1
|
Yang J, Zhang K, Shi J, Li Z, Dai H, Yang W. Perfluoroalkyl and polyfluoroalkyl substances and Cancer risk: results from a dose-response Meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:455-469. [PMID: 39464822 PMCID: PMC11499464 DOI: 10.1007/s40201-024-00899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/06/2024] [Indexed: 10/29/2024]
Abstract
Background Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent organic pollutants in the environment. While some studies suggest that PFASs may contribute to cancer development, the link between PFAS exposure and cancer risk remains debated. Methods This dose-response meta-analysis explores the relationship between PFASs and cancer. It employs odds ratio (OR) and standardized mean difference (SMD), along with their 95% confidence interval (CI), to assess the effects of PFASs on cancer risk. Relevant studies were sourced from Web of Science, PubMed, Embase, Medline, and CNKI databases. The dose-response relationship was assessed by the fixed-effects model and least-squares regression. Results Forty studies, involving a total of 748,188 participants, were included in this meta-analysis. Out of these, 13 studies were specifically analyzed for the dose-response relationship. Findings revealed that exposure to PFASs, especially PFDA, significantly raises the risk of genitourinary cancers, and PFDA exposure shows a dose-dependent increase in overall and breast cancer risk. Additionally, PFOS exposure is associated with an increased cancer risk, and elevated PFOA levels were significantly observed in breast cancer patients. Conclusions The findings suggest that PFAS exposure is a potential cancer risk factor, with the carcinogenic potential of PFDA being dose-dependent. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00899-w.
Collapse
Affiliation(s)
- Jingxuan Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| | - Jingyi Shi
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| | - Zhuo Li
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| | - Hao Dai
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| | - Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| |
Collapse
|
2
|
Feng Y, You Y, Li M, Guan X, Fu M, Wang C, Xiao Y, He M, Guo H. Mitochondrial DNA copy number mediated the associations between perfluoroalkyl substances and breast cancer incidence: A prospective case-cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173767. [PMID: 38844220 DOI: 10.1016/j.scitotenv.2024.173767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Epidemiologic studies have reported the relationships between perfluoroalkyl substances (PFASs) and breast cancer incidence, yet the underlying mechanisms are not well understood. This study aimed to elucidate the mediation role of mitochondrial DNA copy number (mtDNAcn) in the relationships between PFASs exposure and breast cancer risk. We conducted a case-cohort study within the Dongfeng-Tongji cohort, involving 226 incident breast cancer cases and a random sub-cohort (n = 990). Their plasma concentrations of six PFASs [including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)], and peripheral blood levels of mtDNAcn, were detected at baseline by using ultraperformance liquid chromatography-tandem mass spectrometry and quantitative real-time PCR, respectively. Linear regression and Barlow-weighted Cox models were employed separately to assess the relationships of mtDNAcn with PFASs and breast cancer risk. Mediation analysis was further conducted to quantify the mediating effects of mtDNAcn on PFAS-breast cancer relationships. We observed increased blood mtDNAcn levels among participants with the highest PFNA and PFHpA exposure [Q4 vs. Q1, β(95%CI) = 0.092(0.022, 0.162) and 0.091(0.022, 0.160), respectively], while no significant associations were observed of PFOA, PFDA, PFOS, or PFHxS with mtDNAcn. Compared to participants within the lowest quartile subgroup of mtDNAcn, those with the highest mtDNAcn levels exhibited a significantly increased risk of breast cancer and postmenopausal breast cancer [Q4 vs. Q1, HR(95%CI) = 3.34(1.80, 6.20) and 3.71(1.89, 7.31)]. Furthermore, mtDNAcn could mediate 14.6 % of the PFHpA-breast cancer relationship [Indirect effect, HR(95%CI) = 1.02(1.00, 1.05)]. Our study unveiled the relationships of PFNA and the short-chain PFHpA with mtDNAcn and the mediation role of mtDNAcn in the PFHpA-breast cancer association. These findings provided insights into the potential biological mechanisms linking PFASs to breast cancer risk.
Collapse
Affiliation(s)
- Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China.
| |
Collapse
|
3
|
Barrea C, Dufour P, Catherine P, Charlier C, Brevers F, Rousselle L, Parent AS. Impact of antenatal exposure to a mixture of persistent organic pollutants on intellectual development. Int J Hyg Environ Health 2024; 261:114422. [PMID: 38981323 DOI: 10.1016/j.ijheh.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Strong experimental evidence exists that several endocrine disrupting chemicals (EDCs) have neurobehavioral toxicity. However, evidence of associations between prenatal exposure and child's cognitive development is inconsistent. Moreover, toxicants are generally analyzed one by one without considering aggregate effects. We examined here the impact of a prenatal exposure to a mixture of persistent organic pollutants (POPs) on intellectual abilities in preschool children, and compared their effects to those described in the literature. METHODS Sixty-two children were included in a longitudinal cohort. Four organochlorine pesticides, four polychlorinated biphenyls (PCBs) and seven perfluorinated compounds (PFCs) were measured in cord blood. Intellectual abilities were assessed at 6 years of age using the Wechsler Preschool and Primary Scale of Intelligence 4th ed. (WPPSI-IV). We examined the associations between a mixture of POPs and cognitive performances using principal components approach (PCA) and weighted quantile sum (WQS) regression taking sex difference into account. RESULTS No negative correlation was found when analyses were performed on boys and girls together. In sex-stratified analyses, lower scores in full scale intelligence quotient (FSIQ) and fluid reasoning index (FRI) were observed in boys most exposed to a mixture of POPs. Increase of the WQS index was also associated with lower verbal comprehension index (VCI) scores in girls only. No other negative correlation was found using both WQS and PCA models. CONCLUSION Our study suggests deleterious associations between antenatal exposure to a mixture of POPs and sex-specific cognitive level, clarifying some trends described in the literature.
Collapse
Affiliation(s)
- Christophe Barrea
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium.
| | - Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Pirard Catherine
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Fanny Brevers
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Laurence Rousselle
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Anne-Simone Parent
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium
| |
Collapse
|
4
|
Hong X, Wang W, Huang L, Yuan J, Ding X, Wang H, Ji Q, Zhao F, Wang B. Associations between multiple metal exposure and fertility in women: A nested case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116030. [PMID: 38310826 DOI: 10.1016/j.ecoenv.2024.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
Metal pollution can cause a decline in female fertility, however, previous studies have focused more on the effect of a single metal on fertility. In this study, we evaluated the effect of metal mixtures on female fertility based on nested case-control samples. The plasma levels of 22 metal elements from 180 women were determined by an inductively coupled plasma mass spectrometer (ICP-MS). Minimum absolute contraction and selection operator (LASSO) penalty regression selected metals with the greatest influence on clinical outcome. Logistic regression was used to analyze the correlation between single metals and fertility while a Bayesian kernel function regression (BKMR) model was used to analyze the effect of mixed metals. Eight metals (Calcium (Ca), Chromium (Cr), Cobalt (Co), Copper (Cu), Zinc (Zn), Rubidium (Rb), Strontium (Sr) and Zirconium (Zr)) were selected by LASSO regression for subsequent analysis. After adjusting for covariates, the logistic model showed that Cu (Odds Ratio(OR):0.33, 95% CI: 0.13 - 0.84) and Co (OR:0.38, 95% CI: 0.15 -0.94) caused a significant reduction in fertility, and identified the protective effect of Zn (OR: 2.96, 95% CI:1.21 -7.50) on fertility. Trend tests showed that increased Cr, Cu, and Rb levels were associated with reduced fertility. The BKMR model showed that Cr, Co, Cu, and Rb had a nonlinear relationship with fertility decline when controlling for the concentrations of other metals and suggested that Cu and Cr might exert an influence on fertility. Analysis showed a negative correlation between Cu, Cr, Co, Rb, and fertility, and a positive correlation between Zn and fertility. Furthermore, we found evidence for the interaction between Cu and Cr. Our findings require further validation and may identify new mechanisms in the future.
Collapse
Affiliation(s)
- Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Wei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Lingling Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Jinhua Yuan
- Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Xiaoling Ding
- Maternal and Child Health Center of Gulou District, Nanjing, China
| | - Hao Wang
- Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Qian Ji
- Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Fanqi Zhao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Romadhon YA, Kurniati YP, Jumadi J, Alesheikh AA, Lotfata A. Analyzing socio-environmental determinants of bone and soft tissue cancer in Indonesia. BMC Cancer 2024; 24:206. [PMID: 38350928 PMCID: PMC10865616 DOI: 10.1186/s12885-024-11974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND This study is designed to explore the potential impact of individual and environmental residential factors as risk determinants for bone and soft tissue cancers, with a particular focus on the Indonesian context. While it is widely recognized that our living environment can significantly influence cancer development, there has been a notable scarcity of research into how specific living environment characteristics relate to the risk of bone and soft tissue cancers. METHODS In a cross-sectional study, we analyzed the medical records of oncology patients treated at Prof. Suharso National Referral Orthopedic Hospital. The study aimed to assess tumor malignancy levels and explore the relationships with socio-environmental variables, including gender, distance from the sea, sunrise time, altitude, and population density. Data were gathered in 2020 from diverse sources, including medical records, Google Earth, and local statistical centers. The statistical analyses employed Chi-square and logistic regression techniques with the support of Predictive Analytics SoftWare (PASW) Statistics 18. RESULTS Both bivariate and multivariate analyses revealed two significant factors associated with the occurrence of bone and soft tissue cancer. Age exhibited a statistically significant influence (OR of 5.345 and a p-value of 0.000 < 0.05), indicating a robust connection between cancer development and age. Additionally, residing within a distance of less than 14 km from the sea significantly affected the likelihood of bone and soft tissue cancers OR 5.604 and p-value (0.001 < 0.05). CONCLUSIONS The study underscores the strong association between age and the development of these cancers, emphasizing the need for heightened vigilance and screening measures in older populations. Moreover, proximity to the sea emerges as another noteworthy factor influencing cancer risk, suggesting potential environmental factors at play. These results highlight the multifaceted nature of cancer causation and underscore the importance of considering socio-environmental variables when assessing cancer risk factors. Such insights can inform more targeted prevention and early detection strategies, ultimately contributing to improved cancer management and patient outcomes.
Collapse
Affiliation(s)
- Yusuf Alam Romadhon
- Faculty of Medicine, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
- Centre for Chronical Disease, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
| | - Yuni Prastyo Kurniati
- Faculty of Medicine, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
| | - Jumadi Jumadi
- Centre for Chronical Disease, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
- Faculty of Geography, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
| | - Ali Asghar Alesheikh
- Department of Geospatial Information Systems, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Aynaz Lotfata
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
6
|
Wu M, Liu M, Zhang Y, Wu J, Gao M, Huang F, Chen H, Zhu Z. Serum HDL partially mediates the association between exposure to volatile organic compounds and kidney stones: A nationally representative cross-sectional study from NHANES. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167915. [PMID: 37858818 DOI: 10.1016/j.scitotenv.2023.167915] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Environmental exposure to volatile organic compounds (VOCs) is ubiquitous, and this study explored whether exposure to VOCs is associated with the risk of kidney stones. We performed a nationally representative US cross-sectional study using data from five survey cycles (2011-2020) of the National Health and Nutrition Examination Survey (NHANES) program. Exposure to VOCs was determined by urine creatinine-corrected metabolites of VOCs (mVOCs). In total 5505 participants and 15 urine mVOCs were included for analysis, and the prevalence of kidney stones was 9.57 % (527/5505). Multivariable logistic regression showed that urine AMCC (parent VOCs (pVOCs): N, N-Dimethylformamide), 3,4-MHA (pVOCs: xylene), MA (pVOCs: ethylbenzene; styrene), DHBMA (pVOCs: 1,3-butadiene), HMPMA (pVOCs: crotonaldehyde) and 2HPMA (pVOCs: propylene oxide) were significantly associated with an increased risk of kidney stones in US general population. Sub-analysis revealed that there was a more pronounced association in women and the overweight/obesity group (body mass index ≥ 25). Moreover, the weighted quantile sum (WQS) regression model and the Bayesian kernel machine regression (BKMR) model consistently identified a positive association between co-exposure to VOCs and the risk of kidney stones, in which AMCC played the most important role among the 15 mVOCs. Mediation analysis further identified serum high-density lipoprotein cholesterol (HDL) as a mediator of the association between VOC co-exposure and kidney stones. Our study draws attention to the previously unknown positive associations between non-occupational VOC exposure and the risk of kidney stones in the general population. However, further studies are required to clarify the existence of such causation.
Collapse
Affiliation(s)
- Maolan Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minghui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youjie Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Winquist A, Hodge JM, Diver WR, Rodriguez JL, Troeschel AN, Daniel J, Teras LR. Case-Cohort Study of the Association between PFAS and Selected Cancers among Participants in the American Cancer Society's Cancer Prevention Study II LifeLink Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127007. [PMID: 38088576 PMCID: PMC10718084 DOI: 10.1289/ehp13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Previous epidemiological studies found associations between exposure to per- and polyfluoroalkyl substances (PFAS) and some cancer types. Many studies considered highly exposed populations, so relevance to less-exposed populations can be uncertain. Additionally, many studies considered only cancer site, not histology. OBJECTIVES We conducted a case-cohort study within the American Cancer Society's prospective Cancer Prevention Study II (CPS-II) LifeLink cohort to examine associations between PFAS exposure and risk of selected cancers, considering histologic subtypes. METHODS Serum specimens were collected from cohort participants during the period 1998-2001. This study included a subcohort (500 men, 499 women) randomly selected from participants without prior cancer diagnoses at serum collection, and all participants with incident (after serum collection) first cancers of the breast (females only, n = 786 ), bladder (n = 401 ), kidney (n = 158 ), pancreas (n = 172 ), prostate (males only, n = 1,610 ) or hematologic system (n = 635 ). PFAS concentrations [perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)] were measured in stored serum. We assessed associations between PFAS concentrations and incident cancers, by site and histologic subtype, using multivariable Cox proportional hazards models stratified by sex and controlling for age and year at blood draw, education, race/ethnicity, smoking, and alcohol use. RESULTS Serum PFOA concentrations were positively associated with renal cell carcinoma of the kidney among women [hazard ratio (HR) and 95% confidence interval (CI) per PFOA doubling: 1.54 (95% CI: 1.05, 2.26)] but not men. Among men, we observed a positive association between PFHxS concentrations and chronic lymphocytic leukemia/small lymphocytic lymphoma [CLL/SLL, HR and 95% CI per PFHxS doubling: 1.34 (95% CI: 1.02, 1.75)]. We observed some heterogeneity of associations by histologic subtype within sites. DISCUSSION This study supports the previously observed association between PFOA and renal cell carcinoma among women and suggests an association between PFHxS and CLL/SLL among men. Consideration of histologic subtypes might be important in future studies of PFAS-cancer associations. https://doi.org/10.1289/EHP13174.
Collapse
Affiliation(s)
- Andrea Winquist
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James M. Hodge
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - W. Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - Juan L. Rodriguez
- Division of Cancer Prevention and Control, National Center for Chronic Disease Prevention and Health Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alyssa N. Troeschel
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology and Laboratory Services, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Johnni Daniel
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Li H, Yang M, Yang J, Seery S, Ma C, Liu Y, Zhang X, Li A, Guo H. Per- and polyfluoroalkyl substances and the associated thyroid cancer risk: A case-control study in China. CHEMOSPHERE 2023; 337:139411. [PMID: 37419160 DOI: 10.1016/j.chemosphere.2023.139411] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/13/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
The role of perfluoroalkyl and polyfluoroalkyl substances (PFAS) as thyroid carcinogens is unclear. Therefore, we intended to identify associations between each PFAS congener and their mixture with thyroid cancer risk. This case-control study of thyroid cancer was conducted in Shijiazhuang, Hebei Province, China. Three hundred participants were recruited from January to May 2022 and were matched according to sex and age. Twelve PFAS were assessed using ultra-high-performance liquid chromatography-tandem mass spectrometry. Associations between PFAS congeners and thyroid cancer risk were considered under conditional logistic regression analysis and a restricted cubic spline model. Mixture effects were also assessed with quantile g-computation and a Bayesian kernel machine regression model. Compared to the first tertile, third tertile PFOA, PFNA, PFHxS, PFDA, and PFUnDA concentrations were associated with lower thyroid cancer risk (ORPFOA: 0.32, 95% confidence interval (CI): 0.15-0.69; ORPFNA: 0.18, 95% CI: 0.07-0.46; ORPFHxS: 0.37, 95% CI: 0.15-0.92; ORPFDA: 0.07, 95% CI: 0.02-0.23; ORPFUnDA: 0.12, 95% CI: 0.05-0.30) after adjusting for confounding factors. PFNA, PFDA, and PFUnDA had a negative dose-response relationship with thyroid cancer risk. Mixture analysis also showed that thyroid cancer risk is negatively associated with the overall mixture and carboxylates. In the overall mixture, PFOS and PFDA contributed most to positive and negative changes in thyroid cancer risk, respectively. However, PFOS, PFNA, PFDA, and PFUnDA were of equally high importance. This study is the first to confirm the effects of the PFAS mixture on thyroid cancer, and further large-scale prospective studies are still warranted to test these inverse associations.
Collapse
Affiliation(s)
- Haoran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, PR China
| | - Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Samuel Seery
- Faculty of Health and Medicine, Division of Health Research, Lancaster University, Lancaster, LA1 4YW, UK; School of Humanities and Social Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chaoying Ma
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
9
|
Savitz DA, Hattersley AM. Evaluating Chemical Mixtures in Epidemiological Studies to Inform Regulatory Decisions. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:45001. [PMID: 37022726 PMCID: PMC10078806 DOI: 10.1289/ehp11899] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Epidemiological studies are increasingly going beyond the evaluation of health effects of individual chemicals to consider chemical mixtures. To our knowledge, the advantages and disadvantages of addressing chemical mixtures for informing regulatory decisions-as opposed to obtaining a more comprehensive understanding of etiology-has not been carefully considered. OBJECTIVES We offer a framework for the study of chemical mixtures in epidemiological research intended to inform regulatory decisions. We identify a) the different ways mixtures originate (product source, pollution source, shared mode of action, or shared effect on health outcome), b) the use of indicator chemicals to address mixtures, and c) the requirements for epidemiological studies to be informative for regulatory purposes. DISCUSSION The principal advantage of considering mixtures is to obtain a more complete understanding of the role of the chemical environment as a determinant of health. Incorporating other exposures may improve the assessment of the net effect of the chemicals of interest. However, the increased complexity and potential loss of generalizability may limit the value of studies of mixtures, especially for mixtures based on mode of action or shared health outcomes. Our recommended strategy is to successively assess the marginal contribution of individual chemicals, joint effects with other specific chemicals, and hypothesis-driven evaluation of mixtures rather than applying hypothesis-free data exploration methods. Although more ambitious statistical approaches to mixtures may, in time, be helpful for guiding regulation, the authors believe conventional methods for assessing individual and combined effects of chemicals remain preferable. https://doi.org/10.1289/EHP11899.
Collapse
Affiliation(s)
- David A. Savitz
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Anne M. Hattersley
- Global Safety Surveillance and Analysis, Procter & Gamble, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Zhan W, Yang H, Zhang J, Chen Q. Association between co-exposure to phenols and phthalates mixture and infertility risk in women. ENVIRONMENTAL RESEARCH 2022; 215:114244. [PMID: 36058272 DOI: 10.1016/j.envres.2022.114244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Exposure to phenols and phthalates has been separately linked to increased risks of infertility in women of reproductive age. However, the combined effect of phenols and phthalates exposure on infertility has not been explored. METHODS Data from the National Health and Nutrition Examination Surveys (NHANES) were used. A total of 857 women of reproductive age (18-45 years) with available information on urinary phenol and phthalate metabolites, reproductive questionnaires, and covariates were included in the present study. The definition of infertility was based on self-reports. Multivariable logistic regression, principal component analysis (PCA), and Bayesian kernel machine regression (BKMR) with stratified variable selection were applied to determine what associations were found between combined exposure to these mixtures and risk of infertility among women of reproductive age. RESULTS After adjusting for potential confounders, bisphenol A (BPA), mono(3-carboxypropyl) phthalate (MCPP) and four di(2-ethylhexyl) phthalate (DEHP) metabolites [mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP)] were positively associated with infertility. PCA revealed that the DEHP-BPA factor's PC score was significantly positively related to the likelihood of infertility [adjusted odds ratio (aOR) = 1.45; 1.08, 1.82]. The DEHP-BPA component consistently had the highest group posterior inclusion probability (PIP) in BKMR models. The BKMR model also found that MEOHP, MEHHP, and BPA were positively associated with infertility risk when the remaining combination concentrations were held at their median values. In addition, we observed that the probability of infertility increased dramatically as the quantiles of total mixture concentration increased. CONCLUSION Our findings indicate that a combination of phenol and phthalate metabolites is linked to infertility among reproductive-age women. BPA and DEHP, in particular, are significantly related to the risk of infertility.
Collapse
Affiliation(s)
- Wenqiang Zhan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yang
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|