1
|
Molla E, Dugassa S, Alemayehu L, Ejigu LA, Deressa JD, Demisse M, Abdo M, Wolde Behaksra S, Keffale M, Tadesse FG, Gadisa E, Mamo H. Seasonal Dynamics of Symptomatic and Asymptomatic Plasmodium falciparum and Plasmodium vivax Infections in Coendemic Low-Transmission Settings, South Ethiopia. Am J Trop Med Hyg 2024; 111:481-489. [PMID: 38955195 PMCID: PMC11376164 DOI: 10.4269/ajtmh.24-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/24/2024] [Indexed: 07/04/2024] Open
Abstract
Ethiopia has a plan to eliminate malaria in selected low-transmission districts by 2025. However, complex factors such as seasonality, focal heterogeneity, and coendemicity of Plasmodium vivax and Plasmodium falciparum, and asymptomatic cases, along with other factors, pose challenges. This longitudinal study assessed these dynamics and associated factors in three elimination-targeted settings in southern Ethiopia. The study included rural districts (Wonago and Yirgacheffe) and an urban setting (Dilla town) with 504 participants from 168 households per season. The study covered the peak and minor malaria transmission seasons and the dry season. Finger-prick blood was collected for microscopy, rapid diagnostic tests, and 18S-rRNA-based quantitative polymerase chain reaction (qPCR). During the dry season, P. vivax accounted for most infections (64.5%, 71/110) and symptomatic malaria (50.9%, 29/57), whereas P. falciparum dominated during the peak transmission season (45.7%, 42/92 infections and 58.1%, 25/43 of symptomatic cases). Treatment-seeking behavior was low, with 65.3% (143/219) of symptomatic individuals not seeking treatment. Dilla town had significantly higher infection prevalence (29.6%, 149/504, P <0.001) in all seasons compared with the rural sites. The incidence rate was 12/1,000 person-seasons by qPCR and 5/1,000 person-seasons by microscopy. Urban residents, those with low hemoglobin levels, nonuse of mosquito nets, and proximity to stagnant water had a significantly higher risk of infection (P <0.001). Tailored approaches are needed in elimination-targeted areas, focusing on urban settings, Plasmodium species, and strengthening community-level interventions for behavioral change and active case detection.
Collapse
Affiliation(s)
- Eshetu Molla
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Lina Alemayehu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | | | - Melat Abdo
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | | | | | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Sharp PM, Plenderleith LJ, Culleton RL, Hahn BH. Origin of the human malaria parasite Plasmodium vivax. Trends Parasitol 2024; 40:562-572. [PMID: 38806300 DOI: 10.1016/j.pt.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
The geographic origin of Plasmodium vivax, a leading cause of human malaria, has been the subject of much speculation. Here we review the evolutionary history of P. vivax and P. vivax-like parasites in humans and non-human primates on three continents, providing overwhelming evidence for an African origin. This conclusion is consistent with recent reports showing that Duffy-negative humans in Africa are, in fact, susceptible to P. vivax, with parasites invading Duffy-antigen-expressing erythroid precursors. Thus, the African origin of P. vivax not only explains the distribution of the Duffy-negative genotype but also provides new insight into the history and status of P. vivax malaria in Africa and efforts geared toward its eradication.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK; Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | | | - Richard L Culleton
- Division of Parasitology, Proteo-Science Centre, Ehime University, 454 Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Little E, Shenkutie TT, Negash MT, Abagero BR, Abebe A, Popovici J, Feleke SM, Lo E. Prevalence and Characteristics of Plasmodium vivax Gametocytes in Duffy-Positive and Duffy-Negative Populations across Ethiopia. Am J Trop Med Hyg 2024; 110:1091-1099. [PMID: 38626749 PMCID: PMC11154031 DOI: 10.4269/ajtmh.23-0877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 04/18/2024] Open
Abstract
Plasmodium parasites replicate asexually in human hosts. The proportion of infections that carries gametocytes is a proxy for human-to-mosquito transmissibility. It is unclear which proportion of Plasmodium vivax infections in Duffy-negative populations carries gametocytes. We determined the prevalence and characteristics of P. vivax gametocytes in Duffy-positive and -negative populations across broad regions of Ethiopia. Finger-prick blood samples were collected for microscopic and molecular screening of Plasmodium parasites and Duffy status of individuals. Molecular screening of Plasmodium species and Duffy blood group genotyping was done using SYBR green and the Taqman quantitative polymerase chain reaction method. Of the 447 febrile patients who were shown to be P. vivax smear positive, 414 (92.6%) were confirmed by molecular screening as P. vivax and 16 (3.9%) of them were from Duffy-negative individuals. Of these, 5 of 16 (31.3%) Duffy-negative P. vivax-infected samples were detected with gametocytes. Of the 398 Duffy-positive P. vivax-infected samples, 150 (37.7%) were detected with gametocytes, slightly greater than that in Duffy-negative samples. This study highlights the presence of P. vivax gametocytes in Duffy-negative infections, suggestive of human-to-mosquito transmissibility. Although P. vivax infections in Duffy-negative individuals were commonly associated with low parasitemia, some of these infections were shown to have relatively high parasitemia and may represent a prominent erythrocyte invasion capability of P. vivax, and hidden reservoirs that can contribute to transmission. A better understanding of P. vivax transmission biology and gametocyte function particularly in Duffy-negative populations would aid future treatment and management of P. vivax malaria in Africa.
Collapse
Affiliation(s)
- Ebony Little
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina
| | - Tassew T. Shenkutie
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, Pennsylvania
- Department of Medical Laboratory Sciences, Debre Brehan University, Ethiopia
| | | | - Beka R. Abagero
- Department of Molecular and Cellular Biology and Genetics, Drexel University, College of Medicine, Philadelphia, Pennsylvania
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Bradley L, Yewhalaw D, Hemming-Schroeder E, Jeang B, Lee MC, Zemene E, Degefa T, Lo E, King C, Kazura J, Yan G. Epidemiology of Plasmodium vivax in Duffy negatives and Duffy positives from community and health centre collections in Ethiopia. Malar J 2024; 23:76. [PMID: 38486245 PMCID: PMC10941426 DOI: 10.1186/s12936-024-04895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Malaria remains a significant cause of morbidity and mortality in Ethiopia with an estimated 3.8 million cases in 2021 and 61% of the population living in areas at risk of malaria transmission. Throughout the country Plasmodium vivax and Plasmodium falciparum are co-endemic, and Duffy expression is highly heterogeneous. The public health significance of Duffy negativity in relation to P. vivax malaria in Ethiopia, however, remains unclear. This study seeks to explore the prevalence and rates of P. vivax malaria infection across Duffy phenotypes in clinical and community settings. METHODS A total of 9580 and 4667 subjects from community and health facilities from a malaria endemic site and an epidemic-prone site in western Ethiopia were enrolled and examined for P. vivax infection and Duffy expression from February 2018 to April 2021. Association between Duffy expression, P. vivax and P. falciparum infections were examined for samples collected from asymptomatic community volunteers and symptomatic subjects from health centres. RESULTS Infection rate of P. vivax among Duffy positives was 2-22 fold higher than Duffy negatives in asymptomatic volunteers from the community. Parasite positivity rate was 10-50 fold higher in Duffy positives than Duffy negatives among samples collected from febrile patients attending health centres and mixed P. vivax and P. falciparum infections were significantly more common than P. vivax mono infections among Duffy negative individuals. Plasmodium vivax parasitaemia measured by 18sRNA parasite gene copy number was similar between Duffy positives and Duffy negatives. CONCLUSIONS Duffy negativity does not offer complete protection against infection by P. vivax, and cases of P. vivax in Duffy negatives are widespread in Ethiopia, being found in asymptomatic volunteers from communities and in febrile patients from health centres. These findings offer evidence for consideration when developing control and intervention strategies in areas of endemic P. vivax and Duffy heterogeneity.
Collapse
Affiliation(s)
- Lauren Bradley
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, 5195, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Centre, Jimma University, Jimma, Ethiopia
| | - Elizabeth Hemming-Schroeder
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brook Jeang
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Endalew Zemene
- Tropical and Infectious Diseases Research Centre, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher King
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James Kazura
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guiyun Yan
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Alves-Rosa MF, Tayler NM, Dorta D, Coronado LM, Spadafora C. P. falciparum Invasion and Erythrocyte Aging. Cells 2024; 13:334. [PMID: 38391947 PMCID: PMC10887143 DOI: 10.3390/cells13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Plasmodium parasites need to find red blood cells (RBCs) that, on the one hand, expose receptors for the pathogen ligands and, on the other hand, maintain the right geometry to facilitate merozoite attachment and entry into the red blood cell. Both characteristics change with the maturation of erythrocytes. Some Plasmodia prefer younger vs. older erythrocytes. How does the life evolution of the RBC affect the invasion of the parasite? What happens when the RBC ages? In this review, we present what is known up until now.
Collapse
Affiliation(s)
| | | | | | | | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicio de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City 0843-01103, Panama; (M.F.A.-R.); (N.M.T.); (D.D.); (L.M.C.)
| |
Collapse
|
6
|
Bouyssou I, El Hoss S, Doderer-Lang C, Schoenhals M, Rasoloharimanana LT, Vigan-Womas I, Ratsimbasoa A, Abate A, Golassa L, Mabilotte S, Kessler P, Guillotte-Blisnick M, Martinez FJ, Chitnis CE, Strouboulis J, Ménard D. Unveiling P. vivax invasion pathways in Duffy-negative individuals. Cell Host Microbe 2023; 31:2080-2092.e5. [PMID: 38056460 PMCID: PMC10727064 DOI: 10.1016/j.chom.2023.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Vivax malaria has long been thought to be absent from sub-Saharan Africa owing to the high proportion of individuals lacking the Duffy antigen receptor for chemokines (DARC) in their erythrocytes. The interaction between P. vivax Duffy-binding protein (PvDBP) and DARC is assumed to be the main pathway used by merozoites to invade reticulocytes. However, the increasing number of reports of vivax malaria cases in genotypically Duffy-negative (DN) individuals has raised questions regarding the P. vivax invasion pathway(s). Here, we show that a subset of DN erythroblasts transiently express DARC during terminal erythroid differentiation and that P. vivax merozoites, irrespective of their origin, can invade DARC+ DN erythroblasts. These findings reveal that a large number of DN individuals may represent a silent reservoir of deep P. vivax infections at the sites of active erythropoiesis with low or no parasitemia, and it may represent an underestimated biological problem with potential clinical consequences in sub-Saharan Africa.
Collapse
Affiliation(s)
- Isabelle Bouyssou
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, 75015 Paris, France; École Doctorale ED515 "Complexité du Vivant", Sorbonne Université, 75005 Paris, France; Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Sara El Hoss
- Red Cell Haematology Laboratory, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, UK.
| | - Cécile Doderer-Lang
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France
| | - Matthieu Schoenhals
- Immunology of Infectious Diseases, Institut Pasteur of Madagascar, Antananarivo 101, Madagasca
| | | | | | - Arsène Ratsimbasoa
- Faculté de Médecine, Université de Fianarantsoa, Fianarantsoa 301, Madagascar
| | - Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Solenne Mabilotte
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France
| | - Pascal Kessler
- Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | | | - Francisco J Martinez
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - John Strouboulis
- Red Cell Haematology Laboratory, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, UK.
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France; Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
7
|
Little E, Shenkutie TT, Negash MT, Abagero BR, Abebe A, Popovici J, Mekasha S, Lo E. Prevalence and characteristics of Plasmodium vivax Gametocytes in Duffy-positive and Duffy-negative populations across Ethiopia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.10.23299780. [PMID: 38168152 PMCID: PMC10760292 DOI: 10.1101/2023.12.10.23299780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Plasmodium parasites replicate asexually in the human host. The proportion of infections that carries gametocytes is a proxy for human-to-mosquito transmissibility. It is unclear what proportion of P. vivax infections in Duffy-negatives carries gametocytes. This study aims to determine the prevalence of P. vivax in Duffy-negatives across broad regions of Ethiopia and characterize parasite stages. Finger-prick blood samples were collected for microscopic and molecular screening of Plasmodium parasites and Duffy status of individuals. Molecular screening of plasmodium species and Duffy blood group genotyping was done using SYBR green and Taqman qPCR method. Among the total 447 samples, 414 (92.6%) were P. vivax confirmed and, 16 (3.9%) of them were from Duffy-negatives. Of these, 5/16 (31.3%) Duffy-negative P. vivax-infected samples were detected with gametocytes. Of the 398 Duffy-positive P. vivax-infected samples, 150 (37.7%) were detected with gametocytes, slightly higher than that in Duffy-negatives. This study highlights the presence of P. vivax gametocytes in Duffy-negative infections, suggestive of human-to-mosquito transmissibility. Although P. vivax infections in Duffy-negatives are commonly associated with low parasitemia, some of these infections were shown with relatively high parasitemia and may represent better erythrocyte invasion capability of P. vivax and hidden reservoirs that can contribute to transmission. A better understanding of P. vivax transmission biology and gametocyte function particularly in Duffy-negative populations would aid future treatment and management of vivax malaria in Africa.
Collapse
Affiliation(s)
- Ebony Little
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina, USA
| | - Tassew T. Shenkutie
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, USA
- Department of Medical Laboratory Sciences, Debre Brehan University, Debre Brehan, Ethiopia
| | | | - Beka R. Abagero
- Department of Molecular and Cellular Biology and Genetics, Drexel University, College of Medicine, Philadelphia, PA, USA
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Sindew Mekasha
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina, USA
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Kebede AM, Sutanto E, Trimarsanto H, Benavente ED, Barnes M, Pearson RD, Siegel SV, Erko B, Assefa A, Getachew S, Aseffa A, Petros B, Lo E, Mohammed R, Yilma D, Rumaseb A, Nosten F, Noviyanti R, Rayner JC, Kwiatkowski DP, Price RN, Golassa L, Auburn S. Genomic analysis of Plasmodium vivax describes patterns of connectivity and putative drivers of adaptation in Ethiopia. Sci Rep 2023; 13:20788. [PMID: 38012191 PMCID: PMC10682486 DOI: 10.1038/s41598-023-47889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16-75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35-53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission.
Collapse
Affiliation(s)
| | | | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariana Barnes
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | | | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Getachew
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
- Addis Ababa University, Addis Ababa, Ethiopia
- Millipore Sigma (Bioreliance), Rockville, USA
| | - Abraham Aseffa
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
| | | | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | | | - Daniel Yilma
- Jimma University Clinical Trial Unit, Department of Internal Medicine, Jimma University, Jimma, Ethiopia
| | - Angela Rumaseb
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | - Francois Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
Bradley L, Yewhalaw D, Hemming-Schroeder E, Jeang B, Lee MC, Zemene E, Degefa T, Lo E, King C, Kazura J, Yan G. Comparison of Plasmodium Vivax Infections in Duffy Negatives From Community and Health Center Collections in Ethiopia. RESEARCH SQUARE 2023:rs.3.rs-3385916. [PMID: 37886593 PMCID: PMC10602065 DOI: 10.21203/rs.3.rs-3385916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background Malaria remains a significant cause of morbidity and mortality in Ethiopia with an estimated 4.2 million annual cases and 61% of the population living in areas at risk of malaria transmission. Throughout the country Plasmodium vivax and P. falciparum are co-endemic, and Duffy expression is highly heterogeneous. The public health significance of Duffy negativity in relation to P. vivax malaria in Ethiopia, however, remains unclear. Methods A total of 9,580 and 4,667 subjects from community and health facilities from a malaria endemic site and an epidemic-prone site in western Ethiopia were enrolled and examined for P. vivax infection and Duffy expression. Association between Duffy expression, P. vivax and P. falciparum infections were examined for samples collected from asymptomatic community volunteers and symptomatic subjects from health centers. Results Among the community-based cross-sectional samples, infection rate of P. vivax among the Duffy positives was 2-22 fold higher than among the Duffy negatives. Parasite positivity rate was 10-50 fold higher in Duffy positive than Duffy negatives among samples collected from the health center settings and mixed P. vivax and P. falciparum infections were significantly more common than P. vivax mono infections among Duffy negative individuals. P. vivax parasitemia measured by 18sRNA parasite gene copy number was similar between Duffy positives and Duffy negatives. Conclusions Duffy negativity does not offer complete protection against infection by P. vivax, and cases of P. vivax in Duffy negatives are widespread in Ethiopia, being found in asymptomatic volunteers from communities and in febrile patients from health centers. These findings offer evidence for consideration when developing control and intervention strategies in areas of endemic P. vivax and Duffy heterogeneity.
Collapse
|
10
|
Dembele L, Diakite O, Sogore F, Kedir S, Tandina F, Maiga M, Abate A, Golassa L, Djimde AA. Ethiopian Plasmodium vivax hypnozoites formation dynamics and their susceptibility to reference antimalarial drugs. BMC Infect Dis 2023; 23:405. [PMID: 37312065 DOI: 10.1186/s12879-023-08381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
One of the key obstacles to malaria elimination is largely attributed to Plasmodium vivax's ability to form resilient hypnozoites in the host liver that cause relapsing infections. As a result, interruption of P. vivax transmission is difficult. P. vivax transmission occurs in Duffy-positive individuals and have been mainly thought to be absent in Africa. However, increasing studies using molecular tools detected P. vivax among Duffy-negative individuals in various African countries. Studies on the African P. vivax has been severely limited because most of malaria control program focus mainly on falciparum malaria. In addition, there is a scarcity of laboratory infrastructures to overcome the biological obstacles posed by P. vivax. Herein, we established field transmission of Ethiopian P. vivax for routine sporozoite supply followed by liver stage infection in Mali. Furthermore, we evaluated local P. vivax hypnozoites and schizonts susceptibilities to reference antimalarial drugs. The study enabled the assessment of local African P. vivax hypnozoite production dynamics. Our data displayed the ability of the African P. vivax to produce hypnozoite forms ex-vivo at different rates per field isolate. We report that while tafenoquine (1µM) potently inhibited both hypnozoites and schizont forms; atovaquone (0.25µM) and the phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691 (0.5µM) showed no activity against hypnozoites forms. Unlike hypnozoites forms, P. vivax schizont stages were fully susceptible to both atovaquone (0.25µM) and the (PI4K)-specific inhibitor KDU691 (0.5µM). Together, the data revealed the importance of the local platform for further biological investigation and implementation of drug discovery program on the African P. vivax clinical isolates.
Collapse
Affiliation(s)
- Laurent Dembele
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali.
| | - Ousmaila Diakite
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali
| | - Fanta Sogore
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali
| | - Soriya Kedir
- Adama Regional Laboratory, Oromia Region Health Bureau, Adama, Ethiopia
| | - Fatalmoudou Tandina
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali
| | - Mohamed Maiga
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali
| | - Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abdoulaye A Djimde
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali.
| |
Collapse
|
11
|
Abate A, Hassen J, Dembele L, Menard D, Golassa L. Differential transmissibility to Anopheles arabiensis of Plasmodium vivax gametocytes in patients with diverse Duffy blood group genotypes. Malar J 2023; 22:136. [PMID: 37098534 PMCID: PMC10131423 DOI: 10.1186/s12936-023-04570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/21/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Measuring risk of malaria transmission is complex, especially in case of Plasmodium vivax. This may be overcome using membrane feeding assays in the field where P. vivax is endemic. However, mosquito-feeding assays are affected by a number of human, parasite and mosquito factors. Here, this study identified the contributions of Duffy blood group status of P. vivax-infected patients as a risk of parasite transmission to mosquitoes. METHODS A membrane feeding assay was conducted on a total of 44 conveniently recruited P. vivax infected patients in Adama city and its surroundings in East Shewa Zone, Oromia region, Ethiopia from October, 2019 to January, 2021. The assay was performed in Adama City administration. Mosquito infection rates were determined by midgut dissections at seven to 8 days post-infection. Duffy genotyping was defined for each of the 44 P. vivax infected patients. RESULTS The infection rate of Anopheles mosquitoes was 32.6% (296/907) with 77.3% proportion of infectious participants (34/44). Infectiousness of participants to Anopheles mosquitoes appeared to be higher among individuals with homozygous Duffy positive blood group (TCT/TCT) than heterozygous (TCT/CCT), but the difference was not statistically significant. The mean oocyst density was significantly higher among mosquitoes fed on blood of participants with FY*B/FY*BES than other genotypes (P = 0.001). CONCLUSION Duffy antigen polymorphisms appears to contribute to transmissibility difference of P. vivax gametocytes to Anopheles mosquitoes, but further studies are required.
Collapse
Affiliation(s)
- Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Jifar Hassen
- School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Laurent Dembele
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Didier Menard
- Institut Pasteur, Malaria Genetics and Resistance Unit, Université Paris Cité, INSERM U1201, 75015, Paris, France
- Federation of Translational Medicine, Institute of Parasitology and Tropical Diseases, University of Strasbourg, UR7292 Dynamics of Host-Pathogen Interactions, 67000, Strasbourg, France
- Laboratory of Parasitology and Medical Mycology, Strasbourg University Hospital, Strasbourg, France
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Ibrahim A, Manko E, Dombrowski JG, Campos M, Benavente ED, Nolder D, Sutherland CJ, Nosten F, Fernandez D, Vélez-Tobón G, Castaño AT, Aguiar ACC, Pereira DB, da Silva Santos S, Suarez-Mutis M, Di Santi SM, Regina de Souza Baptista A, Dantas Machado RL, Marinho CR, Clark TG, Campino S. Population-based genomic study of Plasmodium vivax malaria in seven Brazilian states and across South America. LANCET REGIONAL HEALTH. AMERICAS 2023; 18:100420. [PMID: 36844008 PMCID: PMC9950661 DOI: 10.1016/j.lana.2022.100420] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 01/03/2023]
Abstract
Background Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546-1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003-8 and 471605/2011-5); CRFM is funded by FAPESP (Grant no. 2020/06747-4) and CNPq (Grant no. 302917/2019-5 and 408636/2018-1); JGD is funded by FAPESP fellowships (2016/13465-0 and 2019/12068-5) and CNPq (Grant no. 409216/2018-6).
Collapse
Affiliation(s)
- Amy Ibrahim
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Emilia Manko
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Jamille G. Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Mónica Campos
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Debbie Nolder
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Colin J. Sutherland
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak,
Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of
Clinical Medicine Research Building, University of Oxford Old Road Campus,
Oxford, UK
| | - Diana Fernandez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | - Gabriel Vélez-Tobón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | | | | | | | - Simone da Silva Santos
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | - Martha Suarez-Mutis
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | | | - Andrea Regina de Souza Baptista
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Ricardo Luiz Dantas Machado
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Claudio R.F. Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Taane G. Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Faculty of Epidemiology & Population Health, London School of Hygiene
& Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| |
Collapse
|
13
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|