1
|
Iatcu OC, Hamamah S, Covasa M. Harnessing Prebiotics to Improve Type 2 Diabetes Outcomes. Nutrients 2024; 16:3447. [PMID: 39458444 PMCID: PMC11510484 DOI: 10.3390/nu16203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota, a complex ecosystem of microorganisms in the human gastrointestinal tract (GI), plays a crucial role in maintaining metabolic health and influencing disease susceptibility. Dysbiosis, or an imbalance in gut microbiota, has been linked to the development of type 2 diabetes mellitus (T2DM) through mechanisms such as reduced glucose tolerance and increased insulin resistance. A balanced gut microbiota, or eubiosis, is associated with improved glucose metabolism and insulin sensitivity, potentially reducing the risk of diabetes-related complications. Various strategies, including the use of prebiotics like inulin, fructooligosaccharides, galactooligosaccharides, resistant starch, pectic oligosaccharides, polyphenols, β-glucan, and Dendrobium officinale have been shown to improve gut microbial composition and support glycemic control in T2DM patients. These prebiotics can directly impact blood sugar levels while promoting the growth of beneficial bacteria, thus enhancing glycemic control. Studies have shown that T2DM patients often exhibit a decrease in beneficial butyrate-producing bacteria, like Roseburia and Faecalibacterium, and an increase in harmful bacteria, such as Escherichia and Prevotella. This review aims to explore the effects of different prebiotics on T2DM, their impact on gut microbiota composition, and the potential for personalized dietary interventions to optimize diabetes management and improve overall health outcomes.
Collapse
Affiliation(s)
- Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
2
|
Kase BE, Liese AD, Zhang J, Murphy EA, Zhao L, Steck SE. The Development and Evaluation of a Literature-Based Dietary Index for Gut Microbiota. Nutrients 2024; 16:1045. [PMID: 38613077 PMCID: PMC11013161 DOI: 10.3390/nu16071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of the study was to develop and evaluate a novel dietary index for gut microbiota (DI-GM) that captures dietary composition related to gut microbiota profiles. We conducted a literature review of longitudinal studies on the association of diet with gut microbiota in adult populations and extracted those dietary components with evidence of beneficial or unfavorable effects. Dietary recall data from the National Health and Nutrition Examination Survey (NHANES, 2005-2010, n = 3812) were used to compute the DI-GM, and associations with biomarkers of gut microbiota diversity (urinary enterodiol and enterolactone) were examined using linear regression. From a review of 106 articles, 14 foods or nutrients were identified as components of the DI-GM, including fermented dairy, chickpeas, soybean, whole grains, fiber, cranberries, avocados, broccoli, coffee, and green tea as beneficial components, and red meat, processed meat, refined grains, and high-fat diet (≥40% of energy from fat) as unfavorable components. Each component was scored 0 or 1 based on sex-specific median intakes, and scores were summed to develop the overall DI-GM score. In the NHANES, DI-GM scores ranged from 0-13 with a mean of 4.8 (SE = 0.04). Positive associations between DI-GM and urinary enterodiol and enterolactone were observed. The association of the novel DI-GM with markers of gut microbiota diversity demonstrates the potential utility of this index for gut health-related studies.
Collapse
Affiliation(s)
- Bezawit E. Kase
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Angela D. Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Elizabeth Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Susan E. Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| |
Collapse
|
3
|
Haș IM, Tit DM, Bungau SG, Pavel FM, Teleky BE, Vodnar DC, Vesa CM. Cardiometabolic Risk: Characteristics of the Intestinal Microbiome and the Role of Polyphenols. Int J Mol Sci 2023; 24:13757. [PMID: 37762062 PMCID: PMC10531333 DOI: 10.3390/ijms241813757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiometabolic diseases like hypertension, type 2 diabetes mellitus, atherosclerosis, and obesity have been associated with changes in the gut microbiota structure, or dysbiosis. The beneficial effect of polyphenols on reducing the incidence of this chronic disease has been confirmed by numerous studies. Polyphenols are primarily known for their anti-inflammatory and antioxidant properties, but they can also modify the gut microbiota. According to recent research, polyphenols positively influence the gut microbiota, which regulates metabolic responses and reduces systemic inflammation. This review emphasizes the prebiotic role of polyphenols and their impact on specific gut microbiota components in patients at cardiometabolic risk. It also analyzes the most recent research on the positive effects of polyphenols on cardiometabolic health. While numerous in vitro and in vivo studies have shown the interaction involving polyphenols and gut microbiota, additional clinical investigations are required to assess this effect in people.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Flavia Maria Pavel
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Bernadette-Emoke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
4
|
Santa K, Watanabe K, Kumazawa Y, Nagaoka I. Phytochemicals and Vitamin D for a Healthy Life and Prevention of Diseases. Int J Mol Sci 2023; 24:12167. [PMID: 37569540 PMCID: PMC10419318 DOI: 10.3390/ijms241512167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A variety of phytocompounds contained in medical plants have been used as medication, including Kampo (traditional Japanese) medicine. Phytochemicals are one category of the chemical compounds mainly known as antioxidants, and recently, their anti-inflammatory effects in preventing chronic inflammation have received much attention. Here, we present a narrative review of the health-promotion and disease-prevention effects of phytochemicals, including polyphenols, the latter of which are abundant in onions, oranges, tea, soybeans, turmeric, cacao, and grapes, along with the synergetic effects of vitamin D. A phenomenon currently gaining popularity in Japan is finding non-disease conditions, so-called ME-BYO (mibyou) and treating them before they develop into illnesses. In addition to lifestyle-related diseases such as metabolic syndrome and obesity, dementia and frailty, commonly found in the elderly, are included as underlying conditions. These conditions are typically induced by chronic inflammation and might result in multiple organ failure or cancer if left untreated. Maintaining gut microbiota is important for suppressing (recently increasing) intestinal disorders and for upregulating immunity. During the COVID-19 pandemic, the interest in phytochemicals and vitamin D for disease prevention increased, as viral and bacterial infection to the lung causes fatal inflammation, and chronic inflammation induces pulmonary fibrosis. Furthermore, sepsis is a disorder inducing severe organ failure by the infection of microbes, with a high mortality ratio in non-coronary ICUs. However, antimicrobial peptides (AMPs) working using natural immunity suppress sepsis at the early stage. The intake of phytochemicals and vitamin D enhances anti-inflammatory effects, upregulates immunity, and reduces the risk of chronic disorders by means of keeping healthy gut microbiota. Evidence acquired during the COVID-19 pandemic revealed that daily improvement and prevention of underlying conditions, in terms of lifestyle-related diseases, is very important because they increase the risk of infectious diseases. This narrative review discusses the importance of the intake of phytochemicals and vitamin D for a healthy lifestyle and the prevention of ME-BYO, non-disease conditions.
Collapse
Affiliation(s)
- Kazuki Santa
- Department of Biotechnology, Tokyo College of Biotechnology, Ota-ku, Tokyo 114-0032, Japan;
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University, Tokyo 160-8582, Japan
- Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Yoshio Kumazawa
- Vino Science Japan Inc., Kawasaki 210-0855, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of Medical Science, Juntendo University, Urayasu 279-0013, Japan
| |
Collapse
|
5
|
Alasalvar C, Chang SK, Kris-Etherton PM, Sullivan VK, Petersen KS, Guasch-Ferré M, Jenkins DJA. Dried Fruits: Bioactives, Effects on Gut Microbiota, and Possible Health Benefits—An Update. Nutrients 2023; 15:nu15071611. [PMID: 37049451 PMCID: PMC10097306 DOI: 10.3390/nu15071611] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Dried fruits contain many bioactive compounds broadly classified as phytochemicals including phenolics, flavonoids, carotenoids, proanthocyanidins, stilbenes, chalcones/dihydrochalcones, and phytoestrogens. These compounds have antioxidant effects that may benefit health. Dried fruits are also a diverse group of foods with varying fibre contents. The evaluation of the biological activity of these bioactive compounds, including their bioaccessibility and bioavailability, may contribute to the understanding of the health effects of dried fruits. Limited evidence suggests that dried fruits (raisins, cranberries, dates, and prunes) affect human gut microbiota composition in a potentially beneficial manner (in terms of effects on Bifidobacteria, Faecalibacterium prausnitzii, Lactobacillus, Ruminococcaceae, Klebsiella spp., and Prevotella spp.). There is little epidemiological evidence about the association of dried fruit consumption with cardiovascular disease incidence and mortality, as well as the risk of type 2 diabetes or obesity. Clinical trial evidence for the effects of dried fruit consumption on cardiovascular risk factors, including glycaemic control, is mixed. Clinical trial evidence suggests prunes might preserve bone mineral density in postmenopausal women. Consumption of dried fruits is associated with higher-quality diets. Studies are needed to increase our understanding of the health effects of dried fruits and the underlying biological mechanisms.
Collapse
Affiliation(s)
- Cesarettin Alasalvar
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze 41470, Türkiye
- Correspondence: ; Tel.: +90-262-677-3200
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | | | - Valerie K. Sullivan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kristina S. Petersen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Marta Guasch-Ferré
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 1356 Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David J. A. Jenkins
- Departments of Nutritional Sciences and Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Clinical Nutrition Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Division of Endocrinology and Metabolism, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| |
Collapse
|
6
|
Komarnytsky S, Wagner C, Gutierrez J, Shaw OM. Berries in Microbiome-Mediated Gastrointestinal, Metabolic, and Immune Health. Curr Nutr Rep 2023; 12:151-166. [PMID: 36738429 DOI: 10.1007/s13668-023-00449-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Current research has shown that berry-derived polymeric substrates that resist human digestion (dietary fibers and polyphenols) are extensively metabolized in the gastrointestinal tract dominated by microbiota. This review assesses current epidemiological, experimental, and clinical evidence of how berry (strawberry, blueberry, raspberry, blackberry, cranberry, black currant, and grapes) phytochemicals interact with the microbiome and shape health or metabolic risk factor outcomes. RECENT FINDINGS There is a growing evidence that the compositional differences among complex carbohydrate fractions and classes of polyphenols define reversible shifts in microbial populations and human metabolome to promote gastrointestinal health. Interventions to prevent gastrointestinal inflammation and improve metabolic outcomes may be achieved with selection of berries that provide distinct polysaccharide substrates for selective multiplication of beneficial microbiota or oligomeric decoys for binding and elimination of the pathogens, as well as phenolic substrates that hold potential to modulate gastrointestinal mucins, reduce luminal oxygen, and release small phenolic metabolites signatures capable of ameliorating inflammatory and metabolic perturbations. These mechanisms may explain many of the differences in microbiota and host gastrointestinal responses associated with increased consumption of berries, and highlight potential opportunities to intentionally shift gut microbiome profiles or to modulate risk factors associated with better nutrition and health outcomes.
Collapse
Affiliation(s)
- Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC, 27695, USA.
| | - Charles Wagner
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Janelle Gutierrez
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Odette M Shaw
- Plant & Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| |
Collapse
|
7
|
Zhang Y, Yang Y, Ma C, Jiang L. Identification of multiple raisins by feature fusion combined with NIR spectroscopy. PLoS One 2022; 17:e0268979. [PMID: 35834504 PMCID: PMC9282468 DOI: 10.1371/journal.pone.0268979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Varieties of raisins are diverse, and different varieties have different nutritional properties and commercial value. In this paper, we propose a method to identify different varieties of raisins by combining near-infrared (NIR) spectroscopy and machine learning algorithms. The direct averaging of the spectra taken for each sample may reduce the experimental data and affect the extraction of spectral features, thus limiting the classification results, due to the different substances of grape skins and flesh. Therefore, this experiment proposes a method to fuse the spectral features of pulp and peel. In this experiment, principal component analysis (PCA) was used to extract baseline corrected features, and linear models of k-nearest neighbor (KNN) and linear discriminant analysis (LDA) and nonlinear models of back propagation (BP), support vector machine with genetic algorithm (GA-SVM), grid search-support vector machine (GS-SVM) and particle swarm optimization with support vector machine (PSO- SVM) coupling were used to classify. This paper compared the results of four experiments using only skin spectrum, only flesh spectrum, average spectrum of skin and flesh, and their spectral feature fusion. The experimental results showed that the accuracy and Macro-F1 score after spectral feature fusion were higher than the other three experiments, and GS-SVM had the highest accuracy and Macro-F1 score of 94.44%. The results showed that feature fusion can improve the performance of both linear and nonlinear models. This may provide a new strategy for acquiring spectral data and improving model performance in the future. The code is available at https://github.com/L-ain/Source.
Collapse
Affiliation(s)
- Yajun Zhang
- College of Software, Xinjiang University, Urumqi, China
- * E-mail:
| | - Yan Yang
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Chong Ma
- College of Software, Xinjiang University, Urumqi, China
| | - Liping Jiang
- College of Information Engineering, Changji University, Changji, China
| |
Collapse
|
8
|
Wang X, Qi Y, Zheng H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants (Basel) 2022; 11:antiox11061212. [PMID: 35740109 PMCID: PMC9220293 DOI: 10.3390/antiox11061212] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, which are probably the most important secondary metabolites produced by plants, have attracted tremendous attention due to their health-promoting effects, including their antioxidant, anti-inflammatory, antibacterial, anti-adipogenic, and neuro-protective activities, as well as health properties. However, due to their complicated structures and high molecular weights, a large proportion of dietary polyphenols remain unabsorbed along the gastrointestinal tract, while in the large intestine they are biotransformed into bioactive, low-molecular-weight phenolic metabolites through the residing gut microbiota. Dietary polyphenols can modulate the composition of intestinal microbes, and in turn, gut microbes catabolize polyphenols to release bioactive metabolites. To better investigate the health benefits of dietary polyphenols, this review provides a summary of their modulation through in vitro and in vivo evidence (animal models and humans), as well as their possible actions through intestinal barrier function and gut microbes. This review aims to provide a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and host health.
Collapse
|
9
|
Medicinal Plants and Their Impact on the Gut Microbiome in Mental Health: A Systematic Review. Nutrients 2022; 14:nu14102111. [PMID: 35631252 PMCID: PMC9144835 DOI: 10.3390/nu14102111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Various neurocognitive and mental health-related conditions have been associated with the gut microbiome, implicating a microbiome–gut–brain axis (MGBA). The aim of this systematic review was to identify, categorize, and review clinical evidence supporting medicinal plants for the treatment of mental disorders and studies on their interactions with the gut microbiota. Methods: This review included medicinal plants for which clinical studies on depression, sleeping disorders, anxiety, or cognitive dysfunction as well as scientific evidence of interaction with the gut microbiome were available. The studies were reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results: Eighty-five studies met the inclusion criteria and covered thirty mental health-related medicinal plants with data on interaction with the gut microbiome. Conclusion: Only a few studies have been specifically designed to assess how herbal preparations affect MGBA-related targets or pathways. However, many studies provide hints of a possible interaction with the MGBA, such as an increased abundance of health-beneficial microorganisms, anti-inflammatory effects, or MGBA-related pathway effects by gut microbial metabolites. Data for Panax ginseng, Schisandra chinensis, and Salvia rosmarinus indicate that the interaction of their constituents with the gut microbiota could mediate mental health benefits. Studies specifically assessing the effects on MGBA-related pathways are still required for most medicinal plants.
Collapse
|
10
|
Mileriene J, Serniene L, Kondrotiene K, Santarmaki V, Kourkoutas Y, Vasiliauskaite A, Lauciene L, Malakauskas M. Indigenous Lactococcus lactis with Probiotic Properties: Evaluation of Wet, Thermally- and Freeze-Dried Raisins as Supports for Cell Immobilization, Viability and Aromatic Profile in Fresh Curd Cheese. Foods 2022; 11:1311. [PMID: 35564034 PMCID: PMC9101569 DOI: 10.3390/foods11091311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Indigenous Lactococcus lactis enriched raisins were incorporated in fresh curd cheese in wet, thermally dried, and freeze-dried form to produce a novel probiotic dairy product. Symbiotic cheese represents a rising trend in the global market. The viability of L. lactis cells was assessed in the cheeses during storage at 4 °C for 14 days and the effect of the added enriched raisins on physicochemical parameters, microbiological characteristics, and sugar content, aromatic profile, and sensory acceptance of cheeses were evaluated. Immobilized L. lactis cells maintained viability at necessary levels (>6 log cfu/g) during storage and significantly increased the acceptability of cheese. The addition of raisins enhanced the volatile profile of cheeses with 2-furanmethanol, 1-octanol, 3-methylbutanal, 2-methylbutanal, 2-furancarboxaldehyde, 1-(2-furanyl)-ethanone, 5-methyl-2-furancarboxaldehyde. The obtained results are encouraging for the production of novel fresh cheeses with improved sensorial and nutritional characteristics on industrial and/or small industrial scale.
Collapse
Affiliation(s)
- Justina Mileriene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (L.S.); (K.K.); (A.V.); (L.L.); (M.M.)
| | - Loreta Serniene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (L.S.); (K.K.); (A.V.); (L.L.); (M.M.)
| | - Kristina Kondrotiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (L.S.); (K.K.); (A.V.); (L.L.); (M.M.)
| | - Valentini Santarmaki
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.S.); (Y.K.)
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.S.); (Y.K.)
| | - Agne Vasiliauskaite
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (L.S.); (K.K.); (A.V.); (L.L.); (M.M.)
| | - Lina Lauciene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (L.S.); (K.K.); (A.V.); (L.L.); (M.M.)
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (L.S.); (K.K.); (A.V.); (L.L.); (M.M.)
| |
Collapse
|
11
|
Katsirma Z, Dimidi E, Rodriguez-Mateos A, Whelan K. Fruits and their impact on the gut microbiota, gut motility and constipation. Food Funct 2021; 12:8850-8866. [PMID: 34505614 DOI: 10.1039/d1fo01125a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fruits are the seed-bearing product of plants and have considerable nutritional importance in the human diet. The consumption of fruits is among the dietary strategies recommended for constipation due to its potential effects on the gut microbiota and gut motility. Dietary fiber from fruits has been the subject of research on the impact on gut microbiota, gut motility and constipation, however, fruits also contain other components that impact the intestinal luminal environment that may impact these outcomes including sorbitol and (poly)phenols. This review aims to explore the mechanisms of action and effectiveness of fruits and fruit products on the gut microbiota, gut motility and constipation, with a focus on fiber, sorbitol and (poly)phenols. In vitro, animal and human studies investigating the effects of fruits on gut motility and gut microbiota were sought through electronic database searches, hand searching and consulting with experts. Various fruits have been shown to modify the microbiota in human studies including blueberry powder (lactobacilli, bifidobacteria), prunes (bifidobacteria), kiwi fruit (Bacteroides, Faecalibacterium prausnitzii) and raisins (Ruminococcus, F. prausnitzii). Prunes, raisins and apple fiber isolate have been shown to increase fecal weight in humans, whilst kiwifruit to increase small bowel and fecal water content. Apple fiber isolate, kiwifruit, fig paste, and orange extract have been shown to reduce gut transit time, while prunes have not. There is limited evidence on which fruit components play a predominant role in regulating gut motility and constipation, or whether a synergy of multiple components is responsible for such effects.
Collapse
Affiliation(s)
- Zoi Katsirma
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| |
Collapse
|
12
|
Huang C, Li M, Liu B, Zhu H, Dai Q, Fan X, Mehta K, Huang C, Neupane P, Wang F, Sun W, Umar S, Zhong C, Zhang J. Relating Gut Microbiome and Its Modulating Factors to Immunotherapy in Solid Tumors: A Systematic Review. Front Oncol 2021; 11:642110. [PMID: 33816289 PMCID: PMC8012896 DOI: 10.3389/fonc.2021.642110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Gut microbiome is proved to affect the activity of immunotherapy in certain tumors. However, little is known if there is universal impact on both the treatment response and adverse effects (AEs) of immune checkpoint inhibitors (ICIs) across multiple solid tumors, and whether such impact can be modulated by common gut microbiome modifiers, such as antibiotics and diet. Methods: A systematic search in PubMed followed by stringent manual review were performed to identify clinical cohort studies that evaluated the relevance of gut microbiome to ICIs (response and/or AEs, 12 studies), or association of antibiotics with ICIs (17 studies), or impact of diet on gut microbiome (16 studies). Only original studies published in English before April 1st, 2020 were used. Qualified studies identified in the reference were also included. Results: At the phylum level, patients who had enriched abundance in Firmicutes and Verrucomicrobia almost universally had better response from ICIs, whereas those who were enriched in Proteobacteria universally presented with unfavorable outcome. Mixed correlations were observed for Bacteroidetes in relating to treatment response. Regarding the AEs, Firmicutes correlated to higher incidence whereas Bacteroidetes were clearly associated with less occurrence. Interestingly, across various solid tumors, majority of the studies suggested a negative association of antibiotic use with clinical response from ICIs, especially within 1-2 month prior to the initiation of ICIs. Finally, we observed a significant correlation of plant-based diet in relating to the enrichment of “ICI-favoring” gut microbiome (P = 0.0476). Conclusions: Gut microbiome may serve as a novel modifiable biomarker for both the treatment response and AEs of ICIs across various solid tumors. Further study is needed to understand the underlying mechanism, minimize the negative impact of antibiotics on ICIs, and gain insight regarding the role of diet so that this important lifestyle factor can be harnessed to improve the therapeutic outcomes of cancer immunotherapy partly through its impact on gut microbiome.
Collapse
Affiliation(s)
- Chengliang Huang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Meizhang Li
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ben Liu
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, United States
| | - Huanbo Zhu
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States.,Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Dai
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kathan Mehta
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Chao Huang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Prakash Neupane
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Fen Wang
- Department of Radiation Oncology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Weijing Sun
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Shahid Umar
- Department of Surgery, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, United States
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States.,Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
13
|
Mediterranean Raisins/Currants as Traditional Superfoods: Processing, Health Benefits, Food Applications and Future Trends within the Bio-Economy Era. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review elaborates on the significance of Mediterranean raisins, focusing particularly on indigenous Greek varieties (e.g., Zante currants) as a previously overlooked traditional food, currently brought on the spotlight, resulting from the increased consumers’ awareness to improve wellness through diet modification. Recent studies on the effect of processing steps on final quality, along with findings on the potential health benefits raisins and currants elicit, are also presented. The development of novel functional food products to further exploit the nutritional value and the bioactive compounds of raisins is evidenced in view of indicating potential food industry applications. Moreover, valorization options of waste and by-product streams obtained from processing facilities are also proposed. Conclusively, raisins and currants should be further enhanced and incorporated in a balanced diet regime through the inclusion in novel foods formulation. Evidently, both the processing of the onset material and side-streams management, are essential to ensure sustainability. Hence, the article also highlights integrated biorefinery approaches, targeting the production of high-value added products that could be re-introduced in the food supply chain and conform with the pillars of bio-economy.
Collapse
|
14
|
An overview of the level of dietary support in the gut microbiota at different stages of life: A systematic review. Clin Nutr ESPEN 2021; 42:41-52. [PMID: 33745615 DOI: 10.1016/j.clnesp.2021.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The gut microbiome is an essential factor for the health of the host. Several factors may alter the gut's microbiota composition, including genetic factors, lifestyle, aging, and dietary intervention. This process can be an essential element in the prevention and treatment of diseases associated with microbiome dysfunction through appropriate dietary interventions. Based on this context, a systematic review was carried out in order to assess the effect of dietary intervention on the profile of the gut microbiota throughout different stages of life. METHODS The systematic review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA), with the eligibility criteria following the principle of PICOS. The literature search was carried out in 2019 throughout PubMed/MEDLINE, Scopus, and Science Direct. Thus, 1237 studies were selected, and 40 articles were included by criteria. RESULTS According to the level of evidence of Centre for Evidence-Based Medicine (OCEBM), 21 studies reached the level of evidence B1, 15 articles were classified with B2, and four articles with B3. No dietary intervention was applied at all stages of life, nor with similar proportions of intervention. No dietary intervention was applied at all stages of life, nor with similar proportions of intervention. On the other hand, dietary interventions alter the intestinal microbiota in different pathological realities. CONCLUSIONS Different dietary interventions change the microbiome composition at all stages of life in healthy and pathological individuals. However, more clinical studies are needed to identify the specifics of each stage in response to interventions.
Collapse
|
15
|
Effects of Low and High FODMAP Diets on Human Gastrointestinal Microbiota Composition in Adults with Intestinal Diseases: A Systematic Review. Microorganisms 2020; 8:microorganisms8111638. [PMID: 33114017 PMCID: PMC7690730 DOI: 10.3390/microorganisms8111638] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022] Open
Abstract
A diet high in non-digestible carbohydrates is known to promote health, in part through its effect on the gut microbiome. While substantially proven for healthy individuals, these effects are more ambiguous in subjects with intestinal diseases. At the same time, a diet low in these fermentable carbohydrates, the low FODMAP (acronym for Fermentable Oligo-, Di-, Mono-saccharides, And Polyols) diet, is gaining popularity as a treatment option for symptom relief in irritable bowel syndrome and inflammatory bowel disease. There are, however, several indications that this diet induces effects opposite to those of prebiotic supplementation, resulting in gut microbiome changes that might be detrimental. Here, we provide a systematic review of the effects of low and high FODMAP diets on human gastrointestinal microbiota composition in adults with intestinal diseases, through literature screening using the databases PubMed, Embase, and Web of Science. We summarize study findings on dietary impact in patients, including the effect on bacterial taxa and diversity. In general, similar to healthy subjects, restricting non-digestible carbohydrate intake in patients with intestinal diseases has opposite effects compared to prebiotic supplementation, causing a reduction in bifidobacteria and an increase in bacteria associated with dysbiosis. Future studies should focus on assessing whether the induced microbial changes persist over time and have adverse effects on long-term colonic health.
Collapse
|
16
|
Zorraquín I, Sánchez-Hernández E, Ayuda-Durán B, Silva M, González-Paramás AM, Santos-Buelga C, Moreno-Arribas MV, Bartolomé B. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3789-3802. [PMID: 32167171 DOI: 10.1002/jsfa.10378] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Interactions between polyphenols and gut microbiota are indeed a major issue of current interest in food science research. Knowledge in this subject is progressing as the experimental procedures and analysis techniques do. The aim of this article is to critically review the more leading-edge approaches that have been applied so far in the study of the interactions between grape/wine polyphenols and gut microbiota. This is the case of in vitro dynamic gastrointestinal simulation models that try to mitigate the limitations of simple static models (batch culture fermentations). More complex approaches include the experimentation with animals (mice, rats, pigs, lambs and chicks) and nutritional intervention studies in humans. Main advantages and limitations as well as the most relevant findings achieved by each approach in the study of how grape/wine polyphenols can modulate the composition and/or functionality of gut microbiota, are detailed. Also, common findings obtained by the three approaches (in vitro, animal models and human nutritional interventions) such as the fact that the Firmicutes/Bacteroidetes ratio tends to decrease after the feed/intake/consumption of grape/wine polyphenols are highlighted. Additionally, a nematode (Caenorhabditis elegans) model, previously used for investigating the mechanisms of processes such as aging, neurodegeneration, oxidative stress and inflammation, is presented as an emerging approach for the study of polyphenols interacting gut microbiota. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Salamanca, Spain
| | - Mariana Silva
- Institute of Food Science Research (CIAL), Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Deb D, Das S, Adak A, Khan MR. Traditional rice beer depletes butyric acid-producing gut bacteria Faecalibacterium and Roseburia along with fecal butyrate levels in the ethnic groups of Northeast India. 3 Biotech 2020; 10:283. [PMID: 32550102 PMCID: PMC7266887 DOI: 10.1007/s13205-020-02280-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Ethnicity, geography, and dietary habits are known to have dominant roles in modulating the gut microbiota. Two major ethnic groups Ahom and Bodo in the north-east of India consume traditionally prepared rice beer which contains various microbes and substances that promote the growth of such microbes, known as prebiotics. This study aimed to understand the effect of traditionally prepared rice beer on gut microbiota. A total of 134 (67 from each group) volunteers including non-drinkers and drinkers from three locations were recruited. Fecal and blood samples were collected to study fecal bacterial and metabolite profiles and biochemical markers, respectively. Amplicon 16S rRNA gene sequencing (region V3-V4) by next-generation sequencing showed similar alpha and beta diversities in both the ethnic groups. However, with rice beer consumption the abundance of Firmicutes, Bacteroidetes, Fusobacteria phyla was higher in the drinkers (p < 0.05) of Ahom whereas only Firmicutes were higher in Bodo ethnic group. At the genus level, the bacterial abundance of Faecalibacterium and Roseburia were lower in the drinkers (p < 0.05) of both communities. Gas chromatography-mass spectrometry for the detection of fecal metabolites also revealed lower butyric acid in the feces of drinkers (p < 0.05). This study showed the effects of traditionally prepared rice beer on human gut microbiota and fecal metabolites. Further research is required to understand their effect on health.
Collapse
Affiliation(s)
- Dibyayan Deb
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam 781035 India
- Life Sciences Division, Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam 781001 India
| | - Santanu Das
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam 781035 India
- Life Sciences Division, Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam 781001 India
| | - Atanu Adak
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam 781035 India
| | - Mojibur R. Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam 781035 India
| |
Collapse
|
18
|
Olmo-Cunillera A, Escobar-Avello D, Pérez AJ, Marhuenda-Muñoz M, Lamuela-Raventós RM, Vallverdú-Queralt A. Is Eating Raisins Healthy? Nutrients 2019; 12:E54. [PMID: 31878160 PMCID: PMC7019280 DOI: 10.3390/nu12010054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022] Open
Abstract
Raisins are dried grapes consumed worldwide that contain beneficial components for human health. They are rich in fiber and phytochemicals such as phenolic compounds. Despite a 60% sugar content, several studies have reported health-promoting properties for raisins and this review compiles the intervention studies, as well as the cell line and animal model studies carried out to date. It has been demonstrated that raisins possess a low-to-moderate glycemic index, which makes them a healthy snack. They seem to contribute to a better diet quality and may reduce appetite. Their antioxidant capacity has been correlated to the phenolic content and this may be involved in the improvement of cardiovascular health. In addition, raisins maintain a good oral health due to their antibacterial activity, low adherence to teeth and an optimum oral pH. Raisin consumption also seems to be favorable for colon function, although more studies should be done to conclude this benefit. Moreover, gut microbiota could be affected by the prebiotic content of raisins. Cell line and animal model studies show other potential benefits in specific diseases, such as cancer and Alzheimer's disease. However, deeper research is required and future intervention studies with humans are needed. Overall, incorporating an 80-90 g portion of raisins (half a cup) into the daily diet may be favorable for human health.
Collapse
Affiliation(s)
- Alexandra Olmo-Cunillera
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (A.O.-C.); (D.E.-A.); (M.M.-M.); (R.M.L.-R.)
| | - Danilo Escobar-Avello
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (A.O.-C.); (D.E.-A.); (M.M.-M.); (R.M.L.-R.)
| | - Andy J. Pérez
- Departmento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4191996, Chile;
| | - María Marhuenda-Muñoz
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (A.O.-C.); (D.E.-A.); (M.M.-M.); (R.M.L.-R.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Rosa Mª Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (A.O.-C.); (D.E.-A.); (M.M.-M.); (R.M.L.-R.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (A.O.-C.); (D.E.-A.); (M.M.-M.); (R.M.L.-R.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
19
|
Verhoog S, Taneri PE, Roa Díaz ZM, Marques-Vidal P, Troup JP, Bally L, Franco OH, Glisic M, Muka T. Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A Systematic Review. Nutrients 2019; 11:nu11071565. [PMID: 31336737 PMCID: PMC6683038 DOI: 10.3390/nu11071565] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Akkermansia muciniphila and Faecalibacterium prausnitzii are highly abundant human gut microbes in healthy individuals, and reduced levels are associated with inflammation and alterations of metabolic processes involved in the development of type 2 diabetes. Dietary factors can influence the abundance of A. muciniphila and F. prausnitzii, but the evidence is not clear. We systematically searched PubMed and Embase to identify clinical trials investigating any dietary intervention in relation to A. muciniphila and F. prausnitzii. Overall, 29 unique trials were included, of which five examined A. muciniphila, 19 examined F. prausnitzii, and six examined both, in a total of 1444 participants. A caloric restriction diet and supplementation with pomegranate extract, resveratrol, polydextrose, yeast fermentate, sodium butyrate, and inulin increased the abundance of A. muciniphila, while a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols decreased the abundance of A. muciniphila. For F. prausnitzii, the main studied intervention was prebiotics (e.g. fructo-oligosaccharides, inulin type fructans, raffinose); seven studies reported an increase after prebiotic intervention, while two studies reported a decrease, and four studies reported no difference. Current evidence suggests that some dietary factors may influence the abundance of A. muciniphila and F. prausnitzii. However, more research is needed to support these microflora strains as targets of microbiome shifts with dietary intervention and their use as medical nutrition therapy in prevention and management of chronic disease.
Collapse
Affiliation(s)
- Sanne Verhoog
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland.
| | - Petek Eylul Taneri
- Corlu Cancer Early Diognosis and Training Center, 59100 Tekirdag, Turkey
| | - Zayne M Roa Díaz
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - John P Troup
- Standard Process Inc Nutrition Innovation Center, Kannapolis, NC 28018, USA
| | - Lia Bally
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Bern University Hospital, 3010 Bern, Switzerland
| | - Oscar H Franco
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Marija Glisic
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|