1
|
Yan M, Yang J, Zhu H, Zou Q, Zhao H, Sun H. Volatile organic compound exposure in relation to lung cancer: Insights into mechanisms of action through metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135856. [PMID: 39298956 DOI: 10.1016/j.jhazmat.2024.135856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Volatile organic compounds (VOCs) have proven to be hazardous to the human respiratory system. However, the underlying biological mechanisms remain poorly understood. Therefore, targeted determination of eleven VOC metabolites (mVOCs) along with the nontargeted metabolomic analysis was performed on urine samples collected from lung cancer patients and healthy individuals. Nine mVOCs mainly derived from aldehydes, alkenes, amides, and aromatics were detected in > 90 % of the urine samples, suggesting that the participants were ubiquitously exposed to these typical VOCs. A molecular gatekeeper discovery workflow was employed to link the exposure biomarkers with correlated clusters of endogenous metabolites. As a result, multiple metabolic pathways, including amino acid metabolism, steroid hormone biosynthesis and metabolism, and fatty acid β-oxidation were connected with VOC exposure. Furthermore, 16 of 73 molecular gatekeepers were associated with lung cancer and pointed to a few disrupted metabolic pathways related to hydroxysteroids and acylcarnitine. The shift in molecular profiles was validated in rat model post VOC administration. Thereinto, the up-regulation of enzymes involved in acylcarnitine synthesis and transport in rat lung tissues highlighted that the mitochondrial dysfunction may be a potential carcinogenic mechanism. Our findings provide new insights into the mechanisms underlying lung cancer induced by VOC exposure.
Collapse
Affiliation(s)
- Mengqi Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jintao Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qiang Zou
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Woodruff TJ. Health Effects of Fossil Fuel-Derived Endocrine Disruptors. N Engl J Med 2024; 390:922-933. [PMID: 38446677 DOI: 10.1056/nejmra2300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Affiliation(s)
- Tracey J Woodruff
- From the Program on Reproductive Health and the Environment, Environmental Research and Translation for Health Center, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco
| |
Collapse
|
3
|
Fedan JS, Thompson JA, Sager TM, Roberts JR, Joseph P, Krajnak K, Kan H, Sriram K, Weatherly LM, Anderson SE. Toxicological Effects of Inhaled Crude Oil Vapor. Curr Environ Health Rep 2024; 11:18-29. [PMID: 38267698 PMCID: PMC10907427 DOI: 10.1007/s40572-024-00429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to assess the toxicological consequences of crude oil vapor (COV) exposure in the workplace through evaluation of the most current epidemiologic and laboratory-based studies in the literature. RECENT FINDINGS Crude oil is a naturally occuring mixture of hydrocarbon deposits, inorganic and organic chemical compounds. Workers engaged in upstream processes of oil extraction are exposed to a number of risks and hazards, including getting crude oil on their skin or inhaling crude oil vapor. There have been several reports of workers who died as a result of inhalation of high levels of COV released upon opening thief hatches atop oil storage tanks. Although many investigations into the toxicity of specific hydrocarbons following inhalation during downstream oil processing have been conducted, there is a paucity of information on the potential toxicity of COV exposure itself. This review assesses current knowledge of the toxicological consequences of exposures to COV in the workplace.
Collapse
Affiliation(s)
- Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Janet A Thompson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - Tina M Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Kristine Krajnak
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Hong Kan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Lisa M Weatherly
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Stacey E Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| |
Collapse
|
4
|
Luo R, Zhang T, Wang L, Feng Y. Emissions and mitigation potential of endocrine disruptors during outdoor exercise: Fate, transport, and implications for human health. ENVIRONMENTAL RESEARCH 2023; 236:116575. [PMID: 37487926 DOI: 10.1016/j.envres.2023.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The endocrine system is responsible for secreting and controlling hormones crucial in regulating key body activities. However, endocrine disruptors or endocrine-disrupting chemicals (EDCs) can harm human health and well-being by interfering with this complex process. This report seeks to assess the present state of understanding about endocrine disruptors in China, including their origins, impacts, and obstacles, and to provide actionable recommendations for reducing exposure and mitigating negative effects. Strong negative correlations between ANOE and rural ecological compensation (REC) and a negative correlation between ANOE and forest coverage (FC) were found in this analysis of the relationships between agricultural nitrous oxide emissions (ANOE), agricultural methane emissions (AME), and land use and land cover variables (LUPC). Just as LUPC is significantly inversely related to FC, AME is positively related. The team uses a gradient-boosted model (GBM) with a Gaussian loss function and fine-tunes the model's parameters to achieve optimal performance and reliable prediction results. With a relative relevance score of 90.36 for ANOE and 67.64 for AME, the analysis shows that LUPC is the most important factor in influencing emission levels. This study aims to increase knowledge of endocrine disruptors' potential advantages and disadvantages in outdoor exercise. The study aims to aid in preventing and managing many diseases and disorders caused by hormonal imbalances or disruptions by examining the origins, effects, and potential mitigation of these substances during outdoor activity. Safe and healthful outdoor exercise is promoted by the study's efforts to discover and implement effective and sustainable solutions to decrease emissions and exposure to endocrine disruptors. This comprehensive study aims to promote a healthier and more sustainable environment for individuals engaging in outdoor exercise by synthesizing current knowledge, providing practical recommendations, and emphasizing the importance of awareness and action.
Collapse
Affiliation(s)
- Rui Luo
- Chengdu Sport University, Tiyuan Road, Chengdu, Sichuan Province, 610041, China; College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China.
| | - Tao Zhang
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| | - Li Wang
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| | - Yong Feng
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| |
Collapse
|
5
|
Salami SA, Oreagba FO, Salahdeen HM, Olatunji-Bello II, Murtala BA. Vitamin C supplementation modulates crude oil contaminated water induced gravid uterine impaired contractile mechanism and foetal outcomes in Wistar rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:548-555. [PMID: 37300330 DOI: 10.1515/jcim-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Crude oil is a common environmental contaminant that impacts the reproductive functions of women. Understanding the contractile mechanism of the gravid uterus and how it impacts fetal outcomes during crude oil-contaminated water (CCW) exposure is still evolving. This study investigates the effect of vitamin C supplementation during the ingestion of CCW from Bayelsa, Nigeria, on the contractile mechanism of the gravid uterus and fetal outcomes. METHODS Fifteen nulliparous pregnant rats were randomly divided into 3 groups of 5 rats each and treated with normal saline (control), CCW (2.5 mL), and CCW + vitamin C (10 mg/kg bwt), respectively. Treatments were via oral gavage from gestation days 1-19. Gas chromatography-mass spectrometry of CCW, uterine oxidative biomarkers, and in vitro contractile activity of excised uterine tissue to acetylcholine, oxytocin, magnesium, and potassium were determined. Furthermore, uterine responses to acetylcholine after incubation with nifedipine, indomethacin, and N-nitro-L-arginine methyl ester were also recorded using the Ugo Basile data capsule acquisition system. Fetal weights, morphometric indices, and anogenital distance were also determined. RESULTS Acetylcholine, oxytocin, magnesium, diclofenac, and indomethacin-mediated contractile mechanisms were significantly impaired with CCW exposure; however, vitamin C supplementation significantly attenuated the impaired uterine contractile activity. Maternal serum estrogen, weight, uterine superoxide dismutase, fetal weight, and anogenital distance were significantly reduced in the CCW group compared to the vitamin C supplemented group. CONCLUSIONS Ingestion of CCW impaired the uterine contractile mechanism, fetal developmental indices, oxidative biomarkers, and estrogen. Vitamin C supplementation modulated these by elevating uterine antioxidant enzymes and reducing free radicals.
Collapse
Affiliation(s)
| | - Fatai O Oreagba
- Department of Physiology, Lagos State University College of Medicine, Lagos, Nigeria
| | - Hussein M Salahdeen
- Department of Physiology, Lagos State University College of Medicine, Lagos, Nigeria
| | | | - Babatunde A Murtala
- Department of Physiology, Lagos State University College of Medicine, Lagos, Nigeria
| |
Collapse
|
6
|
Pang X, Li W, Wang S, Wu Z, Sun S, Lyu Y, Chen D, Li H. Application of homemade portable gas chromatography coupled to photoionization detector for the detection of volatile organic compounds in an industrial park. J Chromatogr A 2023; 1704:464089. [PMID: 37307636 DOI: 10.1016/j.chroma.2023.464089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023]
Abstract
Traditional offline detection of volatile organic compounds (VOCs) requires complex and time-consuming pre-treatments including gas sampling in containers, pre-concentrations, and thermal desorption, which hinders its application in rapid VOCs monitoring. Developing a cost-effective instrument is of great importance for online measurement of VOCs. Recently, photoionization detectors (PID) are received great attention due to their fast response time and high sensitivity. This study a portable gas chromatography coupled to PID (pGC-PID) was developed and optimized experimental parameters for the application in online monitoring of VOCs at an industrial site. The sampling time, oven temperature and carrier gas flow rate were optimized as 80 s, 50 °C and 60 ml·min-1, respectively. The sampling method is direct injection. Poly tetra fluoroethylene (PTFE) filter membranes were selected to remove particulate matter from interfering with PID. The reproducibility and peak separation were good with relative standard deviations (RSD) ≤ 7%. Good linearities of 27 VOCs standard curves were achieved with R2 ≥ 0.99, and the detection limits were ≤10 ppb with the lowest being 2 ppb for 1,1,2-Trichloroethane. Finally, the pGC-PID is successfully applied in online VOCs monitoring at an industrial site. A total of 17 VOCs species was detected and their diurnal variations were well obtained, indicating pGC-PID is well suited for online analysis in field campaign.
Collapse
Affiliation(s)
- Xiaobing Pang
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; College of Environment, Zhejiang University of Technology, Hangzhou 310000, China.
| | - Wenke Li
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Shuaiqi Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Zhentao Wu
- College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Songhua Sun
- Shaoxing Ecological and Environmental Monitoring Center of Zhejiang Province, Shaoxing 312000, China
| | - Yan Lyu
- College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Dongzhi Chen
- School of Petrochemical Engineering&Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Haiyan Li
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
7
|
Willis MD, Carozza SE, Hystad P. Congenital anomalies associated with oil and gas development and resource extraction: a population-based retrospective cohort study in Texas. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:84-93. [PMID: 36460921 PMCID: PMC9852077 DOI: 10.1038/s41370-022-00505-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Oil and gas extraction-related activities produce air and water pollution that contains known and suspected teratogens. To date, health impacts of in utero exposure to these activities is largely unknown. OBJECTIVE We investigated associations between in utero exposure to oil and gas extraction activity in Texas, one of the highest producers of oil and gas, and congenital anomalies. METHODS We created a population-based birth cohort between 1999 and 2009 with full maternal address at delivery and linked to the statewide congenital anomaly surveillance system (n = 2,234,138 births, 86,315 cases). We examined extraction-related exposures using tertiles of inverse distance-squared weighting within 5 km for drilling site count, gas production, oil production, and produced water. In adjusted logistic regression models, we calculated odds of any congenital anomaly and 10 specific organ sites using two comparison groups: 1) 5 km of future drilling sites that are not yet operating (a priori main models), and 2) 5-10 km of an active well. RESULTS Using the temporal comparison group, we find increased odds of any congenital anomaly in the highest tertile exposure group for site count (OR: 1.25; 95% CI: 1.21, 1.30), oil production (OR: 1.08; 95% CI: 1.04, 1.12), gas production (1.20; 95% CI: 1.17, 1.23), and produced water (OR: 1.17; 95% CI: 1.14, 1.20). However, associations did not follow a consistent exposure-response pattern across tertiles. Associations are highly attenuated, but still increased, with the spatial comparison group in the highest tertile exposure group. Cardiac and circulatory defects are strongly and consistently associated with all exposure metrics. SIGNIFICANCE Increased odds of congenital anomalies, particularly cardiac and circulatory defects, were associated with exposures related to oil and gas extraction in this large population-based study. Future research is needed to confirm findings, examine specific exposure pathways, and identify potential avenues to reduce exposures among local populations. IMPACT About 5% of the U.S. population (~17.6 million people) resides within 1.6 km of an active oil or gas extraction site, yet the influence of this industry on population health is not fully understood. In this analysis, we examined associations between oil and gas extraction-related exposures and congenital anomalies by organ site using birth certificate and congenital anomaly surveillance data in Texas (1999-2009). Increased odds of congenital anomalies, particularly cardiac and circulatory defects, were associated with exposures related to oil and gas extraction in this large population-based study. Future research is needed to confirm these findings.
Collapse
Affiliation(s)
- Mary D Willis
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA.
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| | - Susan E Carozza
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
8
|
Pryor JT, Cowley LO, Simonds SE. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front Public Health 2022; 10:882569. [PMID: 35910891 PMCID: PMC9329703 DOI: 10.3389/fpubh.2022.882569] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Nine out of 10 people breathe air that does not meet World Health Organization pollution limits. Air pollutants include gasses and particulate matter and collectively are responsible for ~8 million annual deaths. Particulate matter is the most dangerous form of air pollution, causing inflammatory and oxidative tissue damage. A deeper understanding of the physiological effects of particulate matter is needed for effective disease prevention and treatment. This review will summarize the impact of particulate matter on physiological systems, and where possible will refer to apposite epidemiological and toxicological studies. By discussing a broad cross-section of available data, we hope this review appeals to a wide readership and provides some insight on the impacts of particulate matter on human health.
Collapse
Affiliation(s)
- Jack T. Pryor
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Woodrudge LTD, London, United Kingdom
| | - Lachlan O. Cowley
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephanie E. Simonds
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephanie E. Simonds
| |
Collapse
|
9
|
Razafimahefa RH, Pardosi JF, Sav A. Occupational Factors Affecting Women Workers’ Sexual and Reproductive Health Outcomes in Oil, Gas, and Mining Industry: A Scoping Review. Public Health Rev 2022; 43:1604653. [PMID: 35574566 PMCID: PMC9096608 DOI: 10.3389/phrs.2022.1604653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: Globally, female workers workforce in Oil, Gas, and Mining (OGM) industry have increased significantly. The complexities of the OGM operations and the extensive exposure to workplace hazards potentially affect the health status of workers, including sexual and reproductive health (SRH) outcomes of female workers. Yet, the current state of knowledge on SRH issues in OGM contexts seems to be limited and fragmented. This scoping review aims to identify the occupational factors that influence women’s SRH outcomes in OGM industry.Methods: This scoping review followed the Joanna Briggs Institute’s guidelines (PRISMA) and was conducted in five databases, including the citation chaining via Google Scholar and manual search through relevant organisations and Government websites. Sixteen articles met the inclusion criteria and were analysed.Results: Despite the scarcity of evidence, chemical and physical are found to be the predominant factors greatly influencing women workers’ SRH outcomes in OGM. Most studies showed menstrual and cycle disorders, and risky pregnancy as key SRH issues. However, menstruation disorder was considerably linked with psychological and organisational factors.Conclusion: This review suggests further empirical research on the relationship between OGM occupational hazards and women workers’ SRH. This will contribute to improvements in workplace safety legislations, measures, policies, and management systems taking into account women’s needs.
Collapse
Affiliation(s)
- Rina Hariniaina Razafimahefa
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Accident Research and Road Safety, Queensland University of Technology, Kelvin Grove, QLD, Australia
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Rina Hariniaina Razafimahefa,
| | - Jerico Franciscus Pardosi
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Adem Sav
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Mousavi SE, Delgado-Saborit JM, Adivi A, Pauwels S, Godderis L. Air pollution and endocrine disruptors induce human microbiome imbalances: A systematic review of recent evidence and possible biological mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151654. [PMID: 34785217 DOI: 10.1016/j.scitotenv.2021.151654] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 05/25/2023]
Abstract
A rich body of literature indicates that environmental factors interact with the human microbiome and influence its composition and functions contributing to the pathogenesis of diseases in distal sites of the body. This systematic review examines the scientific evidence on the effect of environmental toxicants, air pollutants and endocrine disruptors (EDCs), on compositional and diversity of human microbiota. Articles from PubMed, Embase, WoS and Google Scholar where included if they focused on human populations or the SHIME® model, and assessed the effects of air pollutants and EDCs on human microbiome. Non-human studies, not written in English and not displaying original research were excluded. The Newcastle-Ottawa Scale was used to assess the quality of individual studies. Results were extracted and presented in tables. 31 studies were selected, including 24 related to air pollutants, 5 related to EDCs, and 2 related to EDC using the SHIME® model. 19 studies focussed on the respiratory system (19), gut (8), skin (2), vaginal (1) and mammary (1) microbiomes. No sufficient number of studies are available to observe a consistent trend for most of the microbiota, except for streptococcus and veillionellales for which 9 out of 10, and 3 out of 4 studies suggest an increase of abundance with exposure to air pollution. A limitation of the evidence reviewed is the scarcity of existing studies assessing microbiomes from individual systems. Growing evidence suggests that exposure to environmental contaminants could change the diversity and abundance of resident microbiota, e.g. in the upper and lower respiratory, gastrointestinal, and female reproductive system. Microbial dysbiosis might lead to colonization of pathogens and outgrowth of pathobionts facilitating infectious diseases. It also might prime metabolic dysfunctions disrupting the production of beneficial metabolites. Further studies should elucidate the role of environmental pollutants in the development of dysbiosis and dysregulation of microbiota-related immunological processes.
Collapse
Affiliation(s)
- Sayed Esmaeil Mousavi
- Department of Water and Wastewater Treatment, Water and Wastewater Consulting Engineers (Design & Research), Isfahan, Iran
| | - Juana Maria Delgado-Saborit
- Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Universitat Jaume I, Castellon, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Anna Adivi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Sara Pauwels
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Belgium
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Belgium; IDEWE, External Service for Prevention and Protection at work, Interleuvenlaan 58, 3001 Heverlee, Belgium.
| |
Collapse
|
11
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
12
|
Characterizing the Performance of a Compact BTEX GC-PID for Near-Real Time Analysis and Field Deployment. SENSORS 2021; 21:s21062095. [PMID: 33802681 PMCID: PMC8002566 DOI: 10.3390/s21062095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 02/01/2023]
Abstract
In this study, we test the performance of a compact gas chromatograph with photoionization detector (GC-PID) and optimize the configuration to detect ambient (sub-ppb) levels of benzene, toluene, ethylbenzene, and xylene isomers (BTEX). The GC-PID system was designed to serve as a relatively inexpensive (~10 k USD) and field-deployable air toxic screening tool alternative to conventional benchtop GCs. The instrument uses ambient air as a carrier gas and consists of a Tenax-GR sorbent-based preconcentrator, a gas sample valve, two capillary columns, and a photoionization detector (PID) with a small footprint and low power requirement. The performance of the GC-PID has been evaluated in terms of system linearity and sensitivity in field conditions. The BTEX-GC system demonstrated the capacity to detect BTEX at levels as high as 500 ppb with a linear calibration range of 0–100 ppb. A detection limit lower than 1 ppb was found for all BTEX compounds with a sampling volume of 1 L. No significant drift in the instrument was observed. A time-varying calibration technique was established that requires minimal equipment for field operations and optimizes the sampling procedure for field measurements. With an analysis time of less than 15 min, the compact GC-PID is ideal for field deployment of background and polluted atmospheres for near-real time measurements of BTEX. The results highlight the application of the compact and easily deployable GC-PID for community monitoring and screening of air toxics.
Collapse
|
13
|
Rouget F, Bihannic A, Cordier S, Multigner L, Meyer-Monath M, Mercier F, Pladys P, Garlantezec R. Petroleum and Chlorinated Solvents in Meconium and the Risk of Hypospadias: A Pilot Study. Front Pediatr 2021; 9:640064. [PMID: 34150682 PMCID: PMC8206475 DOI: 10.3389/fped.2021.640064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Hypospadias is a male congenital malformation that occurs in ~2 of 1,000 births. The association between hypospadias and fetal exposure to environmental chemicals has been studied, but the results are inconsistent. Although several petroleum and chlorinated solvents are suspected to have teratogenic effects, their role in the occurrence of hypospadias has been little studied and never using biomarkers of exposure. We aimed to evaluate the association between fetal exposure to petroleum and chlorinated solvents measured in meconium and the occurrence of hypospadias. Methods: We conducted a pilot case-control study in the maternity of the University Hospital of Rennes (France). Eleven cases of hypospadias and 46 controls were recruited between October 2012 and January 2014. Data from hospital records and maternal self-reported questionnaires, including socio-demographic characteristics and occupational and non-occupational exposure to chemicals, were collected. Meconium samples were collected using a standardized protocol. Levels of petroleum solvents (toluene, benzene, ethylbenzene, and p, m, and o xylene), certain metabolites (mandelic acid, hippuric acid, methylhippuric acid, S-phenylmercapturic acid, S-benzylmercapturic acid, and phenylglyoxylic acid), and two chlorinated solvents (trichloroethylene and tetrachloroethylene) were measured in meconium by gas and liquid chromatography, both coupled to tandem mass spectrometry. Associations between the concentration of each chemical and the occurrence of hypospadias were analyzed using exact logistic regressions adjusted for maternal age, educational level, pre-pregnancy body mass index, and alcohol, and tobacco consumption during pregnancy. Results are presented with odds ratios (ORs) and their 95% confidence intervals (CIs). Results: Quantification rates for petroleum and chlorinated solvents or metabolites ranged from 2.2% (for methylhippuric acid) to 77.1% (for trichloroethylene) of the meconium samples. We found a significant association between the quantification of phenylglyoxylic acid (metabolite of styrene and ethylbenzene) in the meconium and a higher risk of hypospadias (OR = 14.2, 95% CI [2.5-138.7]). The risk of hypospadias was non-significantly elevated for most of the other solvents and metabolites. Conclusion: This exploratory study, on a limited number of cases, suggests an association between petroleum solvents and hypospadias. Additional studies are needed to confirm these results and identify the determinants for the presence of these solvents in meconium.
Collapse
Affiliation(s)
- Florence Rouget
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France.,Brittany Registry of Congenital Anomalies, CHU Rennes, Rennes, France
| | - Adèle Bihannic
- Brittany Registry of Congenital Anomalies, CHU Rennes, Rennes, France
| | - Sylvaine Cordier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Luc Multigner
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | | | - Fabien Mercier
- LERES, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Patrick Pladys
- Univ Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, Rennes, France
| | - Ronan Garlantezec
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| |
Collapse
|
14
|
Tachachartvanich P, Azhagiya Singam ER, Durkin KA, Smith MT, La Merrill MA. Structure-based discovery of the endocrine disrupting effects of hydraulic fracturing chemicals as novel androgen receptor antagonists. CHEMOSPHERE 2020; 257:127178. [PMID: 32505947 DOI: 10.1016/j.chemosphere.2020.127178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Hydraulic fracturing (HF) technology is increasingly utilized for oil and gas extraction operations. The widespread use of HF has led to concerns of negative impacts on both the environment and human health. Indeed, the potential endocrine disrupting impacts of HF chemicals is one such knowledge gap. Herein, we used structure-based molecular docking to assess the binding affinities of 60 HF chemicals to the human androgen receptor (AR). Five HF chemicals had relatively high predicted AR binding affinity, suggesting the potential for endocrine disruption. We next assessed androgenic and antiandrogenic activities of these chemicals in vitro. Of the five candidate AR ligands, only Genapol®X-100 significantly modified AR transactivation. To better understand the structural effect of Genapol®X-100 on the potency of AR inhibition, we compared the antiandrogenic activity of Genapol®X-100 with that of its structurally similar chemical, Genapol®X-080. Interestingly, both Genapol®X-100 and Genapol®X-080 elicited an antagonistic effect at AR with 20% relative inhibitory concentrations of 0.43 and 0.89 μM, respectively. Furthermore, we investigated the mechanism of AR inhibition of these two chemicals in vitro, and found that both Genapol®X-100 and Genapol®X-080 inhibited AR through a noncompetitive mechanism. The effect of these two chemicals on the expression of AR responsive genes, e.g. PSA, KLK2, and AR, was also investigated. Genapol®X-100 and Genapol®X-080 altered the expression of these genes. Our findings heighten awareness of endocrine disruption by HF chemicals and provide evidence that noncompetitive antiandrogenic Genapol®X-100 could cause adverse endocrine health effects.
Collapse
Affiliation(s)
- Phum Tachachartvanich
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | | | - Kathleen A Durkin
- Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, CA, 94720, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Watterson A, Dinan W. Lagging and Flagging: Air Pollution, Shale Gas Exploration and the Interaction of Policy, Science, Ethics and Environmental Justice in England. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4320. [PMID: 32560334 PMCID: PMC7344855 DOI: 10.3390/ijerph17124320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
The science on the effects of global climate change and air pollution on morbidity and mortality is clear and debate now centres around the scale and precise contributions of particular pollutants. Sufficient data existed in recent decades to support the adoption of precautionary public health policies relating to fossil fuels including shale exploration. Yet air quality and related public health impacts linked to ethical and environmental justice elements are often marginalized or missing in planning and associated decision making. Industry and government policies and practices, laws and planning regulations lagged well behind the science in the United Kingdom. This paper explores the reasons for this and what shaped some of those policies. Why did shale gas policies in England fail to fully address public health priorities and neglect ethical and environmental justice concerns. To answer this question, an interdisciplinary analysis is needed informed by a theoretical framework of how air pollution and climate change are largely discounted in the complex realpolitik of policy and regulation for shale gas development in England. Sources, including official government, regulatory and planning documents, as well as industry and scientific publications are examined and benchmarked against the science and ethical and environmental justice criteria. Further, our typology illustrates how the process works drawing on an analysis of official policy documents and statements on planning and regulatory oversight of shale exploration in England, and material from industry and their consultants relating to proposed shale oil and gas development. Currently the oil, gas and chemical industries in England continue to dominate and influence energy and feedstock-related policy making to the detriment of ethical and environmental justice decision making with significant consequences for public health.
Collapse
Affiliation(s)
- Andrew Watterson
- Occupational and Environmental Health Research Group, Faculty of Health Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - William Dinan
- Communications, Media & Culture, Faculty of Arts & Humanities, University of Stirling, Stirling FK9 4LA, Scotland, UK;
| |
Collapse
|
16
|
Jakob DS, Wang L, Wang H, Xu XG. Spectro-Mechanical Characterizations of Kerogen Heterogeneity and Mechanical Properties of Source Rocks at 6 nm Spatial Resolution. Anal Chem 2019; 91:8883-8890. [DOI: 10.1021/acs.analchem.9b00264] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Devon S. Jakob
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Le Wang
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Haomin Wang
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Xiaoji G. Xu
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
17
|
McMullin TS, Bamber AM, Bon D, Vigil DI, Van Dyke M. Exposures and Health Risks from Volatile Organic Compounds in Communities Located near Oil and Gas Exploration and Production Activities in Colorado (U.S.A.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071500. [PMID: 30012994 PMCID: PMC6069077 DOI: 10.3390/ijerph15071500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/29/2018] [Accepted: 07/07/2018] [Indexed: 11/30/2022]
Abstract
The study objective was to use a preliminary risk based framework to evaluate the sufficiency of existing air data to answer an important public health question in Colorado: Do volatile organic compounds (VOCs) emitted into the air from oil and gas (OG) operations result in exposures to Coloradoans living at or greater than current state setback distances (500 feet) from OG operations at levels that may be harmful to their health? We identified 56 VOCs emitted from OG operations in Colorado and compiled 47 existing air monitoring datasets that measured these VOCs in 34 locations across OG regions. From these data, we estimated acute and chronic exposures and compared these exposures to health guideline levels using maximum and mean air concentrations. Acute and chronic non-cancer hazard quotients were below one for all individual VOCs. Hazard indices combining exposures for all VOCs were slightly above one. Lifetime excess cancer risk estimates for benzene were between 1.0 × 10−5–3.6 × 10−5 and ethylbenzene was 7.3 × 10−6. This evaluation identified a small sub-set of VOCs, including benzene and n-nonane, which should be prioritized for additional exposure characterization in site-specific studies that collect comprehensive time-series measurements of community scale exposures to better assess community exposures.
Collapse
Affiliation(s)
- Tami S McMullin
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive S, Denver, CO 80246, USA.
| | - Alison M Bamber
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive S, Denver, CO 80246, USA.
| | - Daniel Bon
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive S, Denver, CO 80246, USA.
| | - Daniel I Vigil
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive S, Denver, CO 80246, USA.
| | - Michael Van Dyke
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive S, Denver, CO 80246, USA.
| |
Collapse
|