1
|
Moss S, Jones RT, Pretorius E, da Silva ET, Higgins M, Kristan M, Acford-Palmer H, Collins EL, Rodrigues A, Krishna S, Clark TG, Last A, Campino S. Phenotypic evidence of deltamethrin resistance and identification of selective sweeps in Anopheles mosquitoes on the Bijagós Archipelago, Guinea-Bissau. Sci Rep 2024; 14:22840. [PMID: 39354094 PMCID: PMC11445403 DOI: 10.1038/s41598-024-73996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Vector control in the Bijagós Archipelago of Guinea-Bissau currently relies on pyrethroid insecticide-treated nets. However, data on insecticide resistance in Guinea-Bissau is limited. This study identified deltamethrin resistance in the Anopheles gambiae sensu lato complex on Bubaque island using WHO tube tests in November 2022. Whole genome sequencing of An. gambiae sensu stricto mosquitoes identified six single nucleotide polymorphisms (SNPs) previously associated with, or putatively associated with, insecticide resistance: T791M, L995F, N1570Y, A1746S and P1874L in the vgsc gene, and L119V in the gste2 gene. Twenty additional non-synonymous SNPs were identified in insecticide-resistance associated genes. Four of these SNPs were present at frequencies over 5% in the population: T154S, I126F and G26S in the vgsc gene and A65S in ace1. Genome wide selection scans using Garud's H12 statistic identified two selective sweeps: one in chromosome X and one in chromosome 2R. Both selective sweeps overlap with metabolic genes previously associated with insecticide resistance, including cyp9k1 and the cyp6aa/cyp6p gene cluster. This study presents the first phenotypic testing for deltamethrin resistance and the first whole genome sequence data for Anophelesgambiae mosquitoes from the Bijagós, contributing data of significance for vector control policy in this region.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Robert T Jones
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Elizabeth Pretorius
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Eunice Teixeira da Silva
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Emma L Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amabelia Rodrigues
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Sanjeev Krishna
- Clinical Academic Group, Institute for Infection and Immunity, and St, George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut für Tropenmedizin Universitätsklinikum Tübingen, Tübingen, Germany
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
2
|
Martin JL, Messenger LA, Bernard E, Kisamo M, Hape P, Sizya O, Festo E, Matiku W, Marcel V, Malya E, Aziz T, Matowo NS, Mosha JF, Mosha FW, Rowland M, Manjurano A, Protopopoff N. Evaluation of bio-efficacy of field-aged novel long-lasting insecticidal nets (PBO, chlorfenapyr or pyriproxyfen combined with pyrethroid) against Anopheles gambiae ( s.s.) in Tanzania. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100216. [PMID: 39399651 PMCID: PMC11470491 DOI: 10.1016/j.crpvbd.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024]
Abstract
Next-generation insecticide-treated bed nets (ITNs) combining two insecticides or an insecticide with a synergist are vital in combating malaria, especially in areas with pyrethroid-resistant mosquitoes where standard pyrethroid long-lasting insecticidal net (LLIN) may be less effective. A community durability study was conducted in Misungwi, Tanzania, during a cluster randomised controlled trial. This study assessed the bio-efficacy of three net brands combining a pyrethroid insecticide and either a synergist PBO for Olyset Plus, or a second insecticide pyriproxyfen for Royal Guard, and chlorfenapyr for Interceptor G2 over three years. These nets were compared to Interceptor, a standard pyrethroid-only net. A total of 1950 nets were enrolled across 10 clusters in each treatment arm. Thirty nets per type were collected every 6 months up to 30 months, with 50 nets sampled at 36 months. WHO cone bioassays and tunnel tests were performed at 0, 12, 24, 30 and 36 months. Both susceptible An. gambiae (s.s.) Kisumu strain and resistant An. gambiae (s.s.) Muleba-Kis strain were exposed. Over 80% of nets tested against the susceptible Kisumu strain met the WHO criteria after three years of community use. In tunnel tests, mortality (72 h) of the resistant Anopheles varied between 52% and 20%, in Interceptor G2 and was higher than standard Interceptor net up to 24 months. Olyset Plus mortality (24 h) ranged between 84% and 33% in tunnel tests with superior efficacy compared to Interceptor at 0, 24 and 36 months. Sterility effects in Royal Guard were higher when these nets were new and at six months but decreased to less than 10% after 12 months. Royal Guard consistently induced higher mortality compared to Interceptor up to 30 months while next-generation ITNs demonstrated higher efficacy in terms of mortality compared to standard LLINs against resistant strains; this superior bio-efficacy did not persist for the full three years. The impact of active ingredient (dual-AI) and PBO diminished relatively quickly. Aside from the initial period when the nets were new, the differences in mortality for Interceptor G2 and Olyset Plus and in sterility for Royal Guard, compared to the standard LLINs, were relatively small thereafter.
Collapse
Affiliation(s)
- Jackline L. Martin
- Department of Parasitology, Pan-African Malaria Vector Research Consortium, Kilimanjaro Christian Medical University College, BOX 2240, Moshi, Tanzania
- Department of Parasitology, National Institute for Medical Research, BOX 1462, Mwanza, Tanzania
- Department of Disease Control, Faculty of Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Louisa A. Messenger
- Department of Disease Control, Faculty of Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, 89119, USA
- Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, NV, 89119, USA
| | - Edmund Bernard
- Department of Parasitology, National Institute for Medical Research, BOX 1462, Mwanza, Tanzania
| | - Monica Kisamo
- Department of Parasitology, National Institute for Medical Research, BOX 1462, Mwanza, Tanzania
| | - Patric Hape
- Department of Parasitology, National Institute for Medical Research, BOX 1462, Mwanza, Tanzania
| | - Osca Sizya
- Department of Parasitology, Pan-African Malaria Vector Research Consortium, Kilimanjaro Christian Medical University College, BOX 2240, Moshi, Tanzania
| | - Emmanuel Festo
- Department of Parasitology, Pan-African Malaria Vector Research Consortium, Kilimanjaro Christian Medical University College, BOX 2240, Moshi, Tanzania
| | - Wambura Matiku
- Department of Parasitology, Pan-African Malaria Vector Research Consortium, Kilimanjaro Christian Medical University College, BOX 2240, Moshi, Tanzania
| | - Victoria Marcel
- Department of Parasitology, Pan-African Malaria Vector Research Consortium, Kilimanjaro Christian Medical University College, BOX 2240, Moshi, Tanzania
| | - Elizabeth Malya
- Department of Parasitology, Pan-African Malaria Vector Research Consortium, Kilimanjaro Christian Medical University College, BOX 2240, Moshi, Tanzania
| | - Tatu Aziz
- Department of Parasitology, Pan-African Malaria Vector Research Consortium, Kilimanjaro Christian Medical University College, BOX 2240, Moshi, Tanzania
| | - Nancy S. Matowo
- Department of Disease Control, Faculty of Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jacklin F. Mosha
- Department of Parasitology, National Institute for Medical Research, BOX 1462, Mwanza, Tanzania
| | - Franklin W. Mosha
- Department of Parasitology, Pan-African Malaria Vector Research Consortium, Kilimanjaro Christian Medical University College, BOX 2240, Moshi, Tanzania
| | - Mark Rowland
- Department of Disease Control, Faculty of Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Alphaxard Manjurano
- Department of Parasitology, National Institute for Medical Research, BOX 1462, Mwanza, Tanzania
| | - Natacha Protopopoff
- Department of Disease Control, Faculty of Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Health Interventions Unit, Department of Epidemiology and Public Health, Swiss Tropical & Public Health Institute, 4123, Allschwill, Switzerland
| |
Collapse
|
3
|
Tarimo FS, Dillip A, Kosia EM, Lwetoijera DW. Community perception of the autodissemination of pyriproxyfen for controlling malaria vectors in south-eastern Tanzania. Malar J 2023; 22:333. [PMID: 37924148 PMCID: PMC10625276 DOI: 10.1186/s12936-023-04773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The efficacy of the autodissemination of pyriproxyfen to control malaria vectors has been demonstrated under semi field environment in Tanzania. However, the information on how best communities should be engaged for its routine and large-scale adoption are lacking. This study assessed the community's level of knowledge, perceptions, acceptability of the autodissemination of pyriproxyfen, and the perceived risks on the safety of pyriproxyfen on the environment. METHODS This was a concurrent mixed methods study, comprised of a community-based survey of 400 household representatives and eight focus group discussions (FGDs). The study was conducted in two villages in Mlimba district in south-eastern Tanzania between June and August 2022. For the quantitative data analysis, descriptive statistics were applied using R software, while inductive approach was used for qualitative data analysis, using NVivo software. RESULTS Knowledge on autodissemination of pyriproxyfen approach was found to be relatively low among both the FGD respondents and surveyed community members (36%, n = 144). Nevertheless, when it was explained to them, the envisioned community support for the autodissemination approach was relatively high (97%, n = 388). One of the major perceived benefits of the autodissemination of pyriproxyfen was the reduction of malaria-transmitting mosquitoes and associated malaria transmission. Environmental impact of pyriproxyfen on non-target organisms and health risk to children were among the major concerns. When provided with information on the safety and its utilization particularly through autodissemination approach, 93.5% (n = 374) of the survey respondents said that they would allow the PPF-contaminated pots to be placed around their homes. Similarly, FGD respondents were receptive towards the autodissemination of pyriproxyfen, but emphasized on the need for raising awareness among community members before related field trials. CONCLUSION This study indicates a low knowledge but high support for scaling up of the autodissemination of pyriproxyfen as a complementary tool for malaria control in rural Tanzania. The Findings of this study suggest that community sensitization activities are required to improve the community's acceptability and trust of the approach before respective field trials.
Collapse
Affiliation(s)
- Felista S Tarimo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, United Republic of Tanzania.
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, P. O. Box 4447, Tengeru, Arusha, United Republic of Tanzania.
| | - Angel Dillip
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, United Republic of Tanzania
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, P. O. Box 4447, Tengeru, Arusha, United Republic of Tanzania
- Apotheker Health Access Initiative, P. O. Box 70022, Dar es Salaam, United Republic of Tanzania
| | - Efraim M Kosia
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, P. O. Box 4447, Tengeru, Arusha, United Republic of Tanzania
| | - Dickson W Lwetoijera
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, United Republic of Tanzania.
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, P. O. Box 4447, Tengeru, Arusha, United Republic of Tanzania.
| |
Collapse
|
4
|
Matope A, Lees RS, Spiers A, Foster GM. A bioassay method validation framework for laboratory and semi-field tests used to evaluate vector control tools. Malar J 2023; 22:289. [PMID: 37770855 PMCID: PMC10540336 DOI: 10.1186/s12936-023-04717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Vector control interventions play a fundamental role in the control and elimination of vector-borne diseases. The evaluation of vector control products relies on bioassays, laboratory and semi-field tests using live insects to assess the product's effectiveness. Bioassay method development requires a rigorous validation process to ensure that relevant methods are used to capture appropriate entomological endpoints which accurately and precisely describe likely efficacy against disease vectors as well as product characteristics within the manufacturing tolerance ranges for insecticide content specified by the World Health Organization. Currently, there are no standardized guidelines for bioassay method validation in vector control. This report presents a framework for bioassay validation that draws on accepted validation processes from the chemical and healthcare fields and which can be applied for evaluating bioassays and semi-field tests in vector control. The validation process has been categorized into four stages: preliminary development; feasibility experiments; internal validation, and external validation. A properly validated method combined with an appropriate experimental design and data analyses that account for both the variability of the method and the product is needed to generate reliable estimates of product efficacy to ensure that at-risk communities have timely access to safe and reliable vector control products.
Collapse
Affiliation(s)
- Agnes Matope
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Rosemary S Lees
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Angus Spiers
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Geraldine M Foster
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
5
|
Ngufor C, Fongnikin A, Fagbohoun J, Agbevo A, Syme T, Ahoga J, Accrombessi M, Protopopoff N, Cook J, Churcher TS, Padonou GG, Govoetchan R, Akogbeto M. Evaluating the attrition, fabric integrity and insecticidal durability of two dual active ingredient nets (Interceptor ® G2 and Royal ® Guard): methodology for a prospective study embedded in a cluster randomized controlled trial in Benin. Malar J 2023; 22:276. [PMID: 37716970 PMCID: PMC10504698 DOI: 10.1186/s12936-023-04708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Following the World Health Organization (WHO) endorsement of dual active ingredient (AI) nets, an increased uptake of pyrethroid-chlorfenapyr and pyrethroid-pyriproxyfen nets is expected. Studies evaluating their physical and insecticidal durability are essential for making programmatic and procurement decisions. This paper describes the methodology for a prospective study to evaluate the attrition, fabric integrity, insecticidal durability of Interceptor® G2 (alpha-cypermethrin-chlorfenapyr) and Royal Guard® (alpha-cypermethrin-pyriproxyfen), compared to Interceptor® (alpha-cypermethrin), embedded in a 3-arm cluster randomized controlled trial (cRCT) in the Zou Department of Benin. METHODS Ten clusters randomly selected from each arm of the cRCT will be used for the study. A total of 750 ITNs per type will be followed in 5 study clusters per arm to assess ITN attrition and fabric integrity at 6-, 12-, 24- and 36-months post distribution, using standard WHO procedures. A second cohort of 1800 nets per type will be withdrawn every 6 months from all 10 clusters per arm and assessed for chemical content and biological activity in laboratory bioassays at each time point. Alpha-cypermethrin bioefficacy in Interceptor® and Royal Guard® will be monitored in WHO cone bioassays and tunnel tests using the susceptible Anopheles gambiae Kisumu strain. The bioefficacy of the non-pyrethroid insecticides (chlorfenapyr in Interceptor® G2 and pyriproxyfen in Royal Guard®) will be monitored using the pyrethroid-resistant Anopheles coluzzii Akron strain. Chlorfenapyr activity will be assessed in tunnel tests while pyriproxyfen activity will be assessed in cone bioassays in terms of the reduction in fertility of blood-fed survivors observed by dissecting mosquito ovaries. Nets withdrawn at 12, 24 and 36 months will be tested in experimental hut trials within the cRCT study area against wild free-flying pyrethroid resistant An. gambiae sensu lato to investigate their superiority to Interceptor® and to compare them to ITNs washed 20 times for experimental hut evaluation studies. Mechanistic models will also be used to investigate whether entomological outcomes with each dual ITN type in experimental hut trials can predict their epidemiological performance in the cRCT. CONCLUSION This study will provide information on the durability of two dual AI nets (Interceptor® G2 and Royal Guard®) in Benin and will help identify suitable methods for monitoring the durability of their insecticidal activity under operational conditions. The modelling component will determine the capacity of experimental hut trials to predict the epidemiological performance of dual AI nets across their lifespan.
Collapse
Affiliation(s)
- Corine Ngufor
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin.
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin.
| | - Augustin Fongnikin
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Josias Fagbohoun
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Abel Agbevo
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Thomas Syme
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Juniace Ahoga
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Manfred Accrombessi
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
| | - Natacha Protopopoff
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Jackie Cook
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | | | - Renaud Govoetchan
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Martin Akogbeto
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
| |
Collapse
|
6
|
Soto A, Rowland M, Messenger LA, Kirby M, Mosha FW, Manjurano A, Protopopoff N. Ovary Dissection Is a Sensitive Measure of Sterility in Anopheles gambiae Exposed to the Insect Growth Regulator Pyriproxyfen. INSECTS 2023; 14:552. [PMID: 37367368 PMCID: PMC10299475 DOI: 10.3390/insects14060552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Pyriproxyfen (PPF) is an insect growth regulator used in the co-treatment of long-lasting insecticidal nets for its ability to sterilize female mosquitoes. To evaluate the efficacy of PPF-treated nets on mosquito reproductivity, most studies observe oviposition (egg-laying) rates in the laboratory. This technique has several technical disadvantages. Our study assessed if ovarial dissection could serve as an effective proxy for evaluating sterility in Anopheles gambiae mosquitoes. Blood-fed females were exposed to untreated or PPF-treated nets in cylinder assays and followed over several days to observe oviposition rates or egg development by dissection. For identifying PPF-exposed mosquitoes, both techniques demonstrated high sensitivity (oviposition: 99.1%; dissection: 100.0%), but for identifying non-exposed mosquitoes, specificity was significantly higher in the dissection group (52.5% vs. 18.9%). To assess whether dissection could be applied to nets treated with a pyrethroid or co-treated with a pyrethroid and PPF in tunnel tests, a blinded investigator performed dissections to predict the PPF exposure status across different treatment groups. The exposure status of dissected females was predicted with >90% accuracy. We report that dissection is a sensitive technique to assess sterility in female Anopheles gambiae mosquitoes and can be used as a predictor of PPF exposure.
Collapse
Affiliation(s)
- Alina Soto
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Louisa A. Messenger
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV 89557, USA
| | - Mathew Kirby
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd., Rockville, MD 20852, USA
| | - Franklin W. Mosha
- Pan African Malaria Vector Research Consortium, Kilimanjaro Christian Medical University College, Moshi P.O. Box 2240, Tanzania
| | - Alphaxard Manjurano
- National Institute for Medical Research Tanzania, Mwanza P.O. Box 9653, Tanzania
| | - Natacha Protopopoff
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
7
|
Musdal Y, Ismail A, Sjödin B, Mannervik B. Potent GST Ketosteroid Isomerase Activity Relevant to Ecdysteroidogenesis in the Malaria Vector Anopheles gambiae. Biomolecules 2023; 13:976. [PMID: 37371556 DOI: 10.3390/biom13060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Nobo is a glutathione transferase (GST) crucially contributing to ecdysteroid biosynthesis in insects of the orders Diptera and Lepidoptera. Ecdysone is a vital steroid hormone in insects, which governs larval molting and metamorphosis, and the suppression of its synthesis has potential as a novel approach to insect growth regulation and combatting vectors of disease. In general, GSTs catalyze detoxication, whereas the specific function of Nobo in ecdysteroidogenesis is unknown. We report that Nobo from the malaria-spreading mosquito Anopheles gambiae is a highly efficient ketosteroid isomerase catalyzing double-bond isomerization in the steroids 5-androsten-3,17-dione and 5-pregnen-3,20-dione. These mammalian ketosteroids are unknown in mosquitoes, but the discovered prominent catalytic activity of these compounds suggests that the unknown Nobo substrate in insects has a ketosteroid functionality. Aminoacid residue Asp111 in Nobo is essential for activity with the steroids, but not for conventional GST substrates. Further characterization of Nobo may guide the development of new insecticides to prevent malaria.
Collapse
Affiliation(s)
- Yaman Musdal
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Pediatric Genetics, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Aram Ismail
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Birgitta Sjödin
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Mbwambo SG, Bubun N, Mbuba E, Moore J, Mbina K, Kamande D, Laman M, Mpolya E, Odufuwa OG, Freeman T, Karl S, Moore SJ. Comparison of cone bioassay estimates at two laboratories with different Anopheles mosquitoes for quality assurance of pyrethroid insecticide-treated nets. Malar J 2022; 21:214. [PMID: 35799172 PMCID: PMC9264565 DOI: 10.1186/s12936-022-04217-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background Quality assurance (QA) of insecticide-treated nets (ITNs) delivered to malaria-endemic countries is conducted by measuring physiochemical parameters, but not bioefficacy against malaria mosquitoes. This study explored utility of cone bioassays for pre-delivery QA of pyrethroid ITNs to test the assumption that cone bioassays are consistent across locations, mosquito strains, and laboratories. Methods Double-blinded bioassays were conducted on twenty unused pyrethroid ITNs of 4 brands (100 nets, 5 subsamples per net) that had been delivered for mass distribution in Papua New Guinea (PNG) having passed predelivery inspections. Cone bioassays were performed on the same net pieces following World Health Organization (WHO) guidelines at the PNG Institute of Medical Research (PNGIMR) using pyrethroid susceptible Anopheles farauti sensu stricto (s.s.) and at Ifakara Health Institute (IHI), Tanzania using pyrethroid susceptible Anopheles gambiae s.s. Additionally, WHO tunnel tests were conducted at IHI on ITNs that did not meet cone bioefficacy thresholds. Results from IHI and PNGIMR were compared using Spearman’s Rank correlation, Bland–Altman (BA) analysis and analysis of agreement. Literature review on the use of cone bioassays for unused pyrethroid ITNs testing was conducted. Results In cone bioassays, 13/20 nets (65%) at IHI and 8/20 (40%) at PNGIMR met WHO bioefficacy criteria. All nets met WHO bioefficacy criteria on combined cone/tunnel tests at IHI. Results from IHI and PNGIMR correlated on 60-min knockdown (KD60) (rs = 0.6,p = 0.002,n = 20) and 24-h mortality (M24) (rs = 0.9,p < 0.0001,n = 20) but BA showed systematic bias between the results. Of the 5 nets with discrepant result between IHI and PNGIMR, three had confidence intervals overlapping the 80% mortality threshold, with averages within 1–3% of the threshold. Including these as a pass, the agreement between the results to predict ITN failure was good with kappa = 0.79 (0.53–1.00) and 90% accuracy. Conclusions Based on these study findings, the WHO cone bioassay is a reproducible bioassay for ITNs with > 80% M24, and for all ITNs provided inherent stochastic variation and systematic bias are accounted for. The literature review confirms that WHO cone bioassay bioefficacy criteria have been previously achieved by all pyrethroid ITNs (unwashed), without the need for additional tunnel tests. The 80% M24 threshold remains the most reliable indicator of pyrethroid ITN quality using pyrethroid susceptible mosquitoes. In the absence of alternative tests, cone bioassays could be used as part of pre-delivery QA.
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04217-3.
Collapse
Affiliation(s)
- Stephen G Mbwambo
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania. .,Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania. .,Sokoine RRH, Ministry of Health, Lindi, Tanzania. .,Regional Health Management Team, P.O Box 1011, Lindi, Tanzania.
| | - Nakei Bubun
- Vector Borne Disease Unit, PNG Institute of Medical Research, Madang Province 511, P.O Box 378, Madang, Papua New Guinea
| | - Emmanuel Mbuba
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,University of Basel, Basel, Switzerland.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland
| | - Jason Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland
| | - Kasiani Mbina
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Dismas Kamande
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania
| | - Moses Laman
- Vector Borne Disease Unit, PNG Institute of Medical Research, Madang Province 511, P.O Box 378, Madang, Papua New Guinea
| | - Emmanuel Mpolya
- Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,University of Basel, Basel, Switzerland.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland.,MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Tim Freeman
- Rotarian Against Malaria, P.O Box 3686, Boroko, NCD 111, Papua New Guinea
| | - Stephan Karl
- Vector Borne Disease Unit, PNG Institute of Medical Research, Madang Province 511, P.O Box 378, Madang, Papua New Guinea.,Australian Institute of Tropical Health and Medicine, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD, 4870, Australia
| | - Sarah J Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania.,University of Basel, Basel, Switzerland.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland
| |
Collapse
|
9
|
Gansané A, Candrinho B, Mbituyumuremyi A, Uhomoibhi P, NFalé S, Mohammed AB, Guelbeogo WM, Sanou A, Kangoye D, Debe S, Kagone M, Hakizimana E, Uwimana A, Tuyishime A, Ingabire CM, Singirankabo JH, Koenker H, Marrenjo D, Abilio AP, Salvador C, Savaio B, Okoko OO, Maikore I, Obi E, Awolola ST, Adeogun A, Babarinde D, Ali O, Guglielmo F, Yukich J, Scates S, Sherrard-Smith E, Churcher T, Fornadel C, Shannon J, Kawakyu N, Beylerian E, Digre P, Tynuv K, Gogue C, Mwesigwa J, Wagman J, Adeleke M, Adeolu AT, Robertson M. Design and methods for a quasi-experimental pilot study to evaluate the impact of dual active ingredient insecticide-treated nets on malaria burden in five regions in sub-Saharan Africa. Malar J 2022; 21:19. [PMID: 35012559 PMCID: PMC8744060 DOI: 10.1186/s12936-021-04026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Vector control tools have contributed significantly to a reduction in malaria burden since 2000, primarily through insecticidal-treated bed nets (ITNs) and indoor residual spraying. In the face of increasing insecticide resistance in key malaria vector species, global progress in malaria control has stalled. Innovative tools, such as dual active ingredient (dual-AI) ITNs that are effective at killing insecticide-resistant mosquitoes have recently been introduced. However, large-scale uptake has been slow for several reasons, including higher costs and limited evidence on their incremental effectiveness and cost-effectiveness. The present report describes the design of several observational studies aimed to determine the effectiveness and cost-effectiveness of dual-AI ITNs, compared to standard pyrethroid-only ITNs, at reducing malaria transmission across a variety of transmission settings. METHODS Observational pilot studies are ongoing in Burkina Faso, Mozambique, Nigeria, and Rwanda, leveraging dual-AI ITN rollouts nested within the 2019 and 2020 mass distribution campaigns in each country. Enhanced surveillance occurring in select study districts include annual cross-sectional surveys during peak transmission seasons, monthly entomological surveillance, passive case detection using routine health facility surveillance systems, and studies on human behaviour and ITN use patterns. Data will compare changes in malaria transmission and disease burden in districts receiving dual-AI ITNs to similar districts receiving standard pyrethroid-only ITNs over three years. The costs of net distribution will be calculated using the provider perspective including financial and economic costs, and a cost-effectiveness analysis will assess incremental cost-effectiveness ratios for Interceptor® G2, Royal Guard®, and piperonyl butoxide ITNs in comparison to standard pyrethroid-only ITNs, based on incidence rate ratios calculated from routine data. CONCLUSIONS Evidence of the effectiveness and cost-effectiveness of the dual-AI ITNs from these pilot studies will complement evidence from two contemporary cluster randomized control trials, one in Benin and one in Tanzania, to provide key information to malaria control programmes, policymakers, and donors to help guide decision-making and planning for local malaria control and elimination strategies. Understanding the breadth of contexts where these dual-AI ITNs are most effective and collecting robust information on factors influencing comparative effectiveness could improve uptake and availability and help maximize their impact.
Collapse
Affiliation(s)
- Adama Gansané
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Baltazar Candrinho
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | | | - Perpetua Uhomoibhi
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | - Sagnon NFalé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Audu Bala Mohammed
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | | | - Antoine Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - David Kangoye
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Siaka Debe
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Moubassira Kagone
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Aline Uwimana
- Rwanda Biomedical Centre, Ministry of Health, Kigali, Rwanda
| | | | | | | | | | | | | | | | | | - Okefu Oyale Okoko
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | - Ibrahim Maikore
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | - Emmanuel Obi
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | | | | | | | - Onoja Ali
- Ibolda Health International, Abuja, Nigeria
| | | | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Sara Scates
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Thomas Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fowler MT, Lees RS, Fagbohoun J, Matowo NS, Ngufor C, Protopopoff N, Spiers A. The Automatic Classification of Pyriproxyfen-Affected Mosquito Ovaries. INSECTS 2021; 12:1134. [PMID: 34940222 PMCID: PMC8703609 DOI: 10.3390/insects12121134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
Pyriproxyfen (PPF) may become an alternative insecticide for areas where pyrethroid-resistant vectors are prevalent. The efficacy of PPF can be assessed through the dissection and assessment of vector ovaries. However, this reliance on expertise is subject to limitations. We show here that these limitations can be overcome using a convolutional neural network (CNN) to automate the classification of egg development and thus fertility status. Using TensorFlow, a resnet-50 CNN was pretrained with the ImageNet dataset. This CNN architecture was then retrained using a novel dataset of 524 dissected ovary images from An. gambiae s.l. An. gambiae Akron, and An. funestus s.l., whose fertility status and PPF exposure were known. Data augmentation increased the training set to 6973 images. A test set of 157 images was used to measure accuracy. This CNN model achieved an accuracy score of 94%, and application took a mean time of 38.5 s. Such a CNN can achieve an acceptable level of precision in a quick, robust format and can be distributed in a practical, accessible, and free manner. Furthermore, this approach is useful for measuring the efficacy and durability of PPF treated bednets, and it is applicable to any PPF-treated tool or similarly acting insecticide.
Collapse
Affiliation(s)
- Mark T. Fowler
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.S.L.); (A.S.)
| | - Rosemary S. Lees
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.S.L.); (A.S.)
| | - Josias Fagbohoun
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou BP 2604, Benin;
| | - Nancy S. Matowo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK; (N.S.M.); (C.N.); (N.P.)
- Mwanza Medical Research Centre, Department of Parasitology, National Institute for Medical Research, Mwanza P.O. Box 1462, Tanzania
| | - Corine Ngufor
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK; (N.S.M.); (C.N.); (N.P.)
| | - Natacha Protopopoff
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK; (N.S.M.); (C.N.); (N.P.)
| | - Angus Spiers
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.S.L.); (A.S.)
| |
Collapse
|
11
|
Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci U S A 2021; 118:2109381118. [PMID: 34697248 DOI: 10.1073/pnas.2109381118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Methyl farnesoate (MF) plays hormonal regulatory roles in crustaceans. An epoxidated form of MF, known as juvenile hormone (JH), controls metamorphosis and stimulates reproduction in insects. To address the evolutionary significance of MF epoxidation, we generated mosquitoes completely lacking either of the two enzymes that catalyze the last steps of MF/JH biosynthesis and epoxidation, respectively: the JH acid methyltransferase (JHAMT) and the P450 epoxidase CYP15 (EPOX). jhamt -/- larvae lacking both MF and JH died at the onset of metamorphosis. Strikingly, epox -/- mutants, which synthesized MF but no JH, completed the entire life cycle. While epox -/- adults were fertile, the reproductive performance of both sexes was dramatically reduced. Our results suggest that although MF can substitute for the absence of JH in mosquitoes, it is with a significant fitness cost. We propose that MF can fulfill most roles of JH, but its epoxidation to JH was a key innovation providing insects with a reproductive advantage.
Collapse
|