1
|
Burnett SM, Davis KM, Assefa G, Gogue C, Hinneh LD, Littrell M, Mwesigwa J, Okoko OO, Rabeherisoa S, Sillah-Kanu M, Sheahan W, Slater HC, Uhomoibhi P, Yamba F, Ambrose K, Stillman K. Process and Methodological Considerations for Observational Analyses of Vector Control Interventions in Sub-Saharan Africa Using Routine Malaria Data. Am J Trop Med Hyg 2025; 112:17-34. [PMID: 37604476 PMCID: PMC11720682 DOI: 10.4269/ajtmh.22-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/21/2023] [Indexed: 08/23/2023] Open
Abstract
Progress in malaria control has stalled in recent years. With growing resistance to existing malaria vector control insecticides and the introduction of new vector control products, national malaria control programs (NMCPs) increasingly need to make data-driven, subnational decisions to inform vector control deployment. As NMCPs are increasingly conducting subnational stratification of malaria control interventions, including malaria vector control, country-specific frameworks and platforms are increasingly needed to guide data use for vector control deployment. Integration of routine health systems data, entomological data, and vector control program data in observational longitudinal analyses offers an opportunity for NMCPs and research institutions to conduct evaluations of existing and novel vector control interventions. Drawing on the experience of implementing 22 vector control evaluations across 14 countries in sub-Saharan Africa, as well as published and gray literature on vector control impact evaluations using routine health information system data, this article provides practical guidance on the design of these evaluations, makes recommendations for key variables and data sources, and proposes methods to address challenges in data quality. Key recommendations include appropriate parameterization of impact and coverage indicators, incorporating explanatory covariates and contextual factors from multiple sources (including rapid diagnostic testing stockouts; insecticide susceptibility; vector density measures; vector control coverage, use, and durability; climate and other malaria and non-malaria health programs), and assessing data quality before the evaluation through either on-the-ground or remote data quality assessments. These recommendations may increase the frequency, rigor, and utilization of routine data sources to inform national program decision-making for vector control.
Collapse
Affiliation(s)
- Sarah M. Burnett
- U.S. President’s Malaria Initiative (PMI) VectorLink Project, PATH, Washington, District of Columbia
| | - Kelly M. Davis
- U.S. President’s Malaria Initiative (PMI) VectorLink Project, PATH, Washington, District of Columbia
| | - Gudissa Assefa
- National Malaria Elimination Programme, Addis Ababa, Ethiopia
| | | | | | | | | | | | - Saraha Rabeherisoa
- Programme National de Lutte Contre le Paludisme, Antananarivo, Madagascar
| | | | | | | | | | | | - Kelley Ambrose
- President’s Malaria Initiative (PMI) VectorLink Project, Abt Associates, Rockville, Maryland
| | - Kathryn Stillman
- President’s Malaria Initiative (PMI) VectorLink Project, Abt Associates, Rockville, Maryland
| |
Collapse
|
2
|
Davis KM, Okoko OO, Oduola AO, Inyama PU, Uneke CJ, Ambrose K, Seyoum A, Uhomoibhi P, Rhoda DA, Clary CB, Millar J, Littrell M, Rogers JH, Yoshimizu M, Inyang U, Maire M, Burnett SM. An observational analysis of the impact of deltamethrin + piperonyl butoxide insecticide-treated nets on malaria case incidence and entomological indicators in Ebonyi State, Nigeria, 2017-2021. Malar J 2024; 23:317. [PMID: 39427181 PMCID: PMC11491013 DOI: 10.1186/s12936-024-05137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Intense pyrethroid resistance threatens the effectiveness of the primary vector control intervention, insecticide-treated nets (ITNs), in Nigeria, the country with the largest malaria burden globally. In this study, the epidemiological and entomological impact of a new type of ITN (piperonyl-butoxide [PBO] ITNs) distributed in Ebonyi State were evaluated. The epidemiological impact was also compared to the impact of standard pyrethroid-only ITNs in Cross River State. METHODS A controlled interrupted time series analysis was conducted on monthly malaria incidence data collected at the health facility level, using a multilevel mixed-effects negative binomial model. Data were analysed two years before and after the PBO ITN campaign in Ebonyi State (December 2017 to November 2021). A pre-post analysis, with no comparison group, was used to assess the impact of PBO ITNs on human biting rates and indoor resting density in Ebonyi during the high transmission season immediately before and after the PBO ITN campaign. RESULTS In Ebonyi, PBO ITNs were associated with a 46.7% decrease (95%CI: -51.5, -40.8%; p < 0.001) in malaria case incidence in the 2 years after the PBO ITN distribution compared to a modelled scenario of no ITNs distributed, with a significant decrease from 269.6 predicted cases per 1000 population to 143.6. In Cross River, there was a significant 28.6% increase (95%CI: -10.4, 49.1%; p < 0.001) in malaria case incidence following the standard ITN distribution, with an increase from 71.2 predicted cases per 1000 population to 91.6. In Ebonyi, the human biting rate was 72% lower (IRR: 0.28; 95%CI 0.21, 0.39; p < 0.001) and indoor resting density was 73% lower (IRR: 0.27; 95%CI 0.21, 0.35; p < 0.001) after the PBO ITNs were distributed. CONCLUSIONS The epidemiological and entomological impact of the PBO ITNs underscore the impact of these ITNs in areas with confirmed pyrethroid resistance. These findings contribute to ongoing research on the impact of new types of ITNs in Nigeria, providing critical evidence for the Nigeria National Malaria Elimination Programme and other countries for future ITN procurement decisions as part of mass ITN campaign planning and malaria programming.
Collapse
Affiliation(s)
- Kelly M Davis
- PMI VectorLink Project, PATH, 455 Massachusetts Ave NW, Suite 1000, Washington, DC, 20001, USA.
| | - Okefu O Okoko
- National Malaria Elimination Programme, Abuja, Nigeria
| | | | | | - Chigozi J Uneke
- Department of Medical Microbiology/Parasitology, Faculty of Basic Clinical Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Aklilu Seyoum
- Abt Global, PMI VectorLink Project, Rockville, MD, USA
| | | | | | | | | | | | - John H Rogers
- U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Abuja, Nigeria
| | - Melissa Yoshimizu
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Uwem Inyang
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Monrovia, Liberia
| | - Mark Maire
- U.S. President's Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Monrovia, Liberia
| | - Sarah M Burnett
- PMI VectorLink Project, PATH, 455 Massachusetts Ave NW, Suite 1000, Washington, DC, 20001, USA
| |
Collapse
|
3
|
Zupko RJ, Nguyen TD, Ngabonziza JCS, Kabera M, Li H, Tran TNA, Tran KT, Uwimana A, Boni MF. Modeling policy interventions for slowing the spread of artemisinin-resistant pfkelch R561H mutations in Rwanda. Nat Med 2023; 29:2775-2784. [PMID: 37735560 PMCID: PMC10667088 DOI: 10.1038/s41591-023-02551-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/18/2023] [Indexed: 09/23/2023]
Abstract
Artemisinin combination therapies (ACTs) are highly effective at treating uncomplicated Plasmodium falciparum malaria, but the emergence of the new pfkelch13 R561H mutation in Rwanda, associated with delayed parasite clearance, suggests that interventions are needed to slow its spread. Using a Rwanda-specific spatial calibration of an individual-based malaria model, we evaluate 26 strategies aimed at minimizing treatment failures and delaying the spread of R561H after 3, 5 and 10 years. Lengthening ACT courses and deploying multiple first-line therapies (MFTs) reduced treatment failures after 5 years when compared to the current approach of a 3-d course of artemether-lumefantrine. The best among these options (an MFT policy) resulted in median treatment failure counts that were 49% lower and a median R561H allele frequency that was 0.15 lower than under baseline. New approaches to resistance management, such as triple ACTs or sequential courses of two different ACTs, were projected to have a larger impact than longer ACT courses or MFT; these were associated with median treatment failure counts in 5 years that were 81-92% lower than the current approach. A policy response to currently circulating artemisinin-resistant genotypes in Africa is urgently needed to prevent a population-wide rise in treatment failures.
Collapse
Affiliation(s)
- Robert J Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - J Claude S Ngabonziza
- Research, Innovation and Data Science Division, Rwanda Biomedical Center (RBC), Kigali, Rwanda
- Department of Clinical Biology, University of Rwanda, Kigali, Rwanda
| | - Michee Kabera
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | - Haojun Li
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Kien Trung Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
- Louvain Drug Research Institute, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Tarama CW, Soré H, Siribié M, Débé S, Kinda R, Ganou A, Nonkani WG, Tiendrebeogo F, Bantango W, Yira K, Sagnon A, Ilboudo S, Hien EY, Guelbéogo MW, Sagnon NF, Traoré Y, Ménard D, Gansané A. Plasmodium falciparum drug resistance-associated mutations in isolates from children living in endemic areas of Burkina Faso. Malar J 2023; 22:213. [PMID: 37474966 PMCID: PMC10360335 DOI: 10.1186/s12936-023-04645-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Artemisinin-based combinations therapy (ACT) is the current frontline curative therapy for uncomplicated malaria in Burkina Faso. Sulfadoxine-pyrimethamine (SP) is used for the preventive treatment of pregnant women (IPTp), while SP plus amodiaquine (SP-AQ) is recommended for children under five in seasonal malaria chemoprevention (SMC). This study aimed to assess the proportions of mutations in the P. falciparum multidrug-resistance 1 (Pfmdr1), P. falciparum chloroquine resistance transporter (Pfcrt), P. falciparum dihydrofolate reductase (pfdhfr), and P. falciparum dihydropteroate synthase (pfdhps), genes from isolates collected during household surveys in Burkina Faso. METHODS Dried blood spots from Plasmodium falciparum-positive cases at three sites (Orodara, Gaoua, and Banfora) collected during the peak of transmission were analysed for mutations in Pfcrt (codons 72-76, 93, 97, 145, 218, 343, 350 and 353), Pfmdr-1 (codons 86, 184, 1034, 1042 and 1246) dhfr (codons 51, 59, 108, 164) and dhps (at codons 431, 436, 437, 540, 581, 613) genes using deep sequencing of multiplexed Polymerase chaine reaction (PCR) amplicons. RESULTS Of the 377 samples analysed, 346 (91.7%), 369 (97.9%), 368 (97.6%), and 374 (99.2%) were successfully sequenced for Pfcrt, Pfmdr-1, dhfr, and dhps, respectively. Most of the samples had a Pfcrt wild-type allele (89.3%). The 76T mutation was below 10%. The most frequent Pfmdr-1 mutation was detected at codon 184 (Y > F, 30.9%). The single mutant genotype (NFSND) predominated (66.7%), followed by the wild-type genotype (NYSND, 30.4%). The highest dhfr mutations were observed at codon 59R (69.8%), followed by codons 51I (66.6%) and 108 N (14.7%). The double mutant genotype (ACIRSI) predominated (52.4%). For mutation in the dhps gene, the highest frequency was observed at codon 437 K (89.3%), followed by codons 436 A (61.2%), and 613 S (14.4%). The double mutant genotype (IAKKAA) and the single mutant genotype (ISKKAA) were predominant (37.7% and 37.2%, respectively). The most frequent dhfr/dhps haplotypes were the triple mutant ACIRSI/IAKKAA (23%), the wild-type ACNCSI/ISKKAA (19%) and the double mutant ACIRSI/ISKKAA (14%). A septuple mutant ACIRNI/VAKKGA was observed in 2 isolates from Gaoua (0.5%). CONCLUSION The efficacy of ACT partner drugs and drugs used in IPTp and SMC does not appear to be affected by the low proportion of highly resistant mutants observed in this study. Continued monitoring, including molecular surveillance, is critical for decision-making on effective treatment policy in Burkina Faso.
Collapse
Affiliation(s)
| | - Harouna Soré
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Mafama Siribié
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Siaka Débé
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Réné Kinda
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Adama Ganou
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Wendyam Gérard Nonkani
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Farida Tiendrebeogo
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Winnie Bantango
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Kassoum Yira
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Aladari Sagnon
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Sonia Ilboudo
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | | | | | - NFale Sagnon
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso
| | - Yves Traoré
- Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Didier Ménard
- Malaria Genetic and Resistance Unit, Institut Pasteur, Université Paris Cité, INSERM U1201, 75015, Paris, France
- Malaria Parasite Biology and Vaccines, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- Institute of Parasitology and Tropical Diseases, Université de Strasbourg, UR7292 Dynamics of Host-Pathogen Interactions, 67000, Strasbourg, France
- Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, 67000, Strasbourg, France
| | - Adama Gansané
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso.
| |
Collapse
|
5
|
Gutman JR, Mwesigwa JN, Arnett K, Kangale C, Aaron S, Babarinde D, Buekens J, Candrinho B, Debe S, Digre P, Drake M, Gansané A, Gogue C, Griffith KS, Hicks J, Kinda R, Koenker H, Lemwayi R, Munsey A, Obi E, Ogouyèmi-Hounto A, Okoko OO, Onikpo F, Onoja A, Porter T, Savaio B, Tynuv K, Uhomoibhi P, Wagman J, Wolf K, Zulliger R, Walker P, Miller JM, Robertson M. Using antenatal care as a platform for malaria surveillance data collection: study protocol. Malar J 2023; 22:99. [PMID: 36932384 PMCID: PMC10022568 DOI: 10.1186/s12936-023-04521-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND While many malaria-endemic countries have health management information systems that can measure and report malaria trends in a timely manner, these routine systems have limitations. Periodic community cross-sectional household surveys are used to estimate malaria prevalence and intervention coverage but lack geographic granularity and are resource intensive. Incorporating malaria testing for all women at their first antenatal care (ANC) visit (i.e., ANC1) could provide a more timely and granular source of data for monitoring trends in malaria burden and intervention coverage. This article describes a protocol designed to assess if ANC-based surveillance could be a pragmatic tool to monitor malaria. METHODS This is an observational, cross-sectional study conducted in Benin, Burkina Faso, Mozambique, Nigeria, Tanzania, and Zambia. Pregnant women attending ANC1 in selected health facilities will be tested for malaria infection by rapid diagnostic test and administered a brief questionnaire to capture key indicators of malaria control intervention coverage and care-seeking behaviour. In each location, contemporaneous cross-sectional household surveys will be leveraged to assess correlations between estimates obtained using each method, and the use of ANC data as a tool to track trends in malaria burden and intervention coverage will be validated. RESULTS This study will assess malaria prevalence at ANC1 aggregated at health facility and district levels, and by gravidity relative to current pregnancy (i.e., gravida 1, gravida 2, and gravida 3 +). ANC1 malaria prevalence will be presented as monthly trends. Additionally, correlation between ANC1 and household survey-derived estimates of malaria prevalence, bed net ownership and use, and care-seeking will be assessed. CONCLUSION ANC1-based surveillance has the potential to provide a cost-effective, localized measure of malaria prevalence that is representative of the general population and useful for tracking monthly changes in parasite prevalence, as well as providing population-representative estimates of intervention coverage and care-seeking behavior. This study will evaluate the representativeness of these measures and collect information on operational feasibility, usefulness for programmatic decision-making, and potential for scale-up of malaria ANC1 surveillance.
Collapse
Affiliation(s)
- Julie R Gutman
- Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | - Siaka Debe
- Centre National de Recherche Et de Formation Sur Le Paludisme, Ouagadougou, Burkina Faso
| | | | | | - Adama Gansané
- Centre National de Recherche Et de Formation Sur Le Paludisme, Ouagadougou, Burkina Faso
| | | | - Kevin S Griffith
- US President's Malaria Initiative, US Agency for International Development, Washington, DC, USA
| | | | - Réné Kinda
- Centre National de Recherche Et de Formation Sur Le Paludisme, Ouagadougou, Burkina Faso
| | | | | | - Anna Munsey
- Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emmanuel Obi
- National Malaria Elimination Program, Abuja, Nigeria
| | | | | | | | - Ali Onoja
- Ibolda Health International Ltd, Abuja, Nigeria
| | | | | | | | | | | | | | - Rose Zulliger
- US President's Malaria Initiative, US Agency for International Development, Washington, DC, USA
| | | | | | - Molly Robertson
- The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland
| |
Collapse
|
6
|
Hawadak J, Kojom Foko LP, Pande V, Singh V. In vitro antiplasmodial activity, hemocompatibility and temporal stability of Azadirachta indica silver nanoparticles. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:286-300. [DOI: 10.1080/21691401.2022.2126979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joseph Hawadak
- Parasite Host Biology Group, Cell Biology and Malaria Parasite Bank, ICMR-National Institute of Malaria Research (NIMR), New Delhi, India
- Department of Biotechnology, Kumaun University, Bhimtal, India
| | - Loick Pradel Kojom Foko
- Parasite Host Biology Group, Cell Biology and Malaria Parasite Bank, ICMR-National Institute of Malaria Research (NIMR), New Delhi, India
- Department of Biotechnology, Kumaun University, Bhimtal, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, India
| | - Vineeta Singh
- Parasite Host Biology Group, Cell Biology and Malaria Parasite Bank, ICMR-National Institute of Malaria Research (NIMR), New Delhi, India
| |
Collapse
|
7
|
Omitting age-dependent mosquito mortality in malaria models underestimates the effectiveness of insecticide-treated nets. PLoS Comput Biol 2022; 18:e1009540. [PMID: 36121847 PMCID: PMC9522293 DOI: 10.1371/journal.pcbi.1009540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/29/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Mathematical models of vector-borne infections, including malaria, often assume age-independent mortality rates of vectors, despite evidence that many insects senesce. In this study we present survival data on insecticide-resistant Anopheles gambiae s.l. from experiments in Côte d’Ivoire. We fit a constant mortality function and two age-dependent functions (logistic and Gompertz) to the data from mosquitoes exposed (treated) and not exposed (control) to insecticide-treated nets (ITNs), to establish biologically realistic survival functions. This enables us to explore the effects of insecticide exposure on mosquito mortality rates, and the extent to which insecticide resistance might impact the effectiveness of ITNs. We investigate this by calculating the expected number of infectious bites a mosquito will take in its lifetime, and by extension the vectorial capacity. Our results show that the predicted vectorial capacity is substantially lower in mosquitoes exposed to ITNs, despite the mosquitoes in the experiment being highly insecticide-resistant. The more realistic age-dependent functions provide a better fit to the experimental data compared to a constant mortality function and, hence, influence the predicted impact of ITNs on malaria transmission potential. In models with age-independent mortality, there is a great reduction for the vectorial capacity under exposure compared to no exposure. However, the two age-dependent functions predicted an even larger reduction due to exposure, highlighting the impact of incorporating age in the mortality rates. These results further show that multiple exposures to ITNs had a considerable effect on the vectorial capacity. Overall, the study highlights the importance of including age dependency in mathematical models of vector-borne disease transmission and in fully understanding the impact of interventions. Interventions against malaria are most commonly targeted on the adult mosquitoes, which transmit the infection from person to person. One of the most important interventions are bed-nets, treated with insecticides. Unfortunately, extensive exposure of mosquitoes to insecticide has led to widespread evolution of insecticide resistance, which might threaten control strategies. Piecing together the overall impact of resistance on the efficacy of insecticide-treated nets is complex, but can be informed by the use of mathematical models. However, there are some assumptions that the models frequently use which are not realistic in terms of the mosquito biology. In this paper, we formulate a model that includes age-dependent mortality rates, an important parameter in vector control since control strategies most commonly aim to reduce the lifespan of the mosquitoes. By using novel data collected using field-derived insecticide-resistant mosquitoes, we explore the effects that the presence of insecticides on nets have on the mortality rates, as well as the difference incorporating age dependency in the model has on the results. We find that including age-dependent mortality greatly alters the anticipated effects of insecticide-treated nets on mosquito transmission potential, and that ignoring this realism potentially overestimates the negative impact of insecticide resistance.
Collapse
|
8
|
Sympatric Populations of the Anopheles gambiae Complex in Southwest Burkina Faso Evolve Multiple Diverse Resistance Mechanisms in Response to Intense Selection Pressure with Pyrethroids. INSECTS 2022; 13:insects13030247. [PMID: 35323544 PMCID: PMC8955173 DOI: 10.3390/insects13030247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Targeting mosquitoes with insecticides is one of the most effective methods to prevent malaria transmission. Although numbers of malaria cases have declined substantially this century, this pattern is not universal and Burkina Faso has one of the highest burdens of malaria; it is also a hotspot for the evolution of insecticide resistance in malaria vectors. We have established laboratory colonies from multiple species within the An. gambiae complex, the most efficient group of malaria vectors in the world, from larval collections in southwest Burkina Faso. Using bioassays with different insecticides widely used to control public health pests, we provide a profile of insecticide resistance in each of these colonies and, using molecular tools, reveal the genetic changes underpinning this resistance. We show that, whilst many resistance mechanisms are shared between species, there are some important differences which may affect resistance to current and future insecticide classes. The complexity, and diversity of resistance mechanisms highlights the importance of screening any potential new insecticide intended for use in malaria control against a wide range of populations. These stable laboratory colonies provide a valuable resource for insecticide discovery, and for further studies on the evolution and dispersal of insecticide resistance within and between species. Abstract Pyrethroid resistance in the Anopheles vectors of malaria is driving an urgent search for new insecticides that can be used in proven vector control tools such as insecticide treated nets (ITNs). Screening for potential new insecticides requires access to stable colonies of the predominant vector species that contain the major pyrethroid resistance mechanisms circulating in wild populations. Southwest Burkina Faso is an apparent hotspot for the emergence of pyrethroid resistance in species of the Anopheles gambiae complex. We established stable colonies from larval collections across this region and characterised the resistance phenotype and underpinning genetic mechanisms. Three additional colonies were successfully established (1 An. coluzzii, 1 An. gambiae and 1 An. arabiensis) to add to the 2 An. coluzzii colonies already established from this region; all 5 strains are highly resistant to pyrethroids. Synergism assays found that piperonyl butoxide (PBO) exposure was unable to fully restore susceptibility although exposure to a commercial ITN containing PBO resulted in 100% mortality. All colonies contained resistant alleles of the voltage gated sodium channel but with differing proportions of alternative resistant haplotypes. RNAseq data confirmed the role of P450s, with CYP6P3 and CYP6Z2 elevated in all 5 strains, and identified many other resistance mechanisms, some found across strains, others unique to a particular species. These strains represent an important resource for insecticide discovery and provide further insights into the complex genetic changes driving pyrethroid resistance.
Collapse
|