1
|
Zhen S, Li Q, Liao J, Zhu B, Liang F. Associations between Household Solid Fuel Use, Obesity, and Cardiometabolic Health in China: A Cohort Study from 2011 to 2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2826. [PMID: 36833523 PMCID: PMC9956243 DOI: 10.3390/ijerph20042826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
This study aims to explore the longitudinal relationship between solid fuel use and CMD incidence based on a nationally representative follow-up cohort study. A total of 6038 participants of the China Health and Retirement Longitudinal Study (CHARLS) were enrolled in the study. CMD is a cluster of diseases that include heart disease, stroke, and type 2 diabetes. Cox proportional-hazards regression models were used to examine the association between solid fuel use and the incidence or multimorbidity of CMD. The interactions between overweight or obesity and household air pollution on CMD incidence were also investigated. In the present study, solid fuel use from cooking or heating, separately or simultaneously, was positively associated with CMD incidence. Elevated solid fuel use was significantly associated with a higher risk of CMD incidence (HR = 1.25, 95% CI: 1.09, 1.43 for cooking; HR = 1.27, 95% CI: 1.11, 1.45 for heating). A statistically significant interaction between household solid fuel and OW/OB on the incidence of CMD and Cardiometabolic multimorbidity was also observed (p < 0.05). Our findings show that household solid fuel is a risk factor for the incidence of CMD. Therefore, reducing household solid fuel use and promoting clean energy may have great public health value for the prevention of CMD.
Collapse
Affiliation(s)
- Shihan Zhen
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Liao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Zhu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fengchao Liang
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Ye W, Steenland K, Quinn A, Liao J, Balakrishnan K, Rosa G, Ndagijimana F, Ntivuguruzwa JDD, Thompson LM, McCracken JP, Díaz-Artiga A, Rosenthal JP, Papageorghiou A, Davila-Roman VG, Pillarisetti A, Johnson M, Wang J, Nicolaou L, Checkley W, Peel JL, Clasen TF. Effects of a Liquefied Petroleum Gas Stove Intervention on Gestational Blood Pressure: Intention-to-Treat and Exposure-Response Findings From the HAPIN Trial. Hypertension 2022; 79:1887-1898. [PMID: 35708015 PMCID: PMC9278708 DOI: 10.1161/hypertensionaha.122.19362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Approximately 3 to 4 billion people worldwide are exposed to household air pollution, which has been associated with increased blood pressure (BP) in pregnant women in some studies. METHODS We recruited 3195 pregnant women in Guatemala, India, Peru, and Rwanda and randomly assigned them to intervention or control groups. The intervention group received a gas stove and fuel during pregnancy, while the controls continued cooking with solid fuels. We measured BP and personal exposure to PM2.5, black carbon and carbon monoxide 3× during gestation. We conducted an intention-to-treat and exposure-response analysis to determine if household air pollution exposure was associated with increased gestational BP. RESULTS Median 24-hour PM2.5 dropped from 84 to 24 μg/m3 after the intervention; black carbon and carbon monoxide decreased similarly. Intention-to-treat analyses showed an increase in systolic BP and diastolic BP in both arms during gestation, as expected, but the increase was greater in intervention group for both systolic BP (0.69 mm Hg [0.03-1.35]; P=0.04) and diastolic BP (0.62 mm Hg [0.05-1.19]; P=0.03). The exposure-response analyses suggested that higher exposures to household air pollution were associated with moderately higher systolic BP and diastolic BP; however, none of these associations reached conventional statistical significance. CONCLUSIONS In intention-to-treat, we found higher gestational BP in the intervention group compared with controls, contrary to expected. In exposure-response analyses, we found a slight increase in BP with higher exposure, but it was not statistically significant. Overall, an intervention with gas stoves did not markedly affect gestational BP.
Collapse
Affiliation(s)
- Wenlu Ye
- Gangarosa Department of Environmental Health, Rollins School of Public Health (W.Y., K.S., A. Pillarisetti, T.F.C.), Emory University, Atlanta, GA
- Environmental Health Sciences, School of Public Health, University of California, Berkeley (W.Y., A. Pillarisetti)
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health (W.Y., K.S., A. Pillarisetti, T.F.C.), Emory University, Atlanta, GA
| | - Ashlinn Quinn
- Berkeley Air Monitoring Group, Berkeley, CA (A.Q., M.J.)
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles (J.L.)
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India (K.B.)
| | - Ghislaine Rosa
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, United Kingdom (G.R.)
| | | | | | - Lisa M. Thompson
- Nell Hodgson Woodruff School of Nursing (L.M.T.), Emory University, Atlanta, GA
| | - John P. McCracken
- Department of Environmental Health Sciences, University of Georgia, Athens (J.P.M.)
| | | | - Joshua P. Rosenthal
- Division of Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD (J.P.R.)
| | - Aris Papageorghiou
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, United Kingdom (A. Papageorghiou)
| | | | - Ajay Pillarisetti
- Gangarosa Department of Environmental Health, Rollins School of Public Health (W.Y., K.S., A. Pillarisetti, T.F.C.), Emory University, Atlanta, GA
- Environmental Health Sciences, School of Public Health, University of California, Berkeley (W.Y., A. Pillarisetti)
| | | | - Jiantong Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health (J.W.), Emory University, Atlanta, GA
| | - Laura Nicolaou
- Division of Pulmonary and Critical Care, School of Medicine (L.N., W.C.), Johns Hopkins University, Baltimore, MD
- Center for Global Non-Communicable Disease Research and Training (L.N., W.C.), Johns Hopkins University, Baltimore, MD
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine (L.N., W.C.), Johns Hopkins University, Baltimore, MD
- Center for Global Non-Communicable Disease Research and Training (L.N., W.C.), Johns Hopkins University, Baltimore, MD
| | - Jennifer L. Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins (J.L.P.)
| | - Thomas F. Clasen
- Gangarosa Department of Environmental Health, Rollins School of Public Health (W.Y., K.S., A. Pillarisetti, T.F.C.), Emory University, Atlanta, GA
| |
Collapse
|
3
|
Benka-Coker ML, Clark ML, Rajkumar S, Young BN, Bachand AM, Brook RD, Nelson TL, Volckens J, Reynolds SJ, Wilson A, L'Orange C, Good N, Quinn C, Koehler K, Africano S, Osorto Pinel AB, Diaz-Sanchez D, Neas L, Peel JL. Household air pollution from wood-burning cookstoves and C-reactive protein among women in rural Honduras. Int J Hyg Environ Health 2022; 241:113949. [PMID: 35259686 PMCID: PMC8934269 DOI: 10.1016/j.ijheh.2022.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
Household air pollution from solid fuel combustion was estimated to cause 2.31 million deaths worldwide in 2019; cardiovascular disease is a substantial contributor to the global burden. We evaluated the cross-sectional association between household air pollution (24-h gravimetric kitchen and personal particulate matter (PM2.5) and black carbon (BC)) and C-reactive protein (CRP) measured in dried blood spots among 107 women in rural Honduras using wood-burning traditional or Justa (an engineered combustion chamber) stoves. A suite of 6 additional markers of systemic injury and inflammation were considered in secondary analyses. We adjusted for potential confounders and assessed effect modification of several cardiovascular-disease risk factors. The median (25th, 75th percentiles) 24-h-average personal PM2.5 concentration was 115 μg/m3 (65,154 μg/m3) for traditional stove users and 52 μg/m3 (39, 81 μg/m3) for Justa stove users; kitchen PM2.5 and BC had similar patterns. Higher concentrations of PM2.5 and BC were associated with higher levels of CRP (e.g., a 25% increase in personal PM2.5 was associated with a 10.5% increase in CRP [95% CI: 1.2-20.6]). In secondary analyses, results were generally consistent with a null association. Evidence for effect modification between pollutant measures and four different cardiovascular risk factors (e.g., high blood pressure) was inconsistent. These results support the growing evidence linking household air pollution and cardiovascular disease.
Collapse
Affiliation(s)
- Megan L Benka-Coker
- Department of Health Sciences, Gettysburg College, Gettysburg, PA, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah Rajkumar
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Bonnie N Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Annette M Bachand
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert D Brook
- Division of Cardiovascular Diseases, Wayne State University, Detroit, MI, USA
| | - Tracy L Nelson
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Stephen J Reynolds
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Nicholas Good
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Casey Quinn
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Anibal B Osorto Pinel
- Trees, Water & People, Fort Collins, CO, USA; Asociación Hondureña para el Desarrollo, Tegucigalpa, Honduras
| | - David Diaz-Sanchez
- U.S. Environmental Protectection Agency, ORD, NHEERL, Environmental Public Health Divsion, USA
| | - Lucas Neas
- U.S. Environmental Protectection Agency, ORD, NHEERL, Environmental Public Health Divsion, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
4
|
Abstract
There is global concern regarding access to energy, especially in developing countries, as set forth in the Sustainable Development Goals. Although Peru is classified as an emerging economy and would be expected to have achieved full energy coverage, the status of the access to fuels in Peru is unknown. The objective of this study was to comprehensively document the instruments and the progress made on the issue of access to modern fuels and technologies for cooking in Peru to explain the current situation and to highlight the main challenges that the country must face to achieve total access to modern energy sources. A comprehensive literature review was carried out for this work, covering a wide range of publications from 1983 to 2019. A total of 18 political and economic instruments and 95 voluntary instruments were analyzed. It made it possible to build a historical series of the main events leading to access to modern cooking fuels in Peru and to identify eight key challenges. The results show that the country has made remarkable progress in recent years, but this progress is not enough to close the access gap. Therefore, seems advisable to act on the current policy framework, formulate more inclusive policies, promote unified institutional efforts and generate technological options that respond to territory and population as diverse as Peru.
Collapse
|
5
|
Shupler M, Hystad P, Birch A, Chu YL, Jeronimo M, Miller-Lionberg D, Gustafson P, Rangarajan S, Mustaha M, Heenan L, Seron P, Lanas F, Cazor F, Jose Oliveros M, Lopez-Jaramillo P, Camacho PA, Otero J, Perez M, Yeates K, West N, Ncube T, Ncube B, Chifamba J, Yusuf R, Khan A, Liu Z, Wu S, Wei L, Tse LA, Mohan D, Kumar P, Gupta R, Mohan I, Jayachitra KG, Mony PK, Rammohan K, Nair S, Lakshmi PVM, Sagar V, Khawaja R, Iqbal R, Kazmi K, Yusuf S, Brauer M. Multinational prediction of household and personal exposure to fine particulate matter (PM 2.5) in the PURE cohort study. ENVIRONMENT INTERNATIONAL 2022; 159:107021. [PMID: 34915352 DOI: 10.1016/j.envint.2021.107021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Use of polluting cooking fuels generates household air pollution (HAP) containing health-damaging levels of fine particulate matter (PM2.5). Many global epidemiological studies rely on categorical HAP exposure indicators, which are poor surrogates of measured PM2.5 levels. To quantitatively characterize HAP levels on a large scale, a multinational measurement campaign was leveraged to develop household and personal PM2.5 exposure models. METHODS The Prospective Urban and Rural Epidemiology (PURE)-AIR study included 48-hour monitoring of PM2.5 kitchen concentrations (n = 2,365) and male and/or female PM2.5 exposure monitoring (n = 910) in a subset of households in Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania and Zimbabwe. PURE-AIR measurements were combined with survey data on cooking environment characteristics in hierarchical Bayesian log-linear regression models. Model performance was evaluated using leave-one-out cross validation. Predictive models were applied to survey data from the larger PURE cohort (22,480 households; 33,554 individuals) to quantitatively estimate PM2.5 exposures. RESULTS The final models explained half (R2 = 54%) of the variation in kitchen PM2.5 measurements (root mean square error (RMSE) (log scale):2.22) and personal measurements (R2 = 48%; RMSE (log scale):2.08). Primary cooking fuel type, heating fuel type, country and season were highly predictive of PM2.5 kitchen concentrations. Average national PM2.5 kitchen concentrations varied nearly 3-fold among households primarily cooking with gas (20 μg/m3 (Chile); 55 μg/m3 (China)) and 12-fold among households primarily cooking with wood (36 μg/m3 (Chile)); 427 μg/m3 (Pakistan)). Average PM2.5 kitchen concentration, heating fuel type, season and secondhand smoke exposure were significant predictors of personal exposures. Modeled average PM2.5 female exposures were lower than male exposures in upper-middle/high-income countries (India, China, Colombia, Chile). CONCLUSION Using survey data to estimate PM2.5 exposures on a multinational scale can cost-effectively scale up quantitative HAP measurements for disease burden assessments. The modeled PM2.5 exposures can be used in future epidemiological studies and inform policies targeting HAP reduction.
Collapse
Affiliation(s)
- Matthew Shupler
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom.
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Aaron Birch
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yen Li Chu
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew Jeronimo
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Paul Gustafson
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sumathy Rangarajan
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Maha Mustaha
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Laura Heenan
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Pamela Seron
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | - Paul A Camacho
- Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Colombia
| | - Johnna Otero
- Universidad Militar Nueva Granada, Bogota, Colombia
| | | | - Karen Yeates
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Nicola West
- Pamoja Tunaweza Research Centre, Moshi, Tanzania
| | - Tatenda Ncube
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Brian Ncube
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Jephat Chifamba
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rita Yusuf
- School of Life Sciences, Independent University, Dhaka, Bangladesh
| | - Afreen Khan
- School of Life Sciences, Independent University, Dhaka, Bangladesh
| | - Zhiguang Liu
- Beijing An Zhen Hospital of the Capital University of Medical Sciences, China
| | - Shutong Wu
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, China
| | - Li Wei
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, China
| | - Lap Ah Tse
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, HKSAR, China
| | - Deepa Mohan
- Madras Diabetes Research Foundation, Chennai, India
| | | | - Rajeev Gupta
- Eternal Heart Care Centre & Research Institute, Jaipur, India
| | - Indu Mohan
- Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, India
| | - K G Jayachitra
- St. John's Medical College & Research Institute, Bangalore, India
| | - Prem K Mony
- St. John's Medical College & Research Institute, Bangalore, India
| | - Kamala Rammohan
- Health Action By People, Government Medical College, Trivandrum, India
| | - Sanjeev Nair
- Health Action By People, Government Medical College, Trivandrum, India
| | - P V M Lakshmi
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivek Sagar
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rehman Khawaja
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Romaina Iqbal
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Khawar Kazmi
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Salim Yusuf
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Xu Z, Wang W, Liu Q, Li Z, Lei L, Ren L, Deng F, Guo X, Wu S. Association between gaseous air pollutants and biomarkers of systemic inflammation: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118336. [PMID: 34634403 DOI: 10.1016/j.envpol.2021.118336] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Studies have linked gaseous air pollutants to multiple health effects via inflammatory pathways. Several major inflammatory biomarkers, including C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have also been considered as predictors of cardiovascular disease. However, there has been no meta-analysis to evaluate the associations between gaseous air pollutants and these typical biomarkers of inflammation to date. OBJECTIVES To evaluate the overall associations between short-term and long-term exposures to ambient ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon dioxide (CO) and major inflammatory biomarkers including CRP, fibrinogen, IL-6 and TNF-α. METHODS A meta-analysis was conducted for publications from PubMed, Web of Science, Scopus and EMBASE databases up to Feb 1st, 2021. RESULTS The meta-analysis included 38 studies conducted among 210,438 participants. Generally, we only observed significant positive associations between short-term exposures to gaseous air pollutants and inflammatory biomarkers. For a 10 μg/m3 increase in short-term exposure to O3, NO2, and SO2, there were significant increases of 1.05% (95%CI: 0.09%, 2.02%), 1.60% (95%CI: 0.49%, 2.72%), and 10.44% (95%CI: 4.20%, 17.05%) in CRP, respectively. Meanwhile, a 10 μg/m3 increase in NO2 was also associated with a 4.85% (95%CI: 1.10%, 8.73%) increase in TNF-α. Long-term exposures to gaseous air pollutants were not statistically associated with these biomarkers, but the study numbers were relatively small. Subgroup analyses found more apparent associations in studies with better study design, higher quality, and smaller sample size. Meanwhile, the associations also varied across studies conducted in different geographical regions. CONCLUSION Short-term exposure to gaseous air pollutants is associated with increased levels of circulating inflammatory biomarkers, suggesting that a systemic inflammatory state is activated upon exposure. More studies on long-term exposure to gaseous air pollutants and inflammatory biomarkers are warranted to verify the associations.
Collapse
Affiliation(s)
- Zhouyang Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zichuan Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lihua Ren
- Division of Maternal and Child Nursing, School of Nursing, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Fandiño-Del-Rio M, Kephart JL, Williams KN, Malpartida G, Barr DB, Steenland K, Koehler K, Checkley W. Household air pollution and blood markers of inflammation: A cross-sectional analysis. INDOOR AIR 2021; 31:1509-1521. [PMID: 33749948 PMCID: PMC8380676 DOI: 10.1111/ina.12814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/19/2021] [Indexed: 05/08/2023]
Abstract
Household air pollution (HAP) from biomass stoves is a leading risk factor for cardiopulmonary outcomes; however, its toxicity pathways and relationship with inflammation markers are poorly understood. Among 180 adult women in rural Peru, we examined the cross-sectional exposure-response relationship between biomass HAP and markers of inflammation in blood using baseline measurements from a randomized trial. We measured markers of inflammation (CRP, IL-6, IL-10, IL-1β, and TNF-α) with dried blood spots, 48-h kitchen area concentrations and personal exposures to fine particulate matter (PM2.5 ), black carbon (BC), and carbon monoxide (CO), and 48-h kitchen concentrations of nitrogen dioxide (NO2 ) in a subset of 97 participants. We conducted an exposure-response analysis between quintiles of HAP levels and markers of inflammation. Markers of inflammation were more strongly associated with kitchen area concentrations of BC than PM2.5 . As expected, kitchen area BC concentrations were positively associated with TNF-α (pro-inflammatory) concentrations and negatively associated with IL-10, an anti-inflammatory marker, controlling for confounders in single- and multi-pollutant models. However, contrary to expectations, kitchen area BC and NO2 concentrations were negatively associated with IL-1β, a pro-inflammatory marker. No associations were identified for IL-6 or CRP, or for any marker in relation to personal exposures.
Collapse
Affiliation(s)
- Magdalena Fandiño-Del-Rio
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
| | - Josiah L. Kephart
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
| | - Kendra N. Williams
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gary Malpartida
- Molecular Biology and Immunology Laboratory, Research Laboratory of Infectious Diseases, Department of Cell and Molecular Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
- Biomedical Research Unit, Asociación Benéfica PRISMA, Lima, Perú
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - William Checkley
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Vu BN, Tapia V, Ebelt S, Gonzales GF, Liu Y, Steenland K. The association between asthma emergency department visits and satellite-derived PM 2.5 in Lima, Peru. ENVIRONMENTAL RESEARCH 2021; 199:111226. [PMID: 33957138 PMCID: PMC8195863 DOI: 10.1016/j.envres.2021.111226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Asthma affects millions of people worldwide. Lima, Peru is one of the most polluted cities in the Americas but has insufficient ground PM2.5 (particulate matter that are 2.5 μm or less in diameter) measurements to conduct epidemiologic studies regarding air pollution. PM2.5 estimates from a satellite-driven model have recently been made, enabling a study between asthma and PM2.5. OBJECTIVE We conducted a daily time-series analysis to determine the association between asthma emergency department (ED) visits and estimated ambient PM2.5 levels in Lima, Peru from 2010 to 2016. METHODS We used Poisson generalized linear models to regress aggregated counts of asthma on district-level population weighted PM2.5. Indicator variables for hospitals, districts, and day of week were included to account for spatial and temporal autocorrelation while assessing same day, previous day, day before previous and average across all 3-day exposures. We also included temperature and humidity to account for meteorology and used dichotomous percent poverty and gender variables to assess effect modification. RESULTS There were 103,974 cases of asthma ED visits during the study period across 39 districts in Lima. We found a 3.7% (95% CI: 1.7%-5.8%) increase in ED visits for every interquartile range (IQR, 6.02 μg/m3) increase in PM2.5 same day exposure with no age stratification. For the 0-18 years age group, we found a 4.5% (95% CI: 2.2%-6.8%) increase in ED visits for every IQR increase in PM2.5 same day exposure. For the 19-64 years age group, we found a 6.0% (95% CI: 1.0%-11.0%) increase in ED visits for every IQR in average 3-day exposure. For the 65 years and up age group, we found a 16.0% (95% CI: 7.0%-24.0%) decrease in ED visits for every IQR increase in PM2.5 average 3-day exposure, although the number of visits in this age group was low (4,488). We found no effect modification by SES or gender. DISCUSSION Results from this study provide additional literature on use of satellite-driven exposure estimates in time-series analyses and evidence for the association between PM2.5 and asthma in a low- and middle-income (LMIC) country.
Collapse
Affiliation(s)
- Bryan N Vu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States.
| | - Vilma Tapia
- Laboratory of Reproduction and Endocrinology, Laboratories of Investigation and Development (LID), Faculty of Sciences and Philosophy, Universidad Peruana, Cayetano Heredia, Lima, Peru; Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru; Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stefanie Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Gustavo F Gonzales
- Laboratory of Reproduction and Endocrinology, Laboratories of Investigation and Development (LID), Faculty of Sciences and Philosophy, Universidad Peruana, Cayetano Heredia, Lima, Peru; Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru; Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|