1
|
Yazdanpanah-Ardakani K, Niroomand-Oscuii H, Sahebi-Kuzeh Kanan R, Shokri N. Optimization of a centrifugal blood pump designed using an industrial method through experimental and numerical study. Sci Rep 2024; 14:7443. [PMID: 38548818 PMCID: PMC11350071 DOI: 10.1038/s41598-024-57019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
With improved treatment of coronary artery disease, more patients are surviving until heart failure occurs. This leads to an increase in patients needing devices for struggling with heart failure. Ventricular assist devices are known as the mainstay of these devices. This study aimed to design a centrifugal pump as a ventricular assist device. In order to design the pump, firstly, the geometrical parameters of the pump, including the gap distance, blade height, and position of the outlet relative to the blade, were investigated. Finally, the selected configuration, which had all the appropriate characteristics, both hydraulically and physiologically, was used for the rest of the study. The study of the blade, as the main component in energy transfer to the blood, in a centrifugal pump, has been considered in the present study. In this regard, the point-to-point design method, which is used in industrial applications, was implemented. The designer chooses the relationship between the blade angles at each radius in the point-to-point method. The present study selected logarithmic and second-order relations for designing the blade's profile. In total, 58 blades were examined in this study, which differed regarding blade inlet and outlet angles and the relationship between angle and radial position. ANSYS CFX 17.0 software was utilized to simulate blades' performances, and a benchmark pump provided by the US Food and Drug Administration (FDA) was used to validate the numerical simulations. Then, the selected impeller from the numerical investigation was manufactured, and its performance was compared experimentally with the FDA benchmark pump. A hydraulic test rig was also developed for experimental studies. The results showed that among the blades designed in this study, the blade with an input angle of 45° and an output angle of 55°, which is designed to implement a logarithmic relationship, has the best performance. The selected impeller configuration can increase the total head (at least by 20%) at different flow rates compared to the FDA pump.
Collapse
Affiliation(s)
| | | | | | - Nasim Shokri
- Department of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
2
|
Celis D, Gomes BADA, Ibanez I, Azevedo PN, Teixeira PS, Nieckele AO. Prediction of Stress Map in Ascending Aorta - Optimization of the Coaxial Position in Transcatheter Aortic Valve Replacement. Arq Bras Cardiol 2020; 115:680-687. [PMID: 32491131 PMCID: PMC8386968 DOI: 10.36660/abc.20190385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUD Transcatheter aortic valve replacement (TAVR) can reduce mortality among patients with aortic stenosis. Knowledge of pressure distribution and shear stress at the aortic wall may help identify critical regions, where aortic remodeling process may occur. Here a numerical simulation study of the influence of positioning of the prosthetic valve orifice on the flow field is presented. OBJECTIVE The present analysis provides a perspective of great variance on flow behavior due only to angle changes. METHODS A 3D model was generated from computed tomography angiography of a patient who had undergone a TAVR. Different mass flow rates were imposed at the inlet valve. RESULTS Small variations of the tilt angle could modify the nature of the flow, displacing the position of the vortices, and altering the prerssure distribution and the location of high wall shear stress. CONCLUSION These hemodynamic features may be relevant in the aortic remodeling process and distribution of the stress mapping and could help, in the near future, the optimization of the percutaneous prosthesis implantation. (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0).
Collapse
Affiliation(s)
- Diego Celis
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) - Departamento de Engenharia Mecânica, Rio de Janeiro, RJ - Brasil
| | - Bruno Alvares de Azevedo Gomes
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) - Departamento de Engenharia Mecânica, Rio de Janeiro, RJ - Brasil.,Instituto Nacional de Cardiologia, Ministério da Saúde, Rio de Janeiro, RJ - Brasil
| | - Ivan Ibanez
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) - Departamento de Engenharia Mecânica, Rio de Janeiro, RJ - Brasil
| | - Pedro Nieckele Azevedo
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) - Departamento de Engenharia Mecânica, Rio de Janeiro, RJ - Brasil
| | | | - Angela Ourivio Nieckele
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) - Departamento de Engenharia Mecânica, Rio de Janeiro, RJ - Brasil
| |
Collapse
|
3
|
WANG SHUAI, TAN JIANPING, YU ZHEQIN. COMPARISON AND EXPERIMENTAL VALIDATION OF TURBULENCE MODELS FOR AN AXIAL FLOW BLOOD PUMP. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419400633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Computational fluid dynamics (CFD) has become an essential tool for designing and optimizing the structure of blood pumps. However, it is still questionable which turbulence model can better obtain the flow information for axial flow blood pump. In this study, the axial flow blood pump was used as the object, and the influence of the common turbulence models on simulation was compared. Six turbulence models (standard [Formula: see text]–[Formula: see text] model, RNG [Formula: see text]–[Formula: see text] model, standard [Formula: see text]–[Formula: see text] model, SST [Formula: see text]–[Formula: see text] model, Spalart–Allmaras model, SSG Reynolds stress model) were used to simulate the pressure difference and velocity field of the pump. In parallel, we designed a novel drive system of the axial flow blood pump, which allowed the camera to capture the internal flow field. Then we measured the flow field in the impeller region based on particle image velocimetry (PIV). Through the comparison of experiments and simulation results, the average errors of velocity field obtained by the above models are 30.97%, 19.40%, 24.25%, 15.28%, 28.51%, 23.00%, respectively. Since the SST [Formula: see text]–[Formula: see text] model has the smallest error, and the streamline is consistent with the experimental results, it is recommended to use SST [Formula: see text]–[Formula: see text] model for numerical analysis of the axial flow blood pump.
Collapse
Affiliation(s)
- SHUAI WANG
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| | - JIANPING TAN
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| | - ZHEQIN YU
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
4
|
Bortot M, Ashworth K, Sharifi A, Walker F, Crawford NC, Neeves KB, Bark D, Di Paola J. Turbulent Flow Promotes Cleavage of VWF (von Willebrand Factor) by ADAMTS13 (A Disintegrin and Metalloproteinase With a Thrombospondin Type-1 Motif, Member 13). Arterioscler Thromb Vasc Biol 2019; 39:1831-1842. [DOI: 10.1161/atvbaha.119.312814] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective—
Acquired von Willebrand syndrome is defined by excessive cleavage of the VWF (von Willebrand Factor) and is associated with impaired primary hemostasis and severe bleeding. It often develops when blood is exposed to nonphysiological flow such as in aortic stenosis or mechanical circulatory support. We evaluated the role of laminar, transitional, and turbulent flow on VWF cleavage and the effects on VWF function.
Approach and Results—
We used a vane rheometer to generate laminar, transitional, and turbulent flow and evaluate the effect of each on VWF cleavage in the presence of ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type-1 motif, member 13). We performed functional assays to evaluate the effect of these flows on VWF structure and function. Computational fluid dynamics was used to estimate the flow fields and forces within the vane rheometer under each flow condition. Turbulent flow is required for excessive cleavage of VWF in an ADAMTS13-dependent manner. The assay was repeated with whole blood, and the turbulent flow had the same effect. Our computational fluid dynamics results show that under turbulent conditions, the Kolmogorov scale approaches the size of VWF. Finally, cleavage of VWF in this study has functional consequences under flow as the resulting VWF has decreased ability to bind platelets and collagen.
Conclusions—
Turbulent flow mediates VWF cleavage in the presence of ADAMTS13, decreasing the ability of VWF to sustain platelet adhesion. These findings impact the design of mechanical circulatory support devices and are relevant to pathological environments where turbulence is added to circulation.
Collapse
Affiliation(s)
- Maria Bortot
- From the Department of Pediatrics (M.B., K.A., F.W., K.B.N., D.B., J.D.P.), University of Colorado Anschutz Medical Campus, Aurora
- Department of Bioengineering (M.B., K.B.N.), University of Colorado Anschutz Medical Campus, Aurora
| | - Katrina Ashworth
- From the Department of Pediatrics (M.B., K.A., F.W., K.B.N., D.B., J.D.P.), University of Colorado Anschutz Medical Campus, Aurora
| | - Alireza Sharifi
- Department of Mechanical Engineering (A.S., D.B.), Colorado State University, Fort Collins
| | - Faye Walker
- From the Department of Pediatrics (M.B., K.A., F.W., K.B.N., D.B., J.D.P.), University of Colorado Anschutz Medical Campus, Aurora
| | - Nathan C. Crawford
- Department of Material Characterization, Thermo Fisher Scientific, Madison, WI (N.C.C.)
| | - Keith B. Neeves
- From the Department of Pediatrics (M.B., K.A., F.W., K.B.N., D.B., J.D.P.), University of Colorado Anschutz Medical Campus, Aurora
- Department of Bioengineering (M.B., K.B.N.), University of Colorado Anschutz Medical Campus, Aurora
| | - David Bark
- From the Department of Pediatrics (M.B., K.A., F.W., K.B.N., D.B., J.D.P.), University of Colorado Anschutz Medical Campus, Aurora
- Department of Mechanical Engineering (A.S., D.B.), Colorado State University, Fort Collins
- School of Biomedical Engineering (D.B.), Colorado State University, Fort Collins
| | - Jorge Di Paola
- From the Department of Pediatrics (M.B., K.A., F.W., K.B.N., D.B., J.D.P.), University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
5
|
Bozkurt S. Effect of Cerebral Flow Autoregulation Function on Cerebral Flow Rate Under Continuous Flow Left Ventricular Assist Device Support. Artif Organs 2018; 42:800-813. [DOI: 10.1111/aor.13148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/13/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Selim Bozkurt
- University College London - Institute of Cardiovascular Science; London United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
6
|
Zhu Y, Chen R, Juan YH, Li H, Wang J, Yu Z, Liu H. Clinical validation and assessment of aortic hemodynamics using computational fluid dynamics simulations from computed tomography angiography. Biomed Eng Online 2018; 17:53. [PMID: 29720173 PMCID: PMC5932836 DOI: 10.1186/s12938-018-0485-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/23/2018] [Indexed: 02/02/2023] Open
Abstract
Background Hemodynamic information including peak systolic pressure (PSP) and peak systolic velocity (PSV) carry an important role in evaluation and diagnosis of congenital heart disease (CHD). Since MDCTA cannot evaluate hemodynamic information directly, the aim of this study is to provide a noninvasive method based on a computational fluid dynamics (CFD) model, derived from multi-detector computed tomography angiography (MDCTA) raw data, to analyze the aortic hemodynamics in infants with CHD, and validate these results against echocardiography and cardiac catheter measurements. Methods This study included 25 patients (17 males, and 8 females; a median age of 2 years, range: 4 months–4 years) with CHD. All patients underwent both transthoracic echocardiography (TTE) and MDCTA within 2 weeks prior to cardiac catheterization. CFD models were created from MDCTA raw data. Boundary conditions were confirmed by lumped parameter model and transthoracic echocardiography (TTE). Peak systolic velocity derived from CFD models (PSVCFD) was compared to TTE measurements (PSVTTE), while the peak systolic pressure derived from CFD (PSPCFD) was compared to catheterization (PSPCC). Regions with low and high peak systolic wall shear stress (PSWSS) were also evaluated. Results PSVCFD and PSPCFD showed good agreements between PSVTTE (r = 0.968, p < 0.001; mean bias = − 7.68 cm/s) and PSPCC (r = 0.918, p < 0.001; mean bias = 1.405 mmHg). Regions with low and high PSWSS) can also be visualized. Skewing of velocity or helical blood flow was also observed at aortic arch in patients. Conclusions Our result demonstrated that CFD scheme based on MDCTA raw data is an accurate and convenient method in obtaining the velocity and pressure from aorta and displaying the distribution of PSWSS and flow pattern of aorta. The preliminary results from our study demonstrate the capability in combining clinical imaging data and novel CFD tools in infants with CHD and provide a noninvasive approach for diagnose of CHD such as coarctation of aorta in future.
Collapse
Affiliation(s)
- Yulei Zhu
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhong Shan Er Lu, Guangzhou, 510080, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Rui Chen
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhong Shan Er Lu, Guangzhou, 510080, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu-Hsiang Juan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Chang Gung University, Taoyuan, Taiwan
| | - He Li
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhong Shan Er Lu, Guangzhou, 510080, Guangdong, China
| | - Jingjing Wang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhong Shan Er Lu, Guangzhou, 510080, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhuliang Yu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China. .,College of Automation Science and Technology, South China University of Technology, 381 Wushan Road, Guangzhou, 510080, Guangdong, China.
| | - Hui Liu
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhong Shan Er Lu, Guangzhou, 510080, Guangdong, China. .,School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
7
|
Zhang Q, Gao B, Chang Y. Helical Flow Component of Left Ventricular Assist Devices (LVADs) Outflow Improves Aortic Hemodynamic States. Med Sci Monit 2018; 24:869-879. [PMID: 29431154 PMCID: PMC5819308 DOI: 10.12659/msm.905940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Although LVADs are confirmed to have strong effects on aortic hemodynamics, the precise mechanisms of the helical flow component of LVAD outflow are still unclear. Material/Methods To clarify these effects, 3 cases – normal case, flat flow case, and realistic flow case – were designed and studied by using the CFD approach. The normal case denoted the normal aorta without LVAD support, and the flat flow case represented the aorta with the outflow cannula. Similarly, the realistic flow case included the aortic model, the model of outflow cannula, and the model of LVAD. The velocity vector, blood streamline, distribution of wall shear stress (WSS), and the local normalized helicity (LNH) were calculated. Results The results showed that the helical component of LVAD outflow significantly improved the aortic hemodynamics. Compared with the flat flow case, the helical flow eliminated the vortex near the outer wall of the aorta and improved the blood flow transport (normal case 0.1 m/s vs. flat flow case 0.14 m/s vs. realistic flow case 0.30 m/s) at the descending aorta. Moreover, the helical flow was confirmed to even the distribution of WSS, reduce the peak value of WSS (normal case 0.92 Pa vs. flat flow case 7.39 Pa vs. realistic flow case 5.2Pa), and maintain a more orderly WSS direction. Conclusions The helical flow component of LVAD outflow has significant advantages for improving aortic hemodynamic stability. Our study provides novel insights into LVAD optimization.
Collapse
Affiliation(s)
- Qi Zhang
- School of Life Science and Bioengineering, Beijing University of Technology, Beijing, China (mainland)
| | - Bin Gao
- School of Life Science and Bioengineering, Beijing University of Technology, Beijing, China (mainland)
| | - Yu Chang
- School of Life Science and Bioengineering, Beijing University of Technology, Beijing, China (mainland)
| |
Collapse
|
8
|
Tang D, Li ZY. Preface: Computational and experimental methods for biological research: cardiovascular diseases and beyond. Biomed Eng Online 2016; 15:157. [PMID: 28155696 PMCID: PMC5259905 DOI: 10.1186/s12938-016-0269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| | - Zhi-Yong Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| |
Collapse
|