1
|
Kasraee M, Dehghani MH, Hamidi F, Mubarak NM, Karri RR, Rajamohan N, Solangi NH. Adsorptive removal of acid red 18 dye from aqueous solution using hexadecyl-trimethyl ammonium chloride modified nano-pumice. Sci Rep 2023; 13:13833. [PMID: 37620506 PMCID: PMC10449924 DOI: 10.1038/s41598-023-41100-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Discharging untreated dye-containing wastewater gives rise to environmental pollution. The present study investigated the removal efficiency and adsorption mechanism of Acid Red 18 (AR18) utilizing hexadecyl-trimethyl ammonium chloride (HDTMA.Cl) modified Nano-pumice (HMNP), which is a novel adsorbent for AR18 removal. The HDTMA.Cl is characterized by XRD, XRF, FESEM, TEM, BET and FTIR analysis. pH, contact time, initial concentration of dye and adsorbent dose were the four different parameters for investigating their effects on the adsorption process. Response surface methodology-central composite design was used to model and improve the study to reduce expenses and the number of experiments. According to the findings, at the ideal conditions (pH = 4.5, sorbent dosage = 2.375 g/l, AR18 concentration = 25 mg/l, and contact time = 70 min), the maximum removal effectiveness was 99%. The Langmuir (R2 = 0.996) and pseudo-second-order (R2 = 0.999) models were obeyed by the adsorption isotherm and kinetic, respectively. The nature of HMNP was discovered to be spontaneous, and thermodynamic investigations revealed that the AR18 adsorption process is endothermic. By tracking the adsorption capacity of the adsorbent for five cycles under ideal conditions, the reusability of HMNP was examined, which showed a reduction in HMNP's adsorption effectiveness from 99 to 85% after five consecutive recycles.
Collapse
Affiliation(s)
- Mahboobeh Kasraee
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farshad Hamidi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | | | - Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| |
Collapse
|
2
|
Zastulka A, Clichici S, Tomoaia-Cotisel M, Mocanu A, Roman C, Olteanu CD, Culic B, Mocan T. Recent Trends in Hydroxyapatite Supplementation for Osteoregenerative Purposes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1303. [PMID: 36770309 PMCID: PMC9919169 DOI: 10.3390/ma16031303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Bone regeneration has gained attention in the biomedical field, which has led to the development of materials and synthesis methods meant to improve osseointegration and cellular bone activity. The properties of hydroxyapatite, a type of calcium phosphate, have been researched to determine its advantages for bone tissue engineering, particularly its biocompatibility and ability to interact with bone cells. Recently, the advantages of utilizing nanomolecules of hydroxyapatite, combined with various substances, in order to enhance and combine their characteristics, have been reported in the literature. This review will outline the cellular and molecular roles of hydroxypatite, its interactions with bone cells, and its nano-combinations with various ions and natural products and their effects on bone growth, development, and bone repair.
Collapse
Affiliation(s)
- Ana Zastulka
- Physiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Simona Clichici
- Physiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050044 Bucharest, Romania
| | - Aurora Mocanu
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
| | - Cecilia Roman
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 400296 Cluj-Napoca, Romania
| | - Cristian-Doru Olteanu
- Orthodontic Department, Iuliu Hatieganu University of Medicine and Pharmacy, 31 Avram Iancu Street, 400083 Cluj-Napoca, Romania
| | - Bogdan Culic
- Department of Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, 32 Clinicilor Street, 400012 Cluj-Napoca, Romania
| | - Teodora Mocan
- Physiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology Cluj-Napoca, 5 Constanta Street, 400158 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Adsorptive removal of humic substances using cationic surfactant-modified nano pumice from water environment: Optimization, isotherm, kinetic and thermodynamic studies. CHEMOSPHERE 2022; 307:135983. [PMID: 35998733 DOI: 10.1016/j.chemosphere.2022.135983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 12/07/2022]
Abstract
In this study, nano pumice (NP) and a cationic surfactant (hexadecyltrimethylammonium-chloride (HDTMA.Cl)) treated nano pumice (HMNP) were used for humic acid (HA) adsorption from an aqueous solution. The adsorption process was modeled and optimized using Response surface methodology-central composite design (RSM-CCD) and Artificial neural networks- Genetic algorithm (ANN-GA). The results show that the ANN model outperforms the RSM-CCD model in terms of response prediction. Optimization results based on the RSM-CCD approach proposed pH 3, adsorbent dose 3 g L-1, reaction time 60 min, and initial HA concentration 5 mg L-1 as optimal points of the variables, to reach the maximum adsorption efficiency of 100% and 65.4% by HMNP and NP adsorbents. The maximal adsorption capacity of NP was 1.21 mg g-1, while that of HMNP was 27.34 mg g-1. The optimal points of process parameters by the ANN-GA method are in accordance with the values suggested by the RSM-CCD method. In isotherm studies, Langmuir model was found to be the best-fitted model for both adsorbent with R2 = 0.97 for NP and 0.992 for HMNP, and also among three different kinetic models which were assessed, Pseudo-second-order model with R2 = 0.9989 for HMNP and R2 = 0.9957 for NP were the best-fitted models for HA removal. Thermodynamic studies indicated that the HA adsorption process by both of the adsorbents is endothermic and the nature of HMNP was found spontaneous while for NP was non-spontaneous. The value of ΔH for both adsorbents was in the range of 34-36.8 kJ mol-1 so the process is clarified as chemical-physical adsorption. The reusability test revealed that the adsorption effectiveness of HMNP drops from 100% to 82.4% after 10 consecutive recycles. The influence of interfacing anions indicated that the adsorption efficiency drops from 100% to 95.4% when the anions were added to the reaction solution.
Collapse
|
4
|
Cursaru LM, Iota M, Piticescu RM, Tarnita D, Savu SV, Savu ID, Dumitrescu G, Popescu D, Hertzog RG, Calin M. Hydroxyapatite from Natural Sources for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5091. [PMID: 35897524 PMCID: PMC9331458 DOI: 10.3390/ma15155091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/07/2022]
Abstract
The aim of this work is to study the physical-chemical, mechanical, and biocompatible properties of hydroxyapatite obtained by hydrothermal synthesis, at relatively low temperatures and high pressures, starting from natural sources (Rapana whelk shells), knowing that these properties influence the behavior of nanostructured materials in cells or tissues. Thus, hydroxyapatite nanopowders were characterized by chemical analysis, Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In vitro studies on osteoblast cell lines (cytotoxicity and cell proliferation), as well as preliminary mechanical tests, have been performed. The results showed that the obtained powders have a crystallite size below 50 nm and particle size less than 100 nm, demonstrating that hydrothermal synthesis led to hydroxyapatite nanocrystalline powders, with a Ca:P ratio close to the stoichiometric ratio and a controlled morphology (spherical particle aggregates). The tensile strength of HAp samples sintered at 1100 °C/90 min varies between 37.6-39.1 N/mm2. HAp samples sintered at 1300 °C/120 min provide better results for the investigated mechanical properties. The coefficient of friction has an appropriate value for biomechanical applications. The results of cell viability showed that the cytotoxic effect is low for all tested samples. Better cell proliferation is observed for osteoblasts grown on square samples.
Collapse
Affiliation(s)
- Laura Madalina Cursaru
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei Blvd, 077145 Pantelimon, Romania
| | - Miruna Iota
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei Blvd, 077145 Pantelimon, Romania
| | - Roxana Mioara Piticescu
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei Blvd, 077145 Pantelimon, Romania
| | - Daniela Tarnita
- Department of Applied Mechanics, Faculty of Mechanics, University of Craiova, 200585 Craiova, Romania
| | - Sorin Vasile Savu
- Department of Engineering and Management of Technological Systems, Faculty of Mechanics, University of Craiova, 200585 Craiova, Romania
| | - Ionel Dănuț Savu
- Department of Engineering and Management of Technological Systems, Faculty of Mechanics, University of Craiova, 200585 Craiova, Romania
| | - Gabriela Dumitrescu
- "Cantacuzino" National Military Medical Institute for Research and Development, Splaiul Independenței nr. 103, Sector 5, 050096 Bucharest, Romania
| | - Diana Popescu
- "Cantacuzino" National Military Medical Institute for Research and Development, Splaiul Independenței nr. 103, Sector 5, 050096 Bucharest, Romania
| | - Radu-Gabriel Hertzog
- "Cantacuzino" National Military Medical Institute for Research and Development, Splaiul Independenței nr. 103, Sector 5, 050096 Bucharest, Romania
| | - Mihaela Calin
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei Blvd, 077145 Pantelimon, Romania
- National Institute of Research and Development for Optoelectronics INOE 2000, 409 Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
5
|
Arbade GK, Kumar V, Tripathi V, Menon A, Bose S, Patro TU. Emblica officinalis-loaded poly(ε-caprolactone) electrospun nanofiber scaffold as potential antibacterial and anticancer deployable patch. NEW J CHEM 2019. [DOI: 10.1039/c9nj01137d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Emblica officinalis fruit extract has been incorporated into polymer nanofiber scaffold and the resulting scaffold showed excellent antibacterial and anti-proliferative properties.
Collapse
Affiliation(s)
| | | | | | - Aishwarya Menon
- Center for Nano Science and Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Suryasarathi Bose
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
| | - T. Umasankar Patro
- Department of Metallurgical and Materials Engineering
- Defence Institute of Advanced Technology
- Pune
- India
| |
Collapse
|