1
|
Nengnong CB, Passah M, Wilson ML, Bellotti E, Kessler A, Marak BR, Carlton JM, Sarkar R, Albert S. Community and health worker perspectives on malaria in Meghalaya, India: covering the last mile of elimination by 2030. Malar J 2024; 23:83. [PMID: 38500097 PMCID: PMC10949573 DOI: 10.1186/s12936-024-04905-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Malaria remains a public health problem in regions of Northeastern India because of favourable bio-geographic transmission conditions, poor access to routine healthcare, and inadequate infrastructure for public health and disease prevention. This study was undertaken to better understand community members' and health workers' perceptions of malaria, as well as their knowledge, attitudes, and prevention practices related to the disease in Meghalaya state. METHODS The study included participants from three malaria endemic districts: West Khasi Hills, West Jaiñtia Hills, and South Garo Hills from 2019 to 2021. A total of 82 focus group discussions (FGD) involving 694 community members and 63 in-depth interviews (IDI) with health personnel and traditional healers residing within the three districts were conducted. A thematic content analysis approach was employed, using NVivo12 software for data management. RESULTS Most participants reported a perceived reduction in malaria during recent years, attributing this to changes in attitudes and behaviours in health seeking, and to more effective government interventions. Local availability of testing and treatment, and an improved, more responsive health system contributed to changing attitudes. Long-lasting insecticidal nets (LLINs) were largely preferred over indoor residual spraying (IRS), as LLINs were perceived to be effective and more durable. Community members also reported using personal protective measures such as applying repellents, burning neem tree leaves, straw/egg trays, wearing long sleeve clothes, and applying ointments or oils to protect themselves from mosquito bites. While most participants acknowledged the role of mosquitoes in malaria transmission, other conditions that are not mosquito-borne were also attributed to mosquitoes by some participants. The communities surveyed have largely shifted from seeking treatment for malaria from traditional healers to using public facilities, although some participants reported switching between the two or using both simultaneously. Improved understanding of cerebral malaria, which some participants previously attributed to mental illness due to 'bad spirits', is an example of how cultural and ritualistic practices have changed. CONCLUSION The findings reveal diverse perceptions among community members regarding malaria, its prevention, practices to prevent mosquito-transmitted diseases, and their opinions about the healthcare system. A key finding was the shift in malaria treatment-seeking preferences of community members from traditional healers to the public sector. This shift highlights the changing dynamics and increasing acceptance of modern healthcare practices for malaria treatment and prevention within tribal and/or indigenous communities. By recognizing these evolving attitudes, policymakers and healthcare providers can better tailor their interventions and communication strategies to more effectively address ongoing needs and concerns as India faces the 'last mile' in malaria elimination.
Collapse
Affiliation(s)
- Carinthia B Nengnong
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, 793001, India.
- Martin Luther Christian University, Shillong, Meghalaya, 793006, India.
| | - Mattimi Passah
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, 793001, India
- Martin Luther Christian University, Shillong, Meghalaya, 793006, India
| | - Mark L Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elisa Bellotti
- Department of Sociology, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Anne Kessler
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Bibha R Marak
- Department of Health and Family Welfare, National Vector Borne Disease Control Program, Shillong, Meghalaya, 793001, India
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Rajiv Sarkar
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, 793001, India
- Martin Luther Christian University, Shillong, Meghalaya, 793006, India
| | - Sandra Albert
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, 793001, India.
- Martin Luther Christian University, Shillong, Meghalaya, 793006, India.
| |
Collapse
|
2
|
Zhou G, Githure J, Lee MC, Zhong D, Wang X, Atieli H, Githeko AK, Kazura J, Yan G. Malaria transmission heterogeneity in different eco-epidemiological areas of western Kenya: a region-wide observational and risk classification study for adaptive intervention planning. Malar J 2024; 23:74. [PMID: 38475793 PMCID: PMC10935946 DOI: 10.1186/s12936-024-04903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Understanding of malaria ecology is a prerequisite for designing locally adapted control strategies in resource-limited settings. The aim of this study was to utilize the spatial heterogeneity in malaria transmission for the designing of adaptive interventions. METHODS Field collections of clinical malaria incidence, asymptomatic Plasmodium infection, and malaria vector data were conducted from 108 randomly selected clusters which covered different landscape settings including irrigated farming, seasonal flooding area, lowland dryland farming, and highlands in western Kenya. Spatial heterogeneity of malaria was analyzed and classified into different eco-epidemiological zones. RESULTS There was strong heterogeneity and detected hot/cold spots in clinical malaria incidence, Plasmodium prevalence, and vector abundance. The study area was classified into four zones based on clinical malaria incidence, parasite prevalence, vector density, and altitude. The two irrigated zones have either the highest malaria incidence, parasite prevalence, or the highest malaria vector density; the highlands have the lowest vector density and parasite prevalence; and the dryland and flooding area have the average clinical malaria incidence, parasite prevalence and vector density. Different zones have different vector species, species compositions and predominant species. Both indoor and outdoor transmission may have contributed to the malaria transmission in the area. Anopheles gambiae sensu stricto (s.s.), Anopheles arabiensis, Anopheles funestus s.s., and Anopheles leesoni had similar human blood index and malaria parasite sporozoite rate. CONCLUSION The multi-transmission-indicator-based eco-epidemiological zone classifications will be helpful for making decisions on locally adapted malaria interventions.
Collapse
Affiliation(s)
- Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, USA.
| | - John Githure
- Sub-Saharan International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, University of California, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, USA
| | - Xiaoming Wang
- Program in Public Health, University of California, Irvine, CA, USA
| | - Harrysone Atieli
- Sub-Saharan International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James Kazura
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, USA
| |
Collapse
|
3
|
Nengnong CB, Passah M, Wilson ML, Bellotti E, Kessler A, Marak BR, Carlton JM, Sarkar R, Albert S. Community and health worker perspectives on malaria in Meghalaya, India: Covering the last mile of elimination by 2030. RESEARCH SQUARE 2023:rs.3.rs-3431734. [PMID: 37886590 PMCID: PMC10602177 DOI: 10.21203/rs.3.rs-3431734/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background Malaria remains a public health problem in regions of northeastern India due to favourable bio-geographic transmission conditions, poor access to routine healthcare, and inadequate public health and healthcare infrastructure. This study was undertaken to better understand community members' and health workers' perceptions of malaria, as well as their knowledge, attitudes, and prevention practices related to the disease in Meghalaya state. Methods The study included participants from three malaria endemic districts: West Khasi Hills, West Jaiñtia Hills, and South Garo Hills from 2019 to 2021. A total of 82 focus group discussions (FGD) with 694 community members and 63 in-depth interviews (IDI) with health personnel and traditional healers residing within the three districts were conducted. A thematic content analysis approach was employed, and NVivo12 software was utilized for data management. Results Most participants reported a perceived reduction in malaria during recent years and attributed this to changing attitudes and behaviours in health seeking behaviour and effective government interventions. Local availability of testing and treatment, and an improved, more responsive health system contributed to changing attitudes. Long-lasting insecticidal nets (LLINs) were largely preferred over indoor residual spraying (IRS), as LLINs were perceived to be effective and more durable. Community members also reported using personal protective measures such as applying repellents, burning straw/egg trays, wearing long sleeve clothes, and applying ointments or oils to protect themselves from mosquito bites. While most participants acknowledged the role of mosquitoes in malaria transmission, other conditions that are not mosquito-borne were also attributed to mosquitoes by some participants. The communities surveyed have largely shifted from seeking traditional healers to using public facilities, although some participants reported switching between the two or using both simultaneously. Using the example of improved understanding of cerebral malaria which was previously attributed to mental illness due to 'bad spirits', participants explained how cultural and ritualistic practices had changed. Conclusions Our findings reveal diverse perceptions among community members regarding malaria, its prevention, practices to prevent mosquito-transmitted diseases, and their opinions about the health system. A key finding was the shift in malaria treatment seeking preferences of community members from traditional healers to the public sector. This shift highlights the changing dynamics and increasing acceptance of modern healthcare practices for malaria treatment and prevention within tribal and/or indigenous communities. By recognizing these evolving attitudes, policymakers and healthcare providers can better tailor their interventions and communication strategies to more effectively address ongoing needs and concerns as India faces the 'last mile' in malaria elimination.
Collapse
|
4
|
Singh US, Amdep FL, Kshiar A, Acharya P, Karumuthil T, Kale S, Mishra S, Khan N, Kharbisnop B, Kessler A, Carlton JM, Das A, Walton C, Albert S. Characterisation of Anopheles species composition and genetic diversity in Meghalaya, northeast India, using molecular identification tools. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105450. [PMID: 37230159 DOI: 10.1016/j.meegid.2023.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Malaria in India is declining, in part due to the use of long-lasting insecticide-treated nets (LLINs) and vector control. Historically, the north-eastern region of India has contributed ~10%-12% of the nation's malaria burden. The important mosquito vectors in northeast India have long been considered to be Anopheles baimaii and An. minimus, both associated with forest habitats. Local deforestation and increased rice cultivation, along with widespread LLIN use, may be changing vector species composition. Understanding if and how vector species composition is changing is critical to successful malaria control. In Meghalaya state, malaria is now at a low level of endemicity with occasional seasonal outbreaks. In a biodiverse setting like Meghalaya, where >24 Anopheles mosquito species have been recorded, accurate morphological identification of all species is logistically challenging. To accurately determine Anopheles species richness in the West Khasi Hills (WKH) and West Jaintia Hills (WJH) districts, adult and larval mosquitoes were collected and identified using molecular methods of allele-specific PCR and cytochrome oxidase I DNA barcoding. In 14 villages across both districts, we identified high species richness, 19 species in total. Molecular findings indicated that An. minimus and An. baimaii were rare, while four other species (An. maculatus, An. pseudowillmori, An. jeyporiensis and An. nitidus) were abundant. Anopheles maculatus was highly prevalent in WKH (39% of light trap collections) and An. pseudowillmori in WJH (45%). Larvae of these four species were found in rice fields, suggesting that land cover change is influencing species composition change. Our results suggest that rice fields might be contributing to the observed abundance of An. maculatus and An. pseudowillmori, which could be playing a role in malaria transmission, either independently due to their high abundance, or in combination with An. baimaii and/or An. minimus.
Collapse
Affiliation(s)
- Upasana Shyamsunder Singh
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - Alman Kshiar
- Indian Institute of Public Health Shillong, Shillong, Meghalaya 793001, India
| | - Preeti Acharya
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Tulasi Karumuthil
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Sonal Kale
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Sandhya Mishra
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Nikhat Khan
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Bankerdonbor Kharbisnop
- Meghalaya State Programme Management Unit (Malaria), National Centre for Vector Borne Disease Control, Department of Health, Government of Meghalaya, Lawmali, Pasteur Hill, Shillong, Meghalaya 793001, India
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY 10003, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY 10003, USA
| | - Aparup Das
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Catherine Walton
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Sandra Albert
- Indian Institute of Public Health Shillong, Shillong, Meghalaya 793001, India; National Lutheran Health and Medical Board, MLCU, Meghalaya, India
| |
Collapse
|
5
|
Khan N, Awasthi G, Das A. How can the complex epidemiology of malaria in India impact its elimination? Trends Parasitol 2023; 39:432-444. [PMID: 37031071 PMCID: PMC10175201 DOI: 10.1016/j.pt.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 04/10/2023]
Abstract
Malaria is a human health hazard in the tropical and subtropical zones of the globe and is poised to be eliminated by the year 2030. Despite a decrease in incidence in the past two decades, many endemic countries, including India, report cases regularly. The epidemiology of malaria in India is unique owing to several features of the Plasmodium parasites, Anopheles vectors, ecoepidemiological situations conducive to disease transmission, and susceptible humans living in rural and forested areas. Limitations in public health reach, and poor health-seeking behaviour of vulnerable populations living in hard-to-reach areas, add to the problem. We bring all of these factors together in a comprehensive framework and opine that, in spite of complexities, targeted elimination of malaria in India is achievable with planned programmatic approaches.
Collapse
Affiliation(s)
- Nikhat Khan
- Molecular Epidemiology Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | | | - Aparup Das
- Molecular Epidemiology Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, India.
| |
Collapse
|
6
|
Bellotti E, Voros A, Passah M, Nongrum QD, Nengnong CB, Khongwir C, van Eijk A, Kessler A, Sarkar R, Carlton JM, Albert S. Social network and household exposure explain the use of malaria prevention measures in rural communities of Meghalaya, India. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.23.23288997. [PMID: 37162984 PMCID: PMC10168486 DOI: 10.1101/2023.04.23.23288997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Malaria remains a global concern despite substantial reduction in incidence over the past twenty years. Public health interventions to increase the uptake of preventive measures have contributed to this decline but their impact has not been uniform. To date, we know little about what determines the use of preventive measures in rural, hard-to-reach populations, which are crucial contexts for malaria eradication. We collected detailed interview data on the use of malaria preventive measures, health-related discussion networks, individual characteristics, and household composition in ten tribal, malaria-endemic villages in Meghalaya, India in 2020-2021 (n=1,530). Employing standard and network statistical models, we found that social network and household exposure were consistently positively associated with preventive measure use across villages. Network and household exposure were also the most important factors explaining behaviour, outweighing individual characteristics, opinion leaders, and network size. These results suggest that real-life data on social networks and household composition should be considered in studies of health-behaviour change.
Collapse
Affiliation(s)
- Elisa Bellotti
- Department of Sociology, University of Manchester, Manchester, UK
| | - Andras Voros
- School of Social Policy, University of Birmingham, Birmingham, UK
| | - Mattimi Passah
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, India
| | | | | | | | - Annemieke van Eijk
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA
| | - Rajiv Sarkar
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, India
| | - Jane M. Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA
| | - Sandra Albert
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, India
| |
Collapse
|
7
|
Carlton JM, Sahu PK, Wassmer SC, Mohanty S, Kessler A, Eapen A, Tomko SS, Walton C, Joshi PL, Das D, Albert S, Peter BK, Pradhan MM, Dash AP, Das A. The Impact, Emerging Needs, and New Research Questions Arising from 12 Years of the Center for the Study of Complex Malaria in India. Am J Trop Med Hyg 2022; 107:90-96. [PMID: 36228922 PMCID: PMC9662226 DOI: 10.4269/ajtmh.21-1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 11/24/2022] Open
Abstract
The Center for the Study of Complex Malaria in India (CSCMi) was launched in 2010 with the overall goal of addressing major gaps in our understanding of "complex malaria" in India through projects on the epidemiology, transmission, and pathogenesis of the disease. The Center was mandated to adopt an integrated approach to malaria research, including building capacity, developing infrastructure, and nurturing future malaria leaders while conducting relevant and impactful studies to assist India as it moves from control to elimination. Here, we will outline some of the interactions and impacts the Center has had with malaria policy and control counterparts in India, as well as describe emerging needs and new research questions that have become apparent over the past 12 years.
Collapse
Affiliation(s)
- Jane M. Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
- Department of Epidemiology, School of Global Public Health, New York University, New York, New York
- Address correspondence to Jane M. Carlton, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003. E-mail:
| | - Praveen K. Sahu
- Department of Molecular and Infectious Diseases, Community Welfare Society Hospital, Rourkela, India
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sanjib Mohanty
- Department of Molecular and Infectious Diseases, Community Welfare Society Hospital, Rourkela, India
| | - Anne Kessler
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Alex Eapen
- IDVC Field Unit, National Institute of Malaria Research, Indian Council of Medical Research, National Institute of Epidemiology Campus, Chennai, India
| | - Sheena Shah Tomko
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Catherine Walton
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - Pyare L. Joshi
- Joint Scientific Advisory Committee, Indian Council of Medical Research, and Malaria No More, India Programme, New Delhi, India
| | - Deben Das
- District Headquarters Hospital, Keonjhar, India
| | - Sandra Albert
- Indian Institute of Public Health—Shillong, Shillong, India
- Martin Luther Christian University, Shillong, India
| | | | - Madan M. Pradhan
- Department of Health and Family Welfare, State Vector Borne Disease Control Programme, Bhubaneswar, India
| | - Aditya P. Dash
- Asian Institute of Public Health University, Bhubaneswar, India
| | - Aparup Das
- National Institute of Research in Tribal Health, Indian Council of Medical Research, Jabalpur, India
| |
Collapse
|
8
|
Passah M, Nengnong CB, Wilson ML, Carlton JM, Kharbamon L, Albert S. Implementation and acceptance of government-sponsored malaria control interventions in Meghalaya, India. Malar J 2022; 21:200. [PMID: 35739533 PMCID: PMC9223263 DOI: 10.1186/s12936-022-04223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022] Open
Abstract
Background India has made considerable progress in malaria reduction over the past two decades, with government-sponsored indoor residual spraying (IRS) and insecticide-treated bed net (ITN) or long-lasting insecticidal nets (LLIN) distribution being the main vector-related prevention efforts. Few investigations have used non-participant observational methods to assess malaria control measures while they were being implemented, nor documented people’s perceptions and acceptance of IRS or LLINs in India, and none have done so in the northeast region. This study evaluated household (HH)-level operation of IRS and distribution of LLINs by India’s National Vector Borne Disease Control Programme (NVBDCP) in 50 villages of Meghalaya state, and documented their acceptance and use. Methods Study field teams accompanied the government health system teams during August-October, 2019 and 2020 to observe deployment of LLINs, and record HH-level data on LLIN numbers and use. In addition, NVBDCP spray teams were followed during 2019–2021 to observe IRS preparation and administration. HH members were interviewed to better understand reasons for acceptance or refusal of spraying. Results A total of 8386 LLINs were distributed to 2727 HHs in 24 villages from five Primary Health Centres, representing 99.5% of planned coverage. Interviews with 80 HH residents indicated that they appreciated the LLIN dissemination programme, and generally made regular and appropriate use of LLINs, except during overnight travel or when working in agricultural fields. However, HH-level IRS application, which was observed at 632 HHs, did not always follow standard insecticide preparation and safety protocols. Of 1,079 occupied HHs visited by the spray team, 632 (58.6%) refused to allow any spraying. Only 198 (18.4%) HHs agreed to be sprayed, comprising 152 (14.1%) that were only partly sprayed, and 46 (4.3%) that were fully sprayed. Reasons for refusal included: inadequate time to rearrange HH items, young children were present, annoying smell, staining of walls, and threat to bee-keeping or Eri silk moth cultivation. Conclusions These findings are among the first in India that independently evaluate people's perceptions and acceptance of ongoing government-sponsored IRS and LLIN programmes for malaria prevention. They represent important insights for achieving India's goal of malaria elimination by 2030.
Collapse
Affiliation(s)
- Mattimi Passah
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, 793001, India. .,Martin Luther Christian University, Shillong, Meghalaya, 793006, India.
| | - Carinthia Balabet Nengnong
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, 793001, India.,Martin Luther Christian University, Shillong, Meghalaya, 793006, India
| | - Mark L Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.,Department of Epidemiology, College of Global Public Health, New York University, New York, NY, 10012, USA
| | - Larry Kharbamon
- Department of Health, National Vector Borne Disease Control Programme, Shillong, Meghalaya, India
| | - Sandra Albert
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, 793001, India. .,Martin Luther Christian University, Shillong, Meghalaya, 793006, India.
| |
Collapse
|
9
|
Sarkar R, Kessler A, Mawkhlieng B, Sullivan SA, Wilson ML, Carlton JM, Albert S. Household and individual level risk factors associated with declining malaria incidence in Meghalaya, India: implications for malaria elimination in low-endemic settings. Malar J 2021; 20:460. [PMID: 34895233 PMCID: PMC8665616 DOI: 10.1186/s12936-021-03982-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
Background A detailed analysis of household and individual level Plasmodium infection patterns in two low-endemic districts of Meghalaya was undertaken to better understand the epidemiology of malaria in northeast India. Methods Socio-demographic and behavioural information from residents (aged 1–69 years) of households were collected through pre-tested, questionnaire conducted in 2018 and 2019. Blood samples collected from participants were tested for Plasmodium falciparum and/or Plasmodium vivax infection using rapid diagnostic test, microscopy and PCR. Plasma samples from a subset of participants were analysed for antibodies against thirteen P. falciparum and four P. vivax antigens. Associations between household and individual level risk factors, and Plasmodium infections were evaluated using multilevel logistic regression models. Results A total of 2753 individuals from 827 households were enrolled in 2018, and 834 individuals from 222 households were enrolled in 2019. Of them, 33 (1.2%) were positive by PCR for P. falciparum in 2018 and none were positive for P. vivax. In 2019, no PCR-positive individuals were detected. All, but one, infections were asymptomatic; all 33 infections were sub-microscopic. Reported history of malaria in the past 12 months (OR = 8.84) and history of travel in the past 14 days (OR = 10.06) were significantly associated with Plasmodium infection. A significant trend of increased seropositivity with age was noted for all 17 antigens. Although adults (≥ 18 years) consistently had the highest seropositivity rates, a sizeable proportion of under-five children were also found to be seropositive. Almost all individuals (99.4%) reported sleeping under an insecticide-treated bed-net, and household indoor residual spray coverage in the 12 months preceding the survey was low (23%). Most participants correctly identified common signs and symptoms of malaria, i.e., fever (96.4%), headache (71.2%), chills (83.2%) and body-ache (61.8%). Almost all participants (94.3%) used government-provided services for treatment of malaria. Conclusion This study explored the epidemiology of malaria in two communities in Meghalaya, India, in the context of declining transmission. The presence of widespread asymptomatic infections and seropositivity among under-five children suggest that low-level Plasmodium transmission persists in this region. Implications of the study findings for malaria elimination efforts in low-transmission settings are discussed.
Collapse
Affiliation(s)
- Rajiv Sarkar
- Indian Institute of Public Health - Shillong, Shillong, Meghalaya, 793001, India. .,Martin Luther Christian University, Shillong, Meghalaya, 793006, India.
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | | | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mark L Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.,Department of Epidemiology, School of Global Public Health, New York University, New York, NY, 10003, USA
| | - Sandra Albert
- Indian Institute of Public Health - Shillong, Shillong, Meghalaya, 793001, India.,Martin Luther Christian University, Shillong, Meghalaya, 793006, India
| |
Collapse
|