1
|
Cosemans C, Alfano R, Sleurs H, Martens DS, Nawrot TS, Plusquin M. Exploring mitochondrial heteroplasmy in neonates: implications for growth patterns and overweight in the first years of life. Int J Obes (Lond) 2024; 48:1140-1147. [PMID: 38802661 DOI: 10.1038/s41366-024-01537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Mitochondrial heteroplasmy reflects genetic diversity within individuals due to the presence of varying mitochondrial DNA (mtDNA) sequences, possibly affecting mitochondrial function and energy production in cells. Rapid growth during early childhood is a critical development with long-term implications for health and well-being. In this study, we investigated if cord blood mtDNA heteroplasmy is associated with rapid growth at 6 and 12 months and overweight in childhood at 4-6 years. METHODS This study included 200 mother-child pairs of the ENVIRONAGE birth cohort. Whole mitochondrial genome sequencing was performed to determine mtDNA heteroplasmy levels (in variant allele frequency; VAF) in cord blood. Rapid growth was defined for each child as the difference between WHO-SD scores of predicted weight at either 6 or 12 months and birth weight. Logistic regression models were used to determine the association of mitochondrial heteroplasmy with rapid growth and childhood overweight. Determinants of relevant cord blood mitochondrial heteroplasmies were identified using multiple linear regression models. RESULTS One % increase in VAF of cord blood MT-D-Loop16362T > C heteroplasmy was associated with rapid growth at 6 months (OR = 1.03; 95% CI: 1.01-1.05; p = 0.001) and 12 months (OR = 1.02; 95% CI: 1.00-1.03; p = 0.02). Furthermore, this variant was associated with childhood overweight at 4-6 years (OR = 1.01; 95% CI 1.00-1.02; p = 0.05). Additionally, rapid growth at 6 months (OR = 3.00; 95% CI: 1.49-6.14; p = 0.002) and 12 months (OR = 4.05; 95% CI: 2.06-8.49; p < 0.001) was also associated with childhood overweight at 4-6 years. Furthermore, we identified maternal age, pre-pregnancy BMI, maternal education, parity, and gestational age as determinants of cord blood MT-D-Loop16362T > C heteroplasmy. CONCLUSIONS Our findings, based on mitochondrial DNA genotyping, offer insights into the molecular machinery leading to rapid growth in early life, potentially explaining a working mechanism of the development toward childhood overweight.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium
- School of Public Health, Occupational & Environmental Medicine, Leuven University, 3000, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, 3590, Diepenbeek, Belgium.
| |
Collapse
|
2
|
Cosemans C, Madhloum N, Sleurs H, Alfano R, Verheyen L, Wang C, Vanbrabant K, Vanpoucke C, Lefebvre W, Nawrot TS, Plusquin M. Prenatal particulate matter exposure is linked with neurobehavioural development in early life. ENVIRONMENTAL RESEARCH 2024; 252:118879. [PMID: 38579996 DOI: 10.1016/j.envres.2024.118879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Early life exposure to ambient particulate matter (PM) may negatively affect neurobehavioral development in children, influencing their cognitive, emotional, and social functioning. Here, we report a study on prenatal PM2.5 exposure and neurobehavioral development focusing on different time points in the first years of life. METHODS This study was part of the ENVIRONAGE birth cohort that follows mother-child pairs longitudinally. First, the Neonatal Behavioral Assessment Scale (NBAS) was employed on 88 newborns aged one to two months to assess their autonomic/physiological regulation, motor organisation, state organisation/regulation, and attention/social interaction. Second, our study included 393 children between the ages of four and six years, for which the Strengths and Difficulties Questionnaire (SDQ) was used to assess the children's emotional problems, hyperactivity, conduct problems, peer relationship, and prosocial behaviour. Prenatal PM2.5 exposure was determined using a high-resolution spatial-temporal method based on the maternal address. Multiple linear and multinomial logistic regression models were used to analyse the relationship between prenatal PM2.5 exposure and neurobehavioral development in newborns and children, respectively. RESULTS A 5 μg/m³ increase in first-trimester PM2.5 concentration was associated with lower NBAS range of state cluster scores (-6.11%; 95%CI: -12.00 to -0.23%; p = 0.04) in one-to-two-month-old newborns. No other behavioural clusters nor the reflexes cluster were found to be associated with prenatal PM2.5 exposure. Furthermore, a 5 μg/m³ increment in first-trimester PM2.5 levels was linked with higher odds of a child experiencing peer problems (Odds Ratio (OR) = 3.89; 95%CI: 1.39 to 10.87; p = 0.01) at ages four to six. Additionally, a 5 μg/m³ increase in second-trimester PM2.5 concentration was linked to abnormal prosocial behaviour (OR = 0.49; 95%CI: 0.25 to 0.98; p = 0.04) at four to six years old. No associations were found between in utero PM2.5 exposure and hyperactivity or conduct problems. CONCLUSIONS Our findings suggest that prenatal exposure to PM may impact neurobehavioural development in newborns and preschool children. We identified sensitive time windows during early-to-mid pregnancy, possibly impacting stage changes in newborns and peer problems and prosocial behaviour in children.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Narjes Madhloum
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Lore Verheyen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Charlotte Vanpoucke
- Belgian Interregional Environment Agency, IRCEL-CELINE, Gaucheretstraat 92-94, 1030, Brussels, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research, VITO, Boeretang 200, 2400, Mol, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; School of Public Health, Occupational & Environmental Medicine, Leuven University, Oude Markt 13, 3000, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
3
|
You YA, Park S, Kwon E, Kim YA, Hur YM, Lee GI, Kim SM, Song JM, Kim MS, Kim YJ, Kim YH, Na SH, Park MH, Bae JG, Cho GJ, Lee SJ. Maternal PM2.5 exposure is associated with preterm birth and gestational diabetes mellitus, and mitochondrial OXPHOS dysfunction in cord blood. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10565-10578. [PMID: 38200189 PMCID: PMC10850187 DOI: 10.1007/s11356-023-31774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Maternal exposure to fine particulate matter (PM2.5) is associated with adverse pregnancy and neonatal health outcomes. To explore the mechanism, we performed mRNA sequencing of neonatal cord blood. From an ongoing prospective cohort, Air Pollution on Pregnancy Outcome (APPO) study, 454 pregnant women from six centers between January 2021 and June 2022 were recruited. Individual PM2.5 exposure was calculated using a time-weighted average model. In the APPO study, age-matched cord blood samples from the High PM2.5 (˃15 ug/m3; n = 10) and Low PM2.5 (≤ 15 ug/m3; n = 30) groups were randomly selected for mRNA sequencing. After selecting genes with differential expression in the two groups (p-value < 0.05 and log2 fold change > 1.5), pathway enrichment analysis was performed, and the mitochondrial pathway was analyzed using MitoCarta3.0. The risk of preterm birth (PTB) increased with every 5 µg/m3 increase of PM2.5 in the second trimester (odds ratio 1.391, p = 0.019) after adjusting for confounding variables. The risk of gestational diabetes mellitus (GDM) increased in the second (odds ratio 1.238, p = 0.041) and third trimester (odds ratio 1.290, p = 0.029), and entire pregnancy (odds ratio 1.295, p = 0.029). The mRNA-sequencing of cord blood showed that genes related to mitochondrial activity (FAM210B, KRT1, FOXO4, TRIM58, and FBXO7) and PTB-related genes (ADIPOR1, YBX1, OPTN, NFkB1, HBG2) were upregulated in the High PM2.5 group. In addition, exposure to high PM2.5 affected mitochondrial oxidative phosphorylation (OXPHOS) and proteins in the electron transport chain, a subunit of OXPHOS. These results suggest that exposure to high PM2.5 during pregnancy may increase the risk of PTB and GDM, and dysregulate PTB-related genes. Alterations in mitochondrial OXPHOS by high PM2.5 exposure may occur not only in preterm infants but also in normal newborns. Further studies with larger sample sizes are required.
Collapse
Affiliation(s)
- Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Sunwha Park
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Eunjin Kwon
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Ye-Ah Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Ga In Lee
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Jeong Min Song
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea
| | - Man S Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
4
|
Lin LZ, Chen JH, Yu YJ, Dong GH. Ambient air pollution and infant health: a narrative review. EBioMedicine 2023:104609. [PMID: 37169689 PMCID: PMC10363448 DOI: 10.1016/j.ebiom.2023.104609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
The extensive evidence regarding the effects of ambient air pollution on child health is well documented, but limited review summarized their health effects during infancy. Symptoms or health conditions attributed to ambient air pollution in infancy could result in the progression of severe diseases during childhood. Here, we reviewed previous empirical epidemiological studies and/or reviews for evaluating the linkages between ambient air pollution and various infant outcomes including adverse birth outcomes, infant morbidity and mortality, early respiratory health, early allergic symptoms, early neurodevelopment, early infant growth and other relevant outcomes. Patterns of the associations varied by different pollutants (i.e., particles and gaseous pollutants), exposure periods (i.e., pregnancy and postpartum) and exposure lengths (i.e., long-term and short-term). Protection of infant health requires that paediatricians, researchers, and policy makers understand to what extent infants are affected by ambient air pollution, and a call for action is still necessary to reduce ambient air pollution.
Collapse
Affiliation(s)
- Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin-Hui Chen
- School of Public Policy and Management, Tsinghua University, Beijing, 100084, China; High-Tech Research and Development Center, Ministry of Science and Technology, Beijing, 100044, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Cosemans C, Wang C, Martens DS, Janssen BG, Vanpoucke C, Lefebvre W, Smeets K, Nawrot TS, Plusquin M. In Utero Exposure to Air Pollutants and Mitochondrial Heteroplasmy in Neonates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:350-359. [PMID: 36516295 DOI: 10.1021/acs.est.2c02556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mitochondria are sensitive to oxidative stress, which can be caused by traffic-related air pollution. Placental mitochondrial DNA (mtDNA) mutations have been previously linked with air pollution. However, the relationship between prenatal air pollution and cord-blood mtDNA mutations has been poorly understood. Therefore, we hypothesized that prenatal particulate matter (PM2.5) and NO2 exposures are associated with cord-blood mtDNA heteroplasmy. As part of the ENVIRONAGE cohort, 200 mother-newborn pairs were recruited. Cord-blood mitochondrial single-nucleotide polymorphisms were identified by whole mitochondrial genome sequencing, and heteroplasmy levels were evaluated based on the variant allele frequency (VAF). Outdoor PM2.5 and NO2 concentrations were determined by a high-resolution spatial-temporal interpolation method based on the maternal residential address. Distributed lag linear models were used to determine sensitive time windows for the association between NO2 exposure and cord-blood mtDNA heteroplasmy. A 5 μg/m3 increment in NO2 was linked with MT-D-Loop16311T>C heteroplasmy from gestational weeks 17-25. MT-CYTB14766C>T was negatively associated with NO2 exposure in mid pregnancy, from weeks 14-17, and positively associated in late pregnancy, from weeks 31-36. No significant associations were observed with prenatal PM2.5 exposure. This is the first study to show that prenatal NO2 exposure is associated with cord-blood mitochondrial mutations and suggests two critical windows of exposure in mid-to-late pregnancy.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Charlotte Vanpoucke
- Belgian Interregional Environment Agency, IRCEL-CELINE, 1000 Brussels, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research, VITO, 2400 Mol, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- School of Public Health, Occupational & Environmental Medicine, Leuven University, 3000 Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|