborough
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| | | | - Ben Johns
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| | - Sameer Desale
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| | - Seth R Irish
- Entomology Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John E Gimnig
- Entomology Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jenny S Carlson
- U.S. President's Malaria Initiative, USAID, Washington, DC, USA
| | | | | | | | - Lilia Gerberg
- U.S. President's Malaria Initiative, USAID, Washington, DC, USA
| | - Kristen George
- U.S. President's Malaria Initiative, USAID, Washington, DC, USA
| | - Matthew Kirby
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| |
Collapse
|
13
|
Bofu RM, Santos EM, Msugupakulya BJ, Kahamba NF, Swilla JD, Njalambaha R, Kelly AH, Lezaun J, Christofides N, Okumu FO, Finda MF. The needs and opportunities for housing improvement for malaria control in southern Tanzania. Malar J 2023; 22:69. [PMID: 36849883 PMCID: PMC9972788 DOI: 10.1186/s12936-023-04499-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Malaria disproportionately affects low-income households in rural communities where poor housing is common. Despite evidence that well-constructed and mosquito-proofed houses can reduce malaria risk, housing improvement is rarely included in malaria control toolboxes. This study assessed the need, magnitude, and opportunities for housing improvement to control malaria in rural Tanzania. METHODS A mixed-methods study was conducted in 19 villages across four district councils in southern Tanzania. A structured survey was administered to 1292 community members to assess need, perceptions, and opportunities for housing improvement for malaria control. Direct observations of 802 houses and surrounding environments were done to identify the actual needs and opportunities, and to validate the survey findings. A market survey was done to assess availability and cost of resources and services necessary for mosquito-proofing homes. Focus group discussions were conducted with key stakeholders to explore insights on the potential and challenges of housing improvement as a malaria intervention. RESULTS Compared to other methods for malaria control, housing improvement was among the best understood and most preferred by community members. Of the 735 survey respondents who needed housing improvements, a majority needed window screening (91.1%), repairs of holes in walls (79.4%), door covers (41.6%), closing of eave spaces (31.2%) and better roofs (19.0%). Community members invested significant efforts to improve their own homes against malaria and other dangers, but these efforts were often slow and delayed due to high costs and limited household incomes. Study participants suggested several mechanisms of support to improve their homes, including government loans and subsidies. CONCLUSION Addressing the need for housing improvement is a critical component of malaria control efforts in southern Tanzania. In this study, a majority of the community members surveyed needed modest modifications and had plans to work on those modifications. Without additional support, their efforts were however generally slow; households would take years to sufficiently mosquito-proof their houses. It is, therefore, crucial to bring together the key players across sectors to reduce barriers in malaria-proofing housing in endemic settings. These may include government subsidies or partnerships with businesses to make housing improvement more accessible and affordable to residents.
Collapse
Affiliation(s)
- Ramadhani M Bofu
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania.
- Mpwapwa Institute of Health and Allied Sciences, The Ministry of Health, P.O. Box 743, Dodoma, Tanzania.
| | - Ellen M Santos
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, USA
| | - Betwel J Msugupakulya
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Najat F Kahamba
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G128QQ, UK
| | - Joseph D Swilla
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Rukiyah Njalambaha
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Ann H Kelly
- Department of Global Health and Social Medicine, King's College London, London, UK
| | - Javier Lezaun
- Institute for Science, Innovation, and Society, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - Nicola Christofides
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 1 Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
| | - Fredros O Okumu
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G128QQ, UK
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 1 Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
| | - Marceline F Finda
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| |
Collapse
|
14
|
Fernández Montoya L, Máquina M, Martí-Soler H, Sherrard-Smith E, Alafo C, Opiyo M, Comiche K, Galatas B, Huijben S, Koekemoer LL, Oliver SV, Maartens F, Marrenjo D, Cuamba N, Aide P, Saúte F, Paaijmans KP. The realized efficacy of indoor residual spraying campaigns falls quickly below the recommended WHO threshold when coverage, pace of spraying and residual efficacy on different wall types are considered. PLoS One 2022; 17:e0272655. [PMID: 36190958 PMCID: PMC9529131 DOI: 10.1371/journal.pone.0272655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Indoor residual spraying (IRS) has been and remains an important malaria control intervention in southern Mozambique, South Africa and Eswatini. A better understanding of the effectiveness of IRS campaigns is critical to guide future elimination efforts. We analyze the three IRS campaigns conducted during a malaria elimination demonstration project in southern Mozambique, the "Magude project", and propose a new method to calculate the efficacy of IRS campaigns adjusting for IRS coverage, pace of house spraying and IRS residual efficacy on different wall types. Anopheles funestus sensu lato (s.l.) and An. gambiae s.l. were susceptible to pirimiphos-methyl and DDT. Anopheles funestus s.l. was resistant to pyrethroids, with 24h post-exposure mortality being lower for An. funestus sensu stricto (s.s.) than for An. parensis (collected indoors). The percentage of structures sprayed was above 90% and percentage of people covered above 86% in all three IRS campaigns. The percentage of households sprayed was above 83% in 2015 and 2016, but not assessed in 2017. Mosquito mortality 24h post-exposure stayed above 80% for 196 days after the 2016 IRS campaign and 222 days after the 2017 campaign and was 1.5 months longer on mud walls than on cement walls. This was extended by up to two months when 120h post-exposure mortality was considered. The district-level realized IRS efficacy was 113 days after the 2016 campaign. While the coverage of IRS campaigns in Magude were high, IRS protection did not remain optimal for the entire high malaria transmissions season. The use of a longer-lasting IRS product could have further supported the interruption of malaria transmission in the district. To better estimate the protection afforded by IRS campaigns, National Malaria Control Programs and partners are encouraged to adjust the calculation of IRS efficacy for IRS coverage, pace of house spraying during the campaign and IRS efficacy on different wall types combined with wall type distribution in the sprayed area.
Collapse
Affiliation(s)
- Lucia Fernández Montoya
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Mercy Opiyo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Kiba Comiche
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Silvie Huijben
- ISGlobal, Barcelona, Spain
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | | | | | - Nelson Cuamba
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Krijn P. Paaijmans
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
15
|
Millogo AA, Yaméogo L, Kassié D, de Charles Ouédraogo F, Guissou C, Diabaté A. Spatial modelling of malaria prevalence associated with geographical factors in Houet province of Burkina Faso, West Africa. GEOJOURNAL 2022; 88:1769-1783. [PMID: 37159582 PMCID: PMC10161614 DOI: 10.1007/s10708-022-10692-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 05/11/2023]
Abstract
Malaria is a permanent threat to health in western Burkina Faso. Research has shown that geographical variables contribute to the spatial distribution in its transmission. The objective of this study is to assess the relationship between malaria prevalence and potential explanatory geographical variables in the Houet province in Burkina Faso. Statistics on malaria prevalence registered by health centres in the Houet province in 2017 and potential geographical variables identified through a literature review were collected. An Ordinary Least Squares (OLS) regression was used to identify key geographical variables and to measure their association with malaria while the Getis Ord Gi* index was used to locate malaria hotspots. The results showed that average annual temperature, vegetation density, percentage of clay in the soil, total annual rainfall and distance to the nearest waterbody are the main variables associated with malaria prevalence. These variables account for two-thirds of the spatial variability of malaria prevalence observed in Houet province. The intensity and direction of the relationship between malaria prevalence and geographical factors vary according to the variable. Hence, only vegetation density is positively correlated with malaria prevalence. Average temperature, for soil clay content, annual rainfall and for distance to the nearest water body are negatively correlated with the disease prevalence. These results show that even in an endemic area, malaria prevalence has significant spatial variation. The results could contribute to the choice of intervention sites, as this choice is crucial for reducing the malaria burden. Supplementary Information The online version contains supplementary material available at 10.1007/s10708-022-10692-7.
Collapse
Affiliation(s)
| | | | - Daouda Kassié
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE (Animal, Santé, Territoires, Risques, Ecosystèmes), Montpellier, France
| | | | - Charles Guissou
- Institut de Recherche en Sciences de La Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de La Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
16
|
Forson AO, Hinne IA, Dhikrullahi SB, Sraku IK, Mohammed AR, Attah SK, Afrane YA. The resting behavior of malaria vectors in different ecological zones of Ghana and its implications for vector control. Parasit Vectors 2022; 15:246. [PMID: 35804461 PMCID: PMC9270803 DOI: 10.1186/s13071-022-05355-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND In sub-Saharan Africa there is widespread use of long-lasting insecticidal nets and indoor residual spraying to help control the densities of malaria vectors and decrease the incidence of malaria. This study was carried out to investigate the resting behavior, host preference and infection with Plasmodium falciparum of malaria vectors in Ghana in the context of the increasing insecticide resistance of malaria vectors in sub-Saharan Africa. METHODS Indoor and outdoor resting anopheline mosquitoes were sampled during the dry and rainy seasons in five sites in three ecological zones [Sahel savannah (Kpalsogo, Pagaza, Libga); coastal savannah (Anyakpor); and forest (Konongo)]. Polymerase chain reaction-based molecular diagnostics were used to determine speciation, genotypes for knockdown resistance mutations (L1014S and L1014F) and the G119S ace1 mutation, specific host blood meal origins and sporozoite infection in the field-collected mosquitoes. RESULTS Anopheles gambiae sensu lato (s.l.) predominated (89.95%, n = 1718), followed by Anopheles rufipes (8.48%, n = 162) and Anopheles funestus s.l. (1.57%, n = 30). Sibling species of the Anopheles gambiae s.l. revealed Anopheles coluzzii accounted for 63% (95% confidence interval = 57.10-68.91) and 27% (95% confidence interval = 21.66-32.55) was Anopheles gambiae s. s.. The mean resting density of An. gambiae s.l. was higher outdoors (79.63%; 1368/1718) than indoors (20.37%; 350/1718) (Wilcoxon rank sum test, Z = - 4.815, P < 0.0001). The kdr west L1014F and the ace1 mutation frequencies were higher in indoor resting An. coluzzii and An. gambiae in the Sahel savannah sites than in the forest and coastal savannah sites. Overall, the blood meal analyses revealed that a larger proportion of the malaria vectors preferred feeding on humans (70.2%) than on animals (29.8%) in all of the sites. Sporozoites were only detected in indoor resting An. coluzzii from the Sahel savannah (5.0%) and forest (2.5%) zones. CONCLUSIONS This study reports high outdoor resting densities of An. gambiae and An. coluzzii with high kdr west mutation frequencies, and the presence of malaria vectors indoors despite the use of long-lasting insecticidal nets and indoor residual spraying. Continuous monitoring of changes in the resting behavior of mosquitoes and the implementation of complementary malaria control interventions that target outdoor resting Anopheles mosquitoes are necessary in Ghana.
Collapse
Affiliation(s)
- Akua Obeng Forson
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac A. Hinne
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Shittu B. Dhikrullahi
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac Kwame Sraku
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Simon K. Attah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| |
Collapse
|
17
|
Ngowo HS, Okumu FO, Hape EE, Mshani IH, Ferguson HM, Matthiopoulos J. Using Bayesian state-space models to understand the population dynamics of the dominant malaria vector, Anopheles funestus in rural Tanzania. Malar J 2022; 21:161. [PMID: 35658961 PMCID: PMC9166306 DOI: 10.1186/s12936-022-04189-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background It is often assumed that the population dynamics of the malaria vector Anopheles funestus, its role in malaria transmission and the way it responds to interventions are similar to the more elaborately characterized Anopheles gambiae. However, An. funestus has several unique ecological features that could generate distinct transmission dynamics and responsiveness to interventions. The objectives of this work were to develop a model which will: (1) reconstruct the population dynamics, survival, and fecundity of wild An. funestus populations in southern Tanzania, (2) quantify impacts of density dependence on the dynamics, and (3) assess seasonal fluctuations in An. funestus demography. Through quantifying the population dynamics of An. funestus, this model will enable analysis of how their stability and response to interventions may differ from that of An. gambiae sensu lato. Methods A Bayesian State Space Model (SSM) based on mosquito life history was fit to time series data on the abundance of female An. funestus sensu stricto collected over 2 years in southern Tanzania. Prior values of fitness and demography were incorporated from empirical data on larval development, adult survival and fecundity from laboratory-reared first generation progeny of wild caught An. funestus. The model was structured to allow larval and adult fitness traits to vary seasonally in response to environmental covariates (i.e. temperature and rainfall), and for density dependency in larvae. The effects of density dependence and seasonality were measured through counterfactual examination of model fit with or without these covariates. Results The model accurately reconstructed the seasonal population dynamics of An. funestus and generated biologically-plausible values of their survival larval, development and fecundity in the wild. This model suggests that An. funestus survival and fecundity annual pattern was highly variable across the year, but did not show consistent seasonal trends either rainfall or temperature. While the model fit was somewhat improved by inclusion of density dependence, this was a relatively minor effect and suggests that this process is not as important for An. funestus as it is for An. gambiae populations. Conclusion The model's ability to accurately reconstruct the dynamics and demography of An. funestus could potentially be useful in simulating the response of these populations to vector control techniques deployed separately or in combination. The observed and simulated dynamics also suggests that An. funestus could be playing a role in year-round malaria transmission, with any apparent seasonality attributed to other vector species. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04189-4.
Collapse
Affiliation(s)
- Halfan S Ngowo
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania. .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| | - Fredros O Okumu
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,School of Public Health, University of the Witwatersrand, Braamfontein, Republic of South Africa.,School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Emmanuel E Hape
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Issa H Mshani
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Heather M Ferguson
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Kahamba NF, Finda M, Ngowo HS, Msugupakulya BJ, Baldini F, Koekemoer LL, Ferguson HM, Okumu FO. Using ecological observations to improve malaria control in areas where Anopheles funestus is the dominant vector. Malar J 2022; 21:158. [PMID: 35655190 PMCID: PMC9161514 DOI: 10.1186/s12936-022-04198-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
The most important malaria vectors in sub-Saharan Africa are Anopheles gambiae, Anopheles arabiensis, Anopheles funestus, and Anopheles coluzzii. Of these, An. funestus presently dominates in many settings in east and southern Africa. While research on this vector species has been impeded by difficulties in creating laboratory colonies, available evidence suggests it has certain ecological vulnerabilities that could be strategically exploited to greatly reduce malaria transmission in areas where it dominates. This paper examines the major life-history traits of An. funestus, its aquatic and adult ecologies, and its responsiveness to key interventions. It then outlines a plausible strategy for reducing malaria transmission by the vector and sustaining the gains over the medium to long term. To illustrate the propositions, the article uses data from south-eastern Tanzania where An. funestus mediates over 85% of malaria transmission events and is highly resistant to key public health insecticides, notably pyrethroids. Both male and female An. funestus rest indoors and the females frequently feed on humans indoors, although moderate to high degrees of zoophagy can occur in areas with large livestock populations. There are also a few reports of outdoor-biting by the species, highlighting a broader range of behavioural phenotypes that can be considered when designing new interventions to improve vector control. In comparison to other African malaria vectors, An. funestus distinctively prefers permanent and semi-permanent aquatic habitats, including river streams, ponds, swamps, and spring-fed pools. The species is therefore well-adapted to sustain its populations even during dry months and can support year-round malaria transmission. These ecological features suggest that highly effective control of An. funestus could be achieved primarily through strategic combinations of species-targeted larval source management and high quality insecticide-based methods targeting adult mosquitoes in shelters. If done consistently, such an integrated strategy has the potential to drastically reduce local populations of An. funestus and significantly reduce malaria transmission in areas where this vector species dominates. To sustain the gains, the programmes should be complemented with gradual environmental improvements such as house modification to maintain biting exposure at a bare minimum, as well as continuous engagements of the resident communities and other stakeholders.
Collapse
Affiliation(s)
- Najat F Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK.
| | - Marceline Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK
| | - Betwel J Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Francesco Baldini
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather M Ferguson
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK.
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.
- School of Life Science and Biotechnology, Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania.
| |
Collapse
|
19
|
Opiyo M, Sherrard-Smith E, Malheia A, Nhacolo A, Sacoor C, Nhacolo A, Máquina M, Jamu L, Cuamba N, Bassat Q, Saúte F, Paaijmans K. Household modifications after the indoor residual spraying (IRS) campaign in Mozambique reduce the actual spray coverage and efficacy. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000227. [PMID: 36962153 PMCID: PMC10021718 DOI: 10.1371/journal.pgph.0000227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022]
Abstract
Indoor residual spraying of insecticides (IRS) is a key malaria vector control strategy. Whilst human attitude towards IRS is monitored before or shortly after implementation, human activities leading to the modification of insecticide-treated walls post-IRS are not. This could inadvertently reduce the protective effects of IRS. We monitored the extent of modifications to the sprayed indoor wall surfaces by household owners for six months post-IRS campaigns in two districts targeted for malaria elimination in southern Mozambique. In parallel, we assessed building of any additional rooms onto compounds, and mosquito net use. We quantified the contribution of wall modifications, added rooms, prolonged spray campaigns, and product residual efficacies on actual IRS coverage and relative mosquito bite reduction, using a mechanistic approach. Household owners continually modified insecticide-treated walls and added rooms onto compounds. Household surveys in southern Mozambique showed frequent modification of indoor walls (0-17.2% of households modified rooms monthly) and/or added rooms (0-16.2% of households added rooms monthly). Actual IRS coverage reduced from an assumed 97% to just 39% in Matutuine, but only from 96% to 91% in Boane, translating to 43% and 5.8% estimated increases in relative daily mosquito bites per person. Integrating post-IRS knowledge, attitude, and practice (KAP) surveys into programmatic evaluations to capture these modification and construction trends can help improve IRS program efficiency and product assessment.
Collapse
Affiliation(s)
- Mercy Opiyo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Arlindo Malheia
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Arsenio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Charfudin Sacoor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ariel Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Luis Jamu
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nelson Cuamba
- National Malaria Control Programme of Mozambique (NMCP), Ministry of Health, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Quique Bassat
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Krijn Paaijmans
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
20
|
Kaindoa EW, Mmbando AS, Shirima R, Hape EE, Okumu FO. Insecticide-treated eave ribbons for malaria vector control in low-income communities. Malar J 2021; 20:415. [PMID: 34688285 PMCID: PMC8542300 DOI: 10.1186/s12936-021-03945-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
Supplementary tools are required to address the limitations of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), which are currently the core vector control methods against malaria in Africa. The eave ribbons technology exploits the natural house-entry behaviours of major malaria vectors to deliver mosquitocidal or repellent actives around eave spaces through which the Anopheles mosquitoes usually enter human dwellings. They confer protection by preventing biting indoors and in the peri-domestic outdoor spaces, and also killing a significant proportion of the mosquitoes. Current versions of eave ribbons are made of low-cost hessian fabric infused with candidate insecticides and can be easily fitted onto multiple house types without any additional modifications. This article reviews the evidence for efficacy of the technology, and discusses its potential as affordable and versatile supplementary approach for targeted and efficient control of mosquito-borne diseases, particularly malaria. Given their simplicity and demonstrated potential in previous studies, future research should investigate ways to optimize scalability and effectiveness of the ribbons. It is also important to assess whether the ribbons may constitute a less-cumbersome, but more affordable substitute for other interventions, such as IRS, by judiciously using lower quantities of selected insecticides targeted around eave spaces to deliver equivalent or greater suppression of malaria transmission.
Collapse
Affiliation(s)
- Emmanuel W Kaindoa
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania. .,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania.
| | - Arnold S Mmbando
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,Department of Biosciences, Durham University, DH13LE, Durham, UK
| | - Ruth Shirima
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Emmanuel E Hape
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK.,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| |
Collapse
|
21
|
Nambunga IH, Msugupakulya BJ, Hape EE, Mshani IH, Kahamba NF, Mkandawile G, Mabula DM, Njalambaha RM, Kaindoa EW, Muyaga LL, Hermy MRG, Tripet F, Ferguson HM, Ngowo HS, Okumu FO. Wild populations of malaria vectors can mate both inside and outside human dwellings. Parasit Vectors 2021; 14:514. [PMID: 34620227 PMCID: PMC8499572 DOI: 10.1186/s13071-021-04989-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wild populations of Anopheles mosquitoes are generally thought to mate outdoors in swarms, although once colonized, they also mate readily inside laboratory cages. This study investigated whether the malaria vectors Anopheles funestus and Anopheles arabiensis can also naturally mate inside human dwellings. METHOD Mosquitoes were sampled from three volunteer-occupied experimental huts in a rural Tanzanian village at 6:00 p.m. each evening, after which the huts were completely sealed and sampling was repeated at 11:00 p.m and 6 a.m. the next morning to compare the proportions of inseminated females. Similarly timed collections were done inside local unsealed village houses. Lastly, wild-caught larvae and pupae were introduced inside or outside experimental huts constructed inside two semi-field screened chambers. The huts were then sealed and fitted with exit traps, allowing mosquito egress but not entry. Mating was assessed in subsequent days by sampling and dissecting emergent adults caught indoors, outdoors and in exit traps. RESULTS Proportions of inseminated females inside the experimental huts in the village increased from approximately 60% at 6 p.m. to approximately 90% the following morning despite no new mosquitoes entering the huts after 6 p.m. Insemination in the local homes increased from approximately 78% to approximately 93% over the same time points. In the semi-field observations of wild-caught captive mosquitoes, the proportions of inseminated An. funestus were 20.9% (95% confidence interval [CI]: ± 2.8) outdoors, 25.2% (95% CI: ± 3.4) indoors and 16.8% (± 8.3) in exit traps, while the proportions of inseminated An. arabiensis were 42.3% (95% CI: ± 5.5) outdoors, 47.4% (95% CI: ± 4.7) indoors and 37.1% (CI: ± 6.8) in exit traps. CONCLUSION Wild populations of An. funestus and An. arabiensis in these study villages can mate both inside and outside human dwellings. Most of the mating clearly happens before the mosquitoes enter houses, but additional mating happens indoors. The ecological significance of such indoor mating remains to be determined. The observed insemination inside the experimental huts fitted with exit traps and in the unsealed village houses suggests that the indoor mating happens voluntarily even under unrestricted egress. These findings may inspire improved vector control, such as by targeting males indoors, and potentially inform alternative methods for colonizing strongly eurygamic Anopheles species (e.g. An. funestus) inside laboratories or semi-field chambers.
Collapse
Affiliation(s)
- Ismail H. Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Betwel J. Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
| | - Emmanuel E. Hape
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Issa H. Mshani
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Najat F. Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
| | - Gustav Mkandawile
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Daniel M. Mabula
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Rukiyah M. Njalambaha
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Emmanuel W. Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| | - Letus L. Muyaga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Marie R. G. Hermy
- Disease Vector Group, Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Heather M. Ferguson
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Halfan S. Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| |
Collapse
|
22
|
Coleman S, Yihdego Y, Sherrard-Smith E, Thomas CS, Dengela D, Oxborough RM, Dadzie SK, Boakye D, Gyamfi F, Obiri-Danso K, Johns B, Siems LV, Lucas B, Tongren JE, Zigirumugabe S, Dery D, Fornadel C, George K, Belemvire A, Carlson J, Irish SR, Armistead JS, Seyoum A. Partial indoor residual spraying with pirimiphos-methyl as an effective and cost-saving measure for the control of Anopheles gambiae s.l. in northern Ghana. Sci Rep 2021; 11:18055. [PMID: 34508114 PMCID: PMC8433436 DOI: 10.1038/s41598-021-97138-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/19/2021] [Indexed: 11/09/2022] Open
Abstract
The scale up of indoor residual spraying (IRS) and insecticide treated nets have contributed significantly to global reductions in malaria prevalence over the last two decades. However, widespread pyrethroid resistance has necessitated the use of new and more expensive insecticides for IRS. Partial IRS with pirimiphos-methyl in experimental huts and houses in a village-wide trial was evaluated against Anopheles gambiae s.l. in northern Ghana. Four different scenarios in which either only the top or bottom half of the walls of experimental huts were sprayed, with or without also spraying the ceiling were compared. Mortality of An. gambiae s.l. on partially sprayed walls was compared with the standard procedures in which all walls and ceiling surfaces are sprayed. A small-scale trial was then conducted to assess the effectiveness, feasibility, and cost of spraying only the upper walls and ceiling as compared to full IRS and no spraying in northern Ghana. Human landing catches were conducted to estimate entomological indices and determine the effectiveness of partial IRS. An established transmission dynamics model was parameterized by an analysis of the experimental hut data and used to predict the epidemiological impact and cost effectiveness of partial IRS for malaria control in northern Ghana. In the experimental huts, partial IRS of the top (IRR 0.89, p = 0.13) or bottom (IRR 0.90, p = 0.15) half of walls and the ceiling was not significantly less effective than full IRS in terms of mosquito mortality. In the village trial, the annual entomological inoculation rate was higher for the unsprayed control (217 infective bites/person/year (ib/p/yr)) compared with the fully and partially sprayed sites, with 28 and 38 ib/p/yr, respectively. The transmission model predicts that the efficacy of partial IRS against all-age prevalence of malaria after six months would be broadly equivalent to a full IRS campaign in which 40% reduction is expected relative to no spray campaign. At scale, partial IRS in northern Ghana would have resulted in a 33% cost savings ($496,426) that would enable spraying of 36,000 additional rooms. These findings suggest that partial IRS is an effective, feasible, and cost saving approach to IRS that could be adopted to sustain and expand implementation of this key malaria control intervention.
Collapse
Affiliation(s)
- Sylvester Coleman
- PMI VectorLink Project, Abt Associates, Plot 11 Waterson Road, Fuo, Tamale, Ghana.
| | - Yemane Yihdego
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Ellie Sherrard-Smith
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Churcher S Thomas
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Dereje Dengela
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Richard M Oxborough
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Samuel K Dadzie
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Daniel Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Frank Gyamfi
- PMI VectorLink Project, Abt Associates, Plot 11 Waterson Road, Fuo, Tamale, Ghana
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ben Johns
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Lilly V Siems
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Bradford Lucas
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Jon Eric Tongren
- US. President's Malaria Initiative, U.S. Agency for International Development, Accra, Ghana
| | - Sixte Zigirumugabe
- US. President's Malaria Initiative, U.S. Agency for International Development, Accra, Ghana
| | - Dominic Dery
- US. President's Malaria Initiative, U.S. Agency for International Development, Accra, Ghana
| | - Christen Fornadel
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Kristen George
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Allison Belemvire
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Jenny Carlson
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Seth R Irish
- U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer S Armistead
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Aklilu Seyoum
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| |
Collapse
|
23
|
Sharma PP, Kumar S, Kaushik K, Singh A, Singh IK, Grishina M, Pandey KC, Singh P, Potemkin V, Poonam, Singh G, Rathi B. In silico validation of novel inhibitors of malarial aspartyl protease, plasmepsin V and antimalarial efficacy prediction. J Biomol Struct Dyn 2021; 40:8352-8364. [PMID: 33870856 DOI: 10.1080/07391102.2021.1911855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Plasmepsin V (Plm V) is an essential aspartic protease required for survival of the malaria parasite, Plasmodium falciparum (Pf). Plm V is required for cleaving the PEXEL motifs of many Pf proteins and its inhibition leads to a knockout effect, indicating its suitability as potential drug target. To decipher new inhibitors of PfPlm V, molecular docking of four HIV-1 protease inhibitors active against PfPlmV was performed on Glide module of Schrödinger suite that supported saquinavir as a lead drug, and therefore, selected as a control. Saquinavir contains an important hydroxyethylamine (HEA) pharmacophore, which was utilized as backbone coupled with piperazine scaffold to build new library of compounds. Newly designed HEA compounds were screened virtually against Plm V. Molecular docking led to a few hits (1 and 3) with higher docking score over the control drug. Notably, compound 1 showed the highest docking score (-11.90 kcal/mol) and XP Gscore (-11.948 kcal/mol). The Prime MMGBSA binding free energy for compound 1 (-60.88 kcal/mol) and 3 (-50.96 kcal/mol) was higher than saquinavir (-37.51 kcal/mol). The binding free energy for the last frame of molecular dynamic simulation supported compound 1 (-92.88 kcal/mol) as potent inhibitor of PfPlm V over saquinavir (-72.77 kcal/mol), and thus, deserves experimental validations in culture and subsequently in animal models.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prem Prakash Sharma
- Department of Biomedical Engineering, Deenbandhu Chhotu Ram, University of Science & Technology, Murthal, Sonepat, Haryana, India.,Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Kumar Kaushik
- Centre for Fire, Explosives & Environment Safety, Fire Chemistry Group, Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Maria Grishina
- Laboratory of Computational Modelling of Drugs, South Ural State University, Russia
| | - Kailash C Pandey
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, New Delhi, India
| | | | - Vladimir Potemkin
- Laboratory of Computational Modelling of Drugs, South Ural State University, Russia
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Geeta Singh
- Department of Biomedical Engineering, Deenbandhu Chhotu Ram, University of Science & Technology, Murthal, Sonepat, Haryana, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India.,Laboratory of Computational Modelling of Drugs, South Ural State University, Russia
| |
Collapse
|
24
|
Ngowo HS, Hape EE, Matthiopoulos J, Ferguson HM, Okumu FO. Fitness characteristics of the malaria vector Anopheles funestus during an attempted laboratory colonization. Malar J 2021; 20:148. [PMID: 33712003 PMCID: PMC7955623 DOI: 10.1186/s12936-021-03677-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The malaria vector Anopheles funestus is increasingly recognized as a dominant vector of residual transmission in many African settings. Efforts to better understand its biology and control are significantly impeded by the difficulties of colonizing it under laboratory conditions. To identify key bottlenecks in colonization, this study compared the development and fitness characteristics of wild An. funestus from Tanzania (FUTAZ) and their F1 offspring during colonization attempts. The demography and reproductive success of wild FUTAZ offspring were compared to that of individuals from one of the only An. funestus strains that has been successfully colonized (FUMOZ, from Mozambique) under similar laboratory conditions. METHODS Wild An. funestus (FUTAZ) were collected from three Tanzanian villages and maintained inside an insectary at 70-85% RH, 25-27 °C and 12 h:12 h photoperiod. Eggs from these females were used to establish three replicate F1 laboratory generations. Larval development, survival, fecundity, mating success, percentage pupation and wing length were measured in the F1 -FUTAZ offspring and compared with wild FUTAZ and FUMOZ mosquitoes. RESULTS Wild FUTAZ laid fewer eggs (64.1; 95% CI [63.2, 65.0]) than FUMOZ females (76.1; 95% CI [73.3, 79.1]). Survival of F1-FUTAZ larvae under laboratory conditions was low, with an egg-to-pupae conversion rate of only 5.9% compared to 27.4% in FUMOZ. The median lifespan of F1-FUTAZ females (32 days) and males (33 days) was lower than FUMOZ (52 and 49 for females and males respectively). The proportion of female F1-FUTAZ inseminated under laboratory conditions (9%) was considerably lower than either FUMOZ (72%) or wild-caught FUTAZ females (92%). This resulted in nearly zero viable F2-FUTAZ eggs produced. Wild FUTAZ wings appear to be larger compared to the lab reared F1-FUTAZ and FUMOZ. CONCLUSIONS This study indicates that poor larval survival, mating success, low fecundity and shorter survival under laboratory conditions all contribute to difficulties in colonizing of An. funestus. Future studies should focus on enhancing these aspects of An. funestus fitness in the laboratory, with the biggest barrier likely to be poor mating.
Collapse
Affiliation(s)
- Halfan S Ngowo
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania. .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12, 8QQ, UK.
| | - Emmanuel E Hape
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12, 8QQ, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12, 8QQ, UK
| | - Heather M Ferguson
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12, 8QQ, UK
| | - Fredros O Okumu
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12, 8QQ, UK.,School of Public Health, University of the Witwatersrand, 1 Smuts Avenue, Braamfontein, 2000, Republic of South Africa.,School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
25
|
Owuor KO, Machani MG, Mukabana WR, Munga SO, Yan G, Ochomo E, Afrane YA. Insecticide resistance status of indoor and outdoor resting malaria vectors in a highland and lowland site in Western Kenya. PLoS One 2021; 16:e0240771. [PMID: 33647049 PMCID: PMC7920366 DOI: 10.1371/journal.pone.0240771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Long Lasting Insecticidal Nets (LLINs) and indoor residual spraying (IRS) represent powerful tools for controlling malaria vectors in sub-Saharan Africa. The success of these interventions relies on their capability to inhibit indoor feeding and resting of malaria mosquitoes. This study sought to understand the interaction of insecticide resistance with indoor and outdoor resting behavioral responses of malaria vectors from Western Kenya. METHODS The status of insecticide resistance among indoor and outdoor resting anopheline mosquitoes was compared in Anopheles mosquitoes collected from Kisumu and Bungoma counties in Western Kenya. The level and intensity of resistance were measured using WHO-tube and CDC-bottle bioassays, respectively. The synergist piperonyl butoxide (PBO) was used to determine if metabolic activity (monooxygenase enzymes) explained the resistance observed. The mutations at the voltage-gated sodium channel (Vgsc) gene and Ace 1 gene were characterized using PCR methods. Microplate assays were used to measure levels of detoxification enzymes if present. RESULTS A total of 1094 samples were discriminated within Anopheles gambiae s.l. and 289 within An. funestus s.l. In Kisian (Kisumu county), the dominant species was Anopheles arabiensis 75.2% (391/520) while in Kimaeti (Bungoma county) collections the dominant sibling species was Anopheles gambiae s.s 96.5% (554/574). The An. funestus s.l samples analysed were all An. funestus s.s from both sites. Pyrethroid resistance of An.gambiae s.l F1 progeny was observed in all sites. Lower mortality was observed against deltamethrin for the progeny of indoor resting mosquitoes compared to outdoor resting mosquitoes (Mortality rate: 37% vs 51%, P = 0.044). The intensity assays showed moderate-intensity resistance to deltamethrin in the progeny of mosquitoes collected from indoors and outdoors in both study sites. In Kisian, the frequency of vgsc-L1014S and vgsc-L1014F mutation was 0.14 and 0.19 respectively in indoor resting malaria mosquitoes while those of the outdoor resting mosquitoes were 0.12 and 0.12 respectively. The ace 1 mutation was present in higher frequency in the F1 of mosquitoes resting indoors (0.23) compared to those of mosquitoes resting outdoors (0.12). In Kimaeti, the frequencies of vgsc-L1014S and vgsc-L1014F were 0.75 and 0.05 respectively for the F1 of mosquitoes collected indoors whereas those of outdoor resting ones were 0.67 and 0.03 respectively. The ace 1 G119S mutation was present in progeny of mosquitoes from Kimaeti resting indoors (0.05) whereas it was absent in those resting outdoors. Monooxygenase activity was elevated by 1.83 folds in Kisian and by 1.33 folds in Kimaeti for mosquitoes resting indoors than those resting outdoors respectively. CONCLUSION The study recorded high phenotypic, metabolic and genotypic insecticide resistance in indoor resting populations of malaria vectors compared to their outdoor resting counterparts. The indication of moderate resistance intensity for the indoor resting mosquitoes is alarming as it could have an operational impact on the efficacy of the existing pyrethroid based vector control tools. The use of synergist (PBO) in LLINs may be a better alternative for widespread use in these regions recording high insecticide resistance.
Collapse
Affiliation(s)
- Kevin O. Owuor
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Wolfgang R. Mukabana
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
- Science for Health Society, Nairobi, Kenya
| | - Stephen O. Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|