1
|
Yin Y, Weng Y, Ma Z, Li L. Tectochrysin Alleviates Periodontitis by Modulating M2/M1 Macrophage Ratio and Oxidative Stress Via Nuclear Factor Kappa B/Heme Oxygenase-1/Nuclear Factor Erythroid 2-Related Factor 2 Pathway. Immunol Invest 2024:1-15. [PMID: 39470301 DOI: 10.1080/08820139.2024.2418938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
BACKGROUND Tectochrysin suppresses several diseases. In this study, we aimed to explore the effects of tectochrysin ona rat model of periodontitis PDS). METHODS Male Sprague-Dawley (SD) rats were subjected to ligature to induce periodontitis. Bone parameters were analyzed using micro-computed tomography and periodontal tissues were evaluated using Masson's, hematoxylin and eosin, and tartrate-resistant acid phosphatase staining. The expression of HO-1, Nrf2, CD206, Arg-1, and iNOS was evaluated using immunohistochemistry. Malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) levels and IL-1β, IL-6, and tumor necrosis factor (TNF)-α,and NF-κB and Nrf2/HO-1 were analyzed. RESULTS Tectochrysin reduced alveolar bone loss, promoted new bone formation, and inhibited osteoclast formation in periodontitis rats. It decreased the number of inflammatory cells and the levels of IL-1β, IL-6, and TNF-α, indicating a reduction in inflammation. Tectochrysin restored the Arg-1/iNOS ratio, indicating M2 macrophage polarization, and inhibited the NF-kB pathway. Tectochrysin restored GSH and SOD levels, inhibited MDA content, and activated the HO-1/Nrf2 pathway. CONCLUSION Tectochrysin alleviates PDS in rats by modulating the M2/M1 macrophage ratio via the NF-kB pathway and suppressing oxidative stress via the HO-1/Nrf2 pathway.
Collapse
Affiliation(s)
- Ye Yin
- Stomatology Department, PLA No.983 Hospital, Tianjin, China
| | - Yanming Weng
- Stomatology Department, PLA General Hospital of Central Theater Command, Wuhan City, China
| | - Zeyu Ma
- Stomatology Department, PLA No.983 Hospital, Tianjin, China
| | - Li Li
- Stomatology Department, PLA No.983 Hospital, Tianjin, China
| |
Collapse
|
2
|
Hasibuan PAZ, Simanjuntak Y, Hey-Hawkins E, Lubis MF, Rohani AS, Park MN, Kim B, Syahputra RA. Unlocking the potential of flavonoids: Natural solutions in the fight against colon cancer. Biomed Pharmacother 2024; 176:116827. [PMID: 38850646 DOI: 10.1016/j.biopha.2024.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide, underscoring the importance of understanding the diverse molecular and genetic underpinnings of CRC to improve its diagnosis, prognosis, and treatment. This review delves into the adenoma-carcinoma-metastasis model, emphasizing the "APC-KRAS-TP53" signature events in CRC development. CRC is categorized into four consensus molecular subtypes, each characterized by unique genetic alterations and responses to therapy, illustrating its complexity and heterogeneity. Furthermore, we explore the role of chronic inflammation and the gut microbiome in CRC progression, emphasizing the potential of targeting these factors for prevention and treatment. This review discusses the impact of dietary carcinogens and lifestyle factors and the critical role of early detection in improving outcomes, and also examines conventional chemotherapy options for CRC and associated challenges. There is significant focus on the therapeutic potential of flavonoids for CRC management, discussing various types of flavonoids, their sources, and mechanisms of action, including their antioxidant properties, modulation of cell signaling pathways, and effects on cell cycle and apoptosis. This article presents evidence of the synergistic effects of flavonoids with conventional cancer therapies and their role in modulating the gut microbiome and immune response, thereby offering new avenues for CRC treatment. We conclude by emphasizing the importance of a multidisciplinary approach to CRC research and treatment, incorporating insights from genetic, molecular, and lifestyle factors. Further research is needed on the preventive and therapeutic potential of natural compounds, such as flavonoids, in CRC, underscoring the need for personalized and targeted treatment strategies.
Collapse
Affiliation(s)
| | - Yogi Simanjuntak
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, Leipzig 04103, Germany
| | - Muhammad Fauzan Lubis
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Ade Sri Rohani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| |
Collapse
|
3
|
Maji A, Paul A, Sarkar A, Nahar S, Bhowmik R, Samanta A, Nahata P, Ghosh B, Karmakar S, Kumar Maity T. Significance of TRAIL/Apo-2 ligand and its death receptors in apoptosis and necroptosis signalling: Implications for cancer-targeted therapeutics. Biochem Pharmacol 2024; 221:116041. [PMID: 38316367 DOI: 10.1016/j.bcp.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.
Collapse
Affiliation(s)
- Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| |
Collapse
|
4
|
Ijaz MU, Alvi K, Hamza A, Anwar H, Al-Ghanim KA, Riaz MN. Curative effects of tectochrysin on paraquat-instigated testicular toxicity in rats: A biochemical and histopathological based study. Heliyon 2024; 10:e25337. [PMID: 38356568 PMCID: PMC10865255 DOI: 10.1016/j.heliyon.2024.e25337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Background Paraquat (PQ) is a herbicide that is used globally in the agriculture sector to eradicate unwanted weeds, however it also induces significant damages in various organs of the body such as testes. Tectochrysin (TEC) is an important flavonoid that shows versatile therapeutic potentials. Currently, there is no established antidote to cure PQ-induced testicular toxicity. Objective The present study was conducted to evaluate the ameliorative effects of TEC against PQ prompted testicular damage. Methods Sprague-Dawley rats (n = 48) were used to conduct the trial. Rats were allocated in to 4 groups i.e., Control, PQ administrated group (5 mgkg-1), PQ + TEC co-administrated group (5 mgkg-1 + 2.5 mgkg-1) and TEC only administrated group (2.5 mgkg-1). The trial was conducted for 8 weeks. The activity of anti-oxidants and the levels of MDA and ROS were determined by spectrophotometric method. Steroidogenic enzymes as well as apoptotic markers expressions were evaluated by qRT-PCR. The level of hormones and inflammatory indices was quantified by enzyme-linked immunosorbent assay. Results PQ exposure markedly (P < 0.05) disturbed the biochemical, spermatogenic and histological profile in the rats. Nevertheless, TEC treatment considerably (P < 0.05) increased CAT, GPx GSR and SOD activity, besides decreasing MDA and ROS contents. TEC administration also increased sperm viability, count and motility. 17β-HSD, 3β-HSD, StAR and Bcl-2 expressions were also increased following TEC administration. The supplementation of TEC substantially (P < 0.05) decreased Bax, Caspase-3 expression and the levels of inflammatory markers i.e., interleukin-1β (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) activity. Additionally, the levels of plasma testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were increased following TEC supplementation. Furthermore, TEC supplementation considerably decreased sperm structural abnormalities and histomorphological damages of the testes. The mitigative role of TEC might be due to its anti-inflammatory, anti-apoptotic, androgenic and anti-oxidant potentials. Conclusion Taken together, it is concluded that TEC can be used as a potential candidate to treat testicular toxicity.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kaynat Alvi
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University of Faisalabad, Faisalabad, Pakistan
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
5
|
Zhang J, Wu J, Shi X, Li D, Yang S, Zhang R, Xia B, Yang G. A Propolis-Derived Small Molecule Tectochrysin Ameliorates Type 2 Diabetes in Mice by Activating Insulin Receptor β. Mol Nutr Food Res 2024; 68:e2300283. [PMID: 37888838 DOI: 10.1002/mnfr.202300283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Indexed: 10/28/2023]
Abstract
SCOPE Propolis has been found to decrease glucose levels and increase insulin sensitivity in type 2 diabetes. However, the active ingredient responsible for these effects and its regulating mechanism are not fully understood. METHODS AND RESULTS To address this, molecular docking screening is used to screen the effective hypoglycemic ingredient in propolis and found that tectochrysin (TEC) has a high affinity to the insulin receptor (IR), highlighting its potential for glycemic control. In vivo tests show that TEC decreases glucose levels and enhances insulin sensitivity in db/db mice. By hyperinsulinemic euglycemic clamp test, this study further finds that TEC promotes glucose uptake in adipose tissue and skeletal muscle, as well as inhibits hepatic gluconeogenesis. Moreover, it finds that TEC promotes glucose uptake and adipocytes differentiation in 3T3-L1 cells like insulin, suggesting that TEC exerts an insulin mimetic effect. Mechanistically, pharmacology inhibition of IRβ abolishes the effects of TEC on glucose uptake and the phosphorylation of IR. The study further demonstrates that TEC binds to and activates IRβ by targeting its E1077 and M1079. CONCLUSION Therefore, this study sheds light on the mechanism underlying propolis' potential for ameliorating type 2 diabetes, offering a natural food-derived compound as a promising therapeutic option.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaochen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Defu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shizhen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruixin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
He M, Yasin K, Yu S, Li J, Xia L. Total Flavonoids in Artemisia absinthium L. and Evaluation of Its Anticancer Activity. Int J Mol Sci 2023; 24:16348. [PMID: 38003540 PMCID: PMC10671751 DOI: 10.3390/ijms242216348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
To overcome the shortcomings of traditional extraction methods, such as long extraction time and low efficiency, and considering the low content and high complexity of total flavonoids in Artemisia absinthium L., in this experiment, we adopted ultrasound-assisted enzymatic hydrolysis to improve the yield of total flavonoids, and combined this with molecular docking and network pharmacology to predict its core constituent targets, so as to evaluate its antitumor activity. The content of total flavonoids in Artemisia absinthium L. reached 3.80 ± 0.13%, and the main components included Astragalin, Cynaroside, Ononin, Rutin, Kaempferol-3-O-rutinoside, Diosmetin, Isorhamnetin, and Luteolin. Cynaroside and Astragalin exert their cervical cancer inhibitory functions by regulating several signaling proteins (e.g., EGFR, STAT3, CCND1, IGFIR, ESR1). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the anticancer activity of both compounds was associated with the ErbB signaling pathway and FoxO signaling pathway. MTT results showed that total flavonoids of Artemisia absinthium L. and its active components (Cynaroside and Astragalin) significantly inhibited the growth of HeLa cells in a concentration-dependent manner with IC50 of 396.0 ± 54.2 μg/mL and 449.0 ± 54.8 μg/mL, respectively. Furthermore, its active components can mediate apoptosis by inducing the accumulation of ROS.
Collapse
Affiliation(s)
| | | | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.H.); (K.Y.); (S.Y.)
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.H.); (K.Y.); (S.Y.)
| |
Collapse
|
7
|
Aouimeur I, Sagnial T, Coulomb L, Maurin C, Thomas J, Forestier P, Ninotta S, Perrache C, Forest F, Gain P, Thuret G, He Z. Investigating the Role of TGF-β Signaling Pathways in Human Corneal Endothelial Cell Primary Culture. Cells 2023; 12:1624. [PMID: 37371094 PMCID: PMC10297110 DOI: 10.3390/cells12121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Corneal endothelial diseases are the leading cause of corneal transplantation. The global shortage of donor corneas has resulted in the investigation of alternative methods, such as cell therapy and tissue-engineered endothelial keratoplasty (TEEK), using primary cultures of human corneal endothelial cells (hCECs). The main challenge is optimizing the hCEC culture process to increase the endothelial cell density (ECD) and overall yield while preventing endothelial-mesenchymal transition (EndMT). Fetal bovine serum (FBS) is necessary for hCEC expansion but contains TGF-βs, which have been shown to be detrimental to hCECs. Therefore, we investigated various TGF-β signaling pathways using inhibitors to improve hCEC culture. Initially, we confirmed that TGF-β1, 2, and 3 induced EndMT on confluent hCECs without FBS. Using this TGF-β-induced EndMT model, we validated NCAM as a reliable biomarker to assess EndMT. We then demonstrated that, in a culture medium containing 8% FBS for hCEC expansion, TGF-β1 and 3, but not 2, significantly reduced the ECD and caused EndMT. TGF-β receptor inhibition had an anti-EndMT effect. Inhibition of the ROCK pathway, notably that of the P38 MAPK pathway, increased the ECD, while inhibition of the ERK pathway decreased the ECD. In conclusion, the presence of TGF-β1 and 3 in 8% FBS leads to a reduction in ECD and induces EndMT. The use of SB431542 or LY2109761 may prevent EndMT, while Y27632 or Ripasudil, and SB203580 or SB202190, can increase the ECD.
Collapse
Affiliation(s)
- Inès Aouimeur
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Tomy Sagnial
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Louise Coulomb
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Corantin Maurin
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Justin Thomas
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Pierre Forestier
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Sandrine Ninotta
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
- Eye Bank, Etablissement Français du Sang (EFS) Auvergne-Rhône-Alpes, 42023 Saint-Etienne, France
| | - Chantal Perrache
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Fabien Forest
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Philippe Gain
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
- Ophthalmology Department, University Hospital Center, 42055 Saint-Etienne, France
| | - Gilles Thuret
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
- Ophthalmology Department, University Hospital Center, 42055 Saint-Etienne, France
| | - Zhiguo He
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| |
Collapse
|
8
|
Wei C, Du J, Shen Y, Wang Z, Lin Q, Chen J, Zhang F, Lin W, Wang Z, Yang Z, Ma W. Anticancer effect of involucrasin A on colorectal cancer cells by modulating the Akt/MDM2/p53 pathway. Oncol Lett 2023; 25:218. [PMID: 37153032 PMCID: PMC10157355 DOI: 10.3892/ol.2023.13804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/27/2023] [Indexed: 05/09/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide; however, there is still a lack of effective clinical anti-CRC agents. Naturally-occurring compounds have been considered a potentially valuable source of new antitumorigenic agents. Involucrasin A, a novel natural molecule, was isolated from Shuteria involucrata (Wall.) Wight & Arn by our team. In the present study, the anticancer activity of involucrasin A in HCT-116 CRC cells was evaluated. Firstly, the anti-proliferative effect of involucrasin A on HCT-116 cells was analyzed by sulforhodamine B and colony formation assays. The results revealed that involucrasin A exhibited a potent inhibitory effect on HCT-116 CRC cell proliferation in vitro. Subsequently, flow cytometry and western blotting indicated that involucrasin A induced apoptosis and upregulated the expression levels of apoptosis-related proteins, such as cleaved-caspase 6 and cleaved-caspase 9, in a dose-dependent manner. Mechanistically, involucrasin A significantly inhibited the phosphorylation of Akt and murine double minute 2 homologue (MDM2), which resulted in increased intracellular levels of p53. This was reversed by exogenous expression of the constitutively active form of Akt. Similarly, either knocking out p53 or knocking down Bax abrogated involucrasin A-induced proliferation inhibition and apoptosis. Together, the present study indicated that involucrasin A exerts antitumorigenic activities via modulating the Akt/MDM2/p53 pathway in HCT-116 CRC cells, and it is worthy of further exploration in preclinical and clinical trials.
Collapse
Affiliation(s)
- Chengming Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Jingjing Du
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Qianyu Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Junhe Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Fuming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Zhibin Wang
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong 518000, P.R. China
| | - Zhuya Yang
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Correspondence to: Professor Zhuya Yang, School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong, Kunming, Yunnan 650500, P.R. China, E-mail:
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
- Professor Wenzhe Ma, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Block H701, Macau, SAR 999078, P.R. China, E-mail:
| |
Collapse
|
9
|
Wu IT, Kuo CY, Su CH, Lan YH, Hung CC. Pinostrobin and Tectochrysin Conquer Multidrug-Resistant Cancer Cells via Inhibiting P-Glycoprotein ATPase. Pharmaceuticals (Basel) 2023; 16:205. [PMID: 37259354 PMCID: PMC9963356 DOI: 10.3390/ph16020205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 11/19/2023] Open
Abstract
Enhanced drug efflux through ATP-binding cassette transporters, particularly P-glycoprotein (P-gp), is a key mechanism underlying multidrug resistance (MDR). In the present study, we investigated the inhibitory effects of pinostrobin and tectochrysin on P-gp in MDR cancer cells and the underlying mechanisms. Fluorescence substrate efflux assays, multidrug resistance 1 (MDR1) shift assays, P-gp ATPase activity assays, Western blotting, and docking simulation were performed. The potential of the test compounds for MDR reversal and the associated molecular mechanisms were investigated through cell viability assay, cell cycle analysis, apoptosis assay, and further determining the combination index. Results demonstrated that pinostrobin and tectochrysin were not the substrates of P-gp, nor did they affect the expression of this transporter. Both compounds noncompetitively inhibited the efflux of rhodamine 123 and doxorubicin through P-gp. Furthermore, they resensitized MDR cancer cells to chemotherapeutic drugs, such as vincristine, paclitaxel, and docetaxel; thus, they exhibited strong MDR reversal effects. Our findings indicate that pinostrobin and tectochrysin are effective P-gp inhibitors and promising candidates for resensitizing MDR cancer cells.
Collapse
Affiliation(s)
- I-Ting Wu
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231405, Taiwan
| | - Ching-Hui Su
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
| | - Yu-Hsuan Lan
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
| | - Chin-Chuan Hung
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
- Department of Pharmacy, China Medical University Hospital, No. 2, Yude Rd., North District, Taichung 404332, Taiwan
- Department of Healthcare Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
10
|
Luo X, Zheng Y, Bao YR, Wang S, Li TJ, Leng JP, Meng XS. Potential effects of fructus aurantii ethanol extracts against colitis-associated carcinogenesis through coordination of Notch/NF-κB/IL-1 signaling pathways. Biomed Pharmacother 2022; 152:113278. [PMID: 35709655 DOI: 10.1016/j.biopha.2022.113278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Colitis-associated cancer (CAC) is the colorectal cancer (CRC) subtype that is difficult to treat, and shows high mortality. The consumption of flavonoid-rich fructus aurantii extracts (FAE) has been associated with multiple beneficial effects including anti-inflammatory and anti-cancer properties, but the potential effects on the colitis-associated carcinogenesis have not been thoroughly investigated. Recent clinical data show that, as yet, few agents clearly inhibited CRC development in long-standing inflammatory bowel diseases. Here, we identified that FAE showed significant efficiency to inhibit HT-29 cell proliferation. The potential of FAE in vivo was further evaluated in an AOM/DSS-induced CAC mouse model. Intriguingly, FAE diminished the number of polyps in mice. Furthermore, FAE inhibited CAC by regulating the gene expression of Notch/ NF-κB/IL-1 signaling pathways. Collectively, these results were indicative of FAE has great potential in CAC prevention and treatment.
Collapse
Affiliation(s)
- Xi Luo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yi Zheng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yong-Rui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Traditional Chinese Medicine Research and Engineering Laboratory, Dalian 116600, China
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Traditional Chinese Medicine Research and Engineering Laboratory, Dalian 116600, China
| | - Tian-Jiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Traditional Chinese Medicine Research and Engineering Laboratory, Dalian 116600, China
| | - Jia-Peng Leng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xian-Sheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Traditional Chinese Medicine Research and Engineering Laboratory, Dalian 116600, China.
| |
Collapse
|
11
|
New Flavonoid Derivatives from Melodorum fruticosum and Their α-Glucosidase Inhibitory and Cytotoxic Activities. Molecules 2022; 27:molecules27134023. [PMID: 35807266 PMCID: PMC9268484 DOI: 10.3390/molecules27134023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Three new flavonoid derivatives, melodorones A–C (1–3), together with four known compounds, tectochrysin (4), chrysin (5), onysilin (6), and pinocembrin (7), were isolated from the stem bark of Melodorum fruticosum. Their structures were determined on the basis of extensive spectroscopic methods, including NMR and HRESIMS, and by comparison with the literature. Compounds 1–7 were evaluated for their in vitro α-glucosidase inhibition and cytotoxicity against KB, Hep G2, and MCF7 cell lines. Among them, compound 1 exhibited the best activity against α-glucosidase and was superior to the positive control with an IC50 value of 2.59 μM. On the other hand, compound 1 showed moderate cytotoxicity toward KB, Hep G2, and MCF7 cell lines with the IC50 values of 23.5, 19.8, and 23.7 μM, respectively. These findings provided new evidence that the stem bark of M. fruticosum is a source of bioactive flavonoid derivatives that are highly valuable for medicinal development.
Collapse
|
12
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
13
|
Das R, Mehta DK, Dhanawat M. Medicinal Plants in Cancer Treatment: Contribution of Nuclear Factor-Kappa B (NF-kB) Inhibitors. Mini Rev Med Chem 2022; 22:1938-1962. [PMID: 35260052 DOI: 10.2174/1389557522666220307170126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Nuclear factor-kappa B (NF-κB) is one of the principal inducible proteins that is a predominant transcription factor known to control the gene expression in mammals and plays a pivotal role in regulating cell signalling in the body under certain physiological and pathological conditions. In cancer cells, such as colon, breast, pancreatic, ovarian, melanoma, and lymphoma, the NF-κB pathway has been reported to be active. In cellular proliferation, promoting angiogenesis, invasion, metastasis of tumour cells and blocking apoptosis, the constitutive activity of NF-κB signalling has been reported. Therefore, immense attention has been given to developing drugs targeting NF-κB signalling pathways to treat many types of tumours. They are a desirable therapeutic target for drugs, and many studies concentrated on recognizing compounds. They may be able to reverse or standstill the growth and spread of tumours that selectively interfere with this pathway. Recently, numerous substances derived from plants have been evaluated as possible inhibitors of the NF-κB pathway. These include various compounds, such as flavonoids, lignans, diterpenes, sesquiterpenes, polyphenols, etc. A study supported by folk medicine demonstrated that plant-derived compounds could suppress NF-κB signalling. Taking this into account, the present review revealed the anticancer potential of naturally occurring compounds which have been verified both by inhibiting the NF-κB signalling and suppressing growth and spread of cancer and highlighting their mechanism of NF-κB inhibition.
Collapse
Affiliation(s)
- Rina Das
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Meenakshi Dhanawat
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
14
|
Fang L, Yan Y, Xu Z, He Z, Zhou S, Jiang X, Wu F, Yuan X, Zhang T, Yu D. Tectochrysin ameliorates murine allergic airway inflammation by suppressing Th2 response and oxidative stress. Eur J Pharmacol 2021; 902:174100. [PMID: 33878335 DOI: 10.1016/j.ejphar.2021.174100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
Tectochrysin, a flavonoid compound, can be isolated from propolis, Alpinia oxyphylla Miq, and Lychnophora markgravii. This study evaluated the efficacy of tectochrysin in the treatment of shrimp tropomyosin (ST)-induced mouse asthma. Mice were sensitized with intraperitoneal (i.p.) injection of ST together with aluminum hydroxide as an adjuvant to establish a mouse model of asthma. Mice were i.p.-treated daily with tectochrysin. IgE levels in plasma, Th2 cytokines from both bronchoalveolar lavage (BAL) fluid and splenocytes, and CD200R on basophils in peripheral blood were measured. Histological analyses of lung tissues and accumulation of leukocytes in BAL fluid were performed. Lung eosinophil peroxidase, catalase and glutathione peroxidase activities were examined. ST was found to markedly increase eosinophilic inflammation and Th2 response in mice. Tectochrysin treatment reduced the level of IgE in plasma, the percentage of eosinophils in total white blood cells in peripheral blood, the total number of cells in BAL fluid, and eosinophil peroxidase activity in lung tissues. Tectochrysin attenuated ST-induced infiltration of eosinophils and epithelial mucus secretion in lung tissues and suppressed the overproduction of Th2 cytokines (IL-4 and IL-5) in BAL fluid. Tectochrysin also attenuated Th2 cytokine (IL-4 and IL-5) production from antigen-stimulated murine splenocytes in vitro, decreased the expression of CD200R on basophils in peripheral blood of asthmatic mice and inhibited IL-4 secretion from IgE-sensitized RBL-2H3 cells. In addition, tectochrysin enhanced catalase and glutathione peroxidase activities in lung tissues. Our findings demonstrate that TEC ameliorates allergic airway inflammation by suppressing Th2 response and oxidative stress.
Collapse
Affiliation(s)
- Lei Fang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, Yangzhou, 225009, China
| | - Ying Yan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Zhengxin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Zhenpeng He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Shuting Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, Yangzhou, 225009, China
| | - Xin Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Baoying People's Hospital, Yangzhou, 225800, China
| | - Fan Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, Yangzhou, 225009, China
| | - Xiaoling Yuan
- Yangzhou Maternal & Child Health Hospital, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Tong Zhang
- Xinghua People's Hospital, Yangzhou University, Xinghua, Jiangsu, 225700, China
| | - Duonan Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, Yangzhou, 225009, China; Xinghua People's Hospital, Yangzhou University, Xinghua, Jiangsu, 225700, China.
| |
Collapse
|
15
|
Sotillo WS, Tarqui S, Huang X, Almanza G, Oredsson S. Breast cancer cell line toxicity of a flavonoid isolated from Baccharis densiflora. BMC Complement Med Ther 2021; 21:188. [PMID: 34215226 PMCID: PMC8254278 DOI: 10.1186/s12906-021-03349-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background Flavonoids are compounds of interest in the search for new anti-cancer therapies. We have previously isolated the methoxyflavones 5,4′-dihydroxy-6,7,8,3′-tetramethoxyflavone (8-methoxycirsilineol), 5,4′-dihydroxy-6,7,8-trimethoxyflavone (xanthomicrol), and 5,4,'3′-trihydroxy-6,7,8-trimethoxyflavone (sideritoflavone) from Baccharis densiflora. Herein, we investigate the toxicity of these methoxyflavones in human breast-derived cell line. Our main aim was to focus on the cancer stem cell (CSC) sub-population of JIMT-1 breast cancer cells. Methods Initially, dose response experiments yielding inhibitory concentration 50 (IC50) values were performed using MCF-7, HCC1937, and JIMT-1 breast cancer, and the MCF-10A normal-like breast cell lines to get an understanding of toxic ranges. Due to a clear difference in the toxicity of the flavones, only sideritoflavone was selected for further studies using the JIMT-1 cell line. Effects on the CSC sub-population was investigated using flow cytometry-based methods. A wound healing assay and digital holographic microscopy were used to investigate effects on cell movement. A reporter assay was used to study effects on signal transduction pathways and Western blot for protein expression. Results The dose response data showed that 8-methoxycirsilineol was non-toxic at concentrations below 100 μM, that the IC50 of xanthomicrol was between 50 and 100 μM, while sideritoflavone was highly toxic with a single digit μM IC50 in all cell lines. Treatment of the JIMT-1 cells with 2 μM sideritoflavone did not selectively effect the CSC sub-population. Instead, sideritoflavone treatment inhibited the proliferation of both the non-CSC and the CSC sub-populations to the same extent. The inhibition of cell proliferation resulted in an accumulation of cells in the G2 phase of the cell cycle and the treated cells showed an increased level of γ-H2A histone family member X indicating DNA double strand breaks. Analysis of the effect of sideritoflavone treatment on signal transduction pathways showed activation of the Wnt, Myc/Max, and transforming growth factor-β pathways. The level of p65/nuclear factor kappa-light-chain-enhancer of activated Β cells was increased in sideritoflavone-treated cells. Cell movement was decreased by sideritoflavone treatment. Conclusions Altogether our data show that the methoxyflavone sideritoflavone has favourable anti-cancer effects that may be exploited for development to be used in combination with CSC specific compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03349-4.
Collapse
Affiliation(s)
- Wendy Soria Sotillo
- Department of Biology, Lund University, Lund, Sweden.,Molecular Biology and Biotechnology Institute, University Major of San Andres, La Paz, Bolivia
| | - Santiago Tarqui
- Chemical Research Institute, University Major of San Andres, La Paz, Bolivia
| | - Xiaoli Huang
- Department of Biology, Lund University, Lund, Sweden
| | - Giovanna Almanza
- Chemical Research Institute, University Major of San Andres, La Paz, Bolivia
| | | |
Collapse
|
16
|
Jisha N, Vysakh A, Vijeesh V, Anand PS, Latha MS. Methanolic Extract of Muntingia Calabura L. Mitigates 1,2-Dimethyl Hydrazine Induced Colon Carcinogenesis in Wistar Rats. Nutr Cancer 2020; 73:2363-2375. [PMID: 32972250 DOI: 10.1080/01635581.2020.1823438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The present study aimed to evaluate the efficacy of methanolic extract of Muntingia calabura L. leaves (MEMC) in ameliorating oxidative stress and inflammation associated with 1,2-dimethyl hydrazine (DMH) induced colon cancer. METHODS The antioxidant enzymes, oxidative stress markers, liver and renal toxicity markers were evaluated. Histopathological examination of colon tissues was carried out with the aid of alcian blue stain and Hematoxylin and Eosin stain. RESULTS MEMC supplementation at doses of 100 and 200 mg/kg body weight of rats causes the antioxidant enzymic levels to retain near to its normal range. Meanwhile the oxidative stress markers, which showed an elevation from its normal level upon DMH administration, gets significantly reduced on MEMC treatment. Histopathological observation also revealed that the severity of colorectal cancer was reduced by the supplementation of MEMC. CONCLUSION The findings from the present study showed that MEMC can exert a potential role to ameliorate the oxidative stress and inflammation associated with colorectal cancer.
Collapse
Affiliation(s)
- Ninan Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A Vysakh
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - V Vijeesh
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - P S Anand
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - M S Latha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
17
|
Mohebali N, Pandurangan AK, Mustafa MR, Anandasadagopan SK, Alagumuthu T. Vernodalin induces apoptosis through the activation of ROS/JNK pathway in human colon cancer cells. J Biochem Mol Toxicol 2020; 34:e22587. [PMID: 32726518 DOI: 10.1002/jbt.22587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Colorectal cancer is one of the most leading death-causing cancers in the world. Vernodalin, a cytotoxic sesquiterpene, has been reported to possess anticancer properties against human breast cancer cells. We aimed to examine the anticancer mechanism of vernodalin on human colon cancer cells. Vernodalin was used on human colon cancer cells, HT-29 and HCT116. The cytotoxicity of vernodalin on human colon cancer cells was determined through in vitro 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Small interfering RNA was used to analyze the cascade activation of mitogen-activated protein kinase (MAPK) pathway, c-Jun N-terminal kinase (JNK) in HT-29, and HCT116 cells against vernodalin treatment. The protein expressions of caspase 3, Bcl-2, and Bax were examined through Western blot analysis. Immunoblot analysis on the JNK, ERK, and p38 MAPK pathways showed increased activation due to vernodalin treatment. It was proven from the JNK and p38 inhibition test that both pathways are significantly activated by vernodalin to induce apoptosis. Our results, collectively, showed the apoptosis-induced anticancer mechanism of vernodalin on human colon cancer cells that was mediated through the activation of JNK pathway and apoptotic regulator proteins. These results suggest that vernodalin could be developed as a potent chemotherapeutic agent for human colorectal cancer treatment.
Collapse
Affiliation(s)
- Nooshin Mohebali
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Pharmacology, Faculty of Medicine, Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
18
|
Torres M, Flórez-Fernández N, Simón-Vázquez R, Giménez-Abián J, Díaz J, González-Fernández Á, Domínguez H. Fucoidans: The importance of processing on their anti-tumoral properties. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Soleimani A, Rahmani F, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of the NF-κB signaling pathway in the pathogenesis of colorectal cancer. Gene 2019; 726:144132. [PMID: 31669643 DOI: 10.1016/j.gene.2019.144132] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The NF-κB signaling pathway is a key regulator of CRC cell proliferation, apoptosis, angiogenesis, inflammation, metastasis, and drug resistance. Over-activation of the NF-κB pathway is a feature of colorectal cancer (CRC). While new combinatorial treatments have improved overall patient outcome; quality of life, cost of care, and patient survival rate have seen little improvement. Suppression of the NF-κB signaling pathway using biological or specific pharmacological inhibitors is a potential therapeutic approach in the treatment of colon cancer. This review summarizes the regulatory role of NF-κB signaling pathway in the pathogenesis of CRC for a better understanding and hence a better management of the disease.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Sun LR, Zhou W, Zhang HM, Guo QS, Yang W, Li BJ, Sun ZH, Gao SH, Cui RJ. Modulation of Multiple Signaling Pathways of the Plant-Derived Natural Products in Cancer. Front Oncol 2019; 9:1153. [PMID: 31781485 PMCID: PMC6856297 DOI: 10.3389/fonc.2019.01153] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
Natural compounds are highly effective anticancer chemotherapeutic agents, and the targets of plant-derived anticancer agents have been widely reported. In this review, we focus on the main signaling pathways of apoptosis, proliferation, invasion, and metastasis that are regulated by polyphenols, alkaloids, saponins, and polysaccharides. Alkaloids primarily affect apoptosis-related pathways, while polysaccharides primarily target pathways related to proliferation, invasion, and metastasis. Other compounds, such as flavonoids and saponins, affect all of these aspects. The association between compound structures and signaling pathways may play a critical role in drug discovery.
Collapse
Affiliation(s)
- Li-Rui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhou
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Hong-Mei Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Qiu-Shi Guo
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing-Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Zhi-Hui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Shuo-Hui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ran-Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Wen Q, Li HL, Mai SY, Tan YF, Chen F. Tissue Distribution of Active Principles from Alpiniae Oxyphyllae Fructus Extract: An Experimental Study in Rats. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180910102909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Alpiniae Oxyphyllae Fructus (Yizhi in Chinese) have been widely used as an
herbal medicine for the treatment of diuresis, enuresis and diarrhea in China. Many studies have deciphered
some potential underlying mechanisms for its anti-diarrheal effects. However, tissue distribution
of Yizhi constituents is warranted because pharmacological receptors are frequently located in tissues.
Moreover, it is also interesting to know about the potential correlation between behavior in drug distribution
and the observed pharmacological response. The aim of this study is to investigate tissue distribution
behaviors of Yizhi constituents after oral administration of Yizhi extract to rats, focusing on 10
active principles.
Methods:
Twenty four male Sprague Dawley rats were given orally the Yizhi extract and fourteen tissue
samples were collected after being killed by bleeding from the abdominal aorta under ether anesthesia
at different time-points. The resulting tissues were excised and homogenized. Based on our previous
reports, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to quantify
the target analytes, as well as phase II metabolites, in the various biosamples.
Results:
Almost all the targeted Yizhi active principles and some glucuronidated metabolites were
qualitatively measured in rat stomach, small intestine, large intestine, as well as liver. Nootkatone,
yakuchinone A and tectochrysin were observed in the rat brain. In other rat tissues, these analytes had
lower exposure or could not be detected. Consistently, quantitative analysis revealed that the Yizhi active
principles dominantly distributed into gastrointestinal tissues followed by liver, the overall exposure
levels ranking as follows: stomach > small intestine > large intestine > liver. Tissue concentrationtime
profiles of the test active principles in rat stomach, small intestine, and large intestine were bimodal
with two concentration peaks occurring at 0.5 and 4h after oral administration, respectively. The
exposure levels in rat kidney and bladder were quite low.
Conclusion:
The active principles of Yizhi were specially distributed into gastrointestinal tissues after
oral administration of its ethanol extract to rats. The tissue distribution behaviors partly supported its
anti-diarrheal effects from a pharmacokinetic opinion. This paper will be useful as the starting point for
studying the pharmacological activities of this traditional herb.
Collapse
Affiliation(s)
- Qi Wen
- Department of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Hai-Long Li
- Department of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Shi-Ying Mai
- Department of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Yin-Feng Tan
- Department of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Feng Chen
- Department of Pharmacy, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
22
|
Guardado-Félix D, Antunes-Ricardo M, Rocha-Pizaña MR, Martínez-Torres AC, Gutiérrez-Uribe JA, Serna Saldivar SO. Chickpea (Cicer arietinum L.) sprouts containing supranutritional levels of selenium decrease tumor growth of colon cancer cells xenografted in immune-suppressed mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Hui F, Qin X, Zhang Q, Li R, Liu M, Ren T, Zhao M, Zhao Q. Alpinia oxyphylla oil induces apoptosis of hepatocellular carcinoma cells via PI3K/Akt pathway in vitro and in vivo. Biomed Pharmacother 2018; 109:2365-2374. [PMID: 30551496 DOI: 10.1016/j.biopha.2018.11.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/02/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The anti-tumor properties of Alpinia oxyphylla Miquel (A. oxyphylla) extracts and their petroleum ether (PE) fractions have long attracted scientific attention. These extracts' anti-tumor activity and mechanisms in vivo are still unclear. This study was designed to investigate the anti-tumor activity and the underlying mechanism of PE's effect on hepatocellular carcinoma (HCC) in vitro and in vivo. MATERIALS AND METHOD The anti-tumor activity of PE was evaluated by MTT assay and xenograft study. Mechanistic studies of PE were analyzed by Hoechst 33342 staining, Annexin V-FITC/PI double-staining assay, immunohistochemical staining and western blot assay. The toxicity of the PE treatment was verified by the levels of liver and kidney function in nude mice and the H&E staining of their liver and kidney tissues. RESULT PE significantly inhibited the growth of HepG2, BEL-7402, SMMC-7721 and Hep3B cells in a concentration- and time-dependent manner. Specifically, PE inhibited the growth of Hep3B cells by inducing apoptosis. PE treatment at the doses of 0.25, 0.5 and 1 g/kg for 21 days caused a respective 35.7 percent, 49.3 percent and 58.8 percent inhibition of the tumor volume, and a 14.8 percent, 40.2 percent and 55.6 percent decrease in the tumor weight, respectively, as compared with the vehicle group in tumor-loaded mice in vivo. PE promoted the release of cytochrome c from mitochondria to cytosol in a concentration-dependent manner. The expression levels of BAX (p < 0.01), cleaved caspase-9 (p < 0.01) and cleaved caspase-3 (p < 0.05) were increased significantly in the PE-treated group at the dose of 1 g/kg; the expression level of BAX (p < 0.05) was increased significantly in the PE-treated group at the dose of 0.5 g/kg, and the expression level of Bcl-2 (p < 0.01) was decreased significantly in the PE-treated group in a concentration-dependent manner. Apoptosis was induced by PE through up-regulating the expression of PTEN, down-regulating the expression of PI3K and inhibiting the phosphorylation of Akt. The liver and kidney function of the plasma and the morphology of the liver and kidney were normal in each group. CONCLUSION These findings suggested that PE exhibited anti-cancer efficacy on Hep3B cell in vitro and in vivo. The induction of apoptosis might be one mechanism that underlies PE's ability to combat cancer by inhibiting the PI3K/Akt pathway. PE has no obvious toxicity in vivo when it exerts anti-tumor effects and has the potential to develop into an alternative anti-cancer drug for HCC treatment.
Collapse
Affiliation(s)
- Fuhai Hui
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China
| | - Xiaochun Qin
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiao Zhang
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ruolan Li
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingyue Liu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianshu Ren
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China
| | - Mingyi Zhao
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qingchun Zhao
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| |
Collapse
|
24
|
Zhang Q, Zheng Y, Hu X, Hu X, Lv W, Lv D, Chen J, Wu M, Song Q, Shentu J. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Alpinia oxyphylla Miquel: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:149-168. [PMID: 29738847 DOI: 10.1016/j.jep.2018.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL USAGES Fructus Alpiniae oxyphyllae (A. oxyphylla) is an important medicinal plant that is used not only as an edible fruit, but also as an important traditional medicine for benefiting cognitive performance and alleviating a wide spectrum of diseases. Such as; warming kidney, securing essence and arresting polyuria, as well as warming the spleen and stopping diarrhea and saliva. AIMS The purpose of this review is to provide updated, comprehensive and categorized information on the traditional uses, phytochemistry and pharmacological research of A. oxyphylla in order to explore their therapeutic potential and establish a solid foundation for directing future research. MATERIALS AND METHODS All the available information on A. oxyphylla was collected via electronic search (using Pubmed, SciFinder, Scirus, Google Scholar and Web of Science) and additionally a number of unpublished resources, (e.g. books, Ph.D. and M.Sc. dissertations, government reports). RESULTS Phytochemical research on A. oxyphylla has led to the isolation of components such as essential oils, terpenes, diarylheptanoids, flavones, nucleobases and nucleosides, steroids and others. Crude extracts, fractions and phytochemical constituents isolated from A. oxyphylla showed a wide spectrum of in vitro and in vivo pharmacological activities like neuroprotective, anti-diarrheal, anti-diuretic, anti-neoplastic, anti-oxidant, anti-inflammatory, anti-allergic, viscera protective and anti-diabetic activities. Neuroprotective, anti-cancer, anti-diarrheal and anti-diuretic effects are major areas of research conducted on A. oxyphylla. CONCLUSIONS Modern pharmacological studies have supported many traditional uses of A. oxyphylla, including nervous system, urinary system and gastrointestinal system disease. There was convincing evidence in experimental animal models in support of its neuroprotection, secure essence, reduce urination, and anti-carcinogenic effects. However, all the reported pharmacological activities were carried out at pre-clinical level and the authors urge further investigation in clinical trials about these therapeutic fields of A. oxyphylla.
Collapse
Affiliation(s)
- Qiao Zhang
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yunliang Zheng
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xingjiang Hu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wenwen Lv
- Pharmacy Department, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Duo Lv
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jinjin Chen
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Minglan Wu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Qichao Song
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jianzhong Shentu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.
| |
Collapse
|
25
|
Tao J, Li Y, Li S, Li HB. Plant foods for the prevention and management of colon cancer. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Kokhdan EP, Sadeghi H, Ghafoori H, Sadeghi H, Danaei N, Javadian H, Aghamaali MR. Cytotoxic effect of methanolic extract, alkaloid and terpenoid fractions of Stachys pilifera against HT-29 cell line. Res Pharm Sci 2018; 13:404-412. [PMID: 30271442 PMCID: PMC6082032 DOI: 10.4103/1735-5362.236833] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stachys pilifera (S. pilifera) Benth (Lamiaceae) is used in traditional medicine to treat a variety of diseases. Despite some reports on the antitumor effects of some species of this genus, anticancer activity of S. pilifera has not been yet reported. Here, we examined the cytotoxic effect and cell death mechanisms of methanolic extract of S. pilifera and its alkaloid and terpenoid fractions on the HT-29 colorectal cell line. HT-29 cells were cultivated and then incubated in the methanolic extract of S. pilifera and its fractions at various concentrations for 24 h. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Morphology of cells was evaluated by contrast microscopy. Furthermore, effects of the tested extract and fractions were tested on some regulators of cell death and proliferation such as caspase-8, caspase-9, nuclear factor-κB (NF-κB), and nitric oxide (NO). Cisplatin was used as positive control. The estimated IC50 values of the methanolic extract, alkaloid and terpenoid fractions, and cisplatin against HT29 cell after 24 h were determined to be 612, 48.12, 46.44, and 4.02 μg/mL, respectively. Morphological changes such as plasma membrane blebbing, cell size reduction, and apoptotic bodies were observed in cells faced with the extract and fractions. S. pilifera extract and its fractions induced apoptosis through inhibition of NF-κB, NO, and activation of caspase-8 and caspase-9. Data showed considerable cytotoxic and antiproliferative effects of S. plifera on colorectal cell line through induction of apoptosis. These findings provide a basis for the therapeutic potential of S. pilfera in the treatment of colon cancer.
Collapse
Affiliation(s)
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| | - Hossin Ghafoori
- Department of Biology, Faculty of Science, University of Guilan, Rasht, I.R. Iran
| | - Heibatollah Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| | - Nazanin Danaei
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | | |
Collapse
|
27
|
Hou R, Han Y, Fei Q, Gao Y, Qi R, Cai R, Qi Y. Dietary Flavone Tectochrysin Exerts Anti-Inflammatory Action by Directly Inhibiting MEK1/2 in LPS-Primed Macrophages. Mol Nutr Food Res 2017; 62. [DOI: 10.1002/mnfr.201700288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/28/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Rui Hou
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yixin Han
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Qiaoling Fei
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yuan Gao
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Ruijuan Qi
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Runlan Cai
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yun Qi
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| |
Collapse
|
28
|
Label-free quantitative proteomic profiling of colon cancer cells identifies acetyl-CoA carboxylase alpha as antitumor target of Citrus limon-derived nanovesicles. J Proteomics 2017; 173:1-11. [PMID: 29197582 DOI: 10.1016/j.jprot.2017.11.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/10/2017] [Accepted: 11/23/2017] [Indexed: 11/23/2022]
Abstract
We have previously isolated exosome-like nanoparticles from Citrus-limon juice, able to inhibit in vitro and in vivo tumor cell growth. In order to deeply understand the mechanism underlying nanovesicle effects, we performed a proteomic profile of treated colorectal cancer cells. Among the proteins differentially expressed after nanovesicle treatment, we found a significant downregulation of the Acetyl-CoA Carboxylase 1 (ACACA) and we demonstrated that silencing ACACA in cancer cells leads to a reduction of cell growth. Our study proved that the anti-tumor effects of Citrus-limon nanovesicles is partly mediated by lipid metabolism inhibition, in particular via ACACA downregulation. SIGNIFICANCE This study represents the attempt to achieve, by a proteomic approach, a better understanding of the role of lemon nanovesicles in affecting colorectal cancer cell growth.
Collapse
|
29
|
Zheng J, Park MH, Lee HP, Hyun BK, Chun HO, Jung SH, Seo HO, Ham YW, Han SB, Hong JT. A small molecule, (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol suppresses tumor growth via inhibition of IkappaB kinase β in colorectal cancer in vivo and in vitro. Oncotarget 2017; 8:91258-91269. [PMID: 29207641 PMCID: PMC5710921 DOI: 10.18632/oncotarget.20440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Here we report that a novel synthesized compound (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) which exhibits better stability, drug-likeness and anti-cancer effect than (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (BHPB) that we previously reported. Of all newly synthesized BHPB analogues, MMPP showed the most significant inhibitory effect on colon cancer cell growth. Thus, we evaluated the anti-cancer effects and possible mechanisms of MMPP in vitro and in vivo. MMPP treatment (0-15 μg/mL) induced apoptotic cell death and enhanced the expression of cleaved caspase-3 and cleaved caspase-8 in a concentration dependent manner. Notably, the expression of death receptor (DR)5 and DR6 was significantly increased by MMPP treatment. Moreover, DR5 siRNA or DR6 siRNA transfection partially abolished MMPP-induced cell growth inhibition. Pull down assay and docking experiment showed that MMPP bound directly to IkappaB kinase β (IKKβ). It was noteworthy that IKKβ mutant (C99S) partially abolished MMPP-induced cell growth inhibition and enhanced expression of DR5 and DR6. In addition, MMPP enhanced TRAIL-induced apoptosis, cell growth inhibition and expression of DRs. In xenograft mice model, MMPP (2.5-5 mg/kg) suppressed tumor growth in a dose dependent manner. Immunohistochemistry analysis showed that the expression levels of DR5 and DR6 and active caspase-3 were increased while the expression levels of PCNA and p-IKKβ were decreased in a dose dependent manner. Thus, MMPP may be a promising anti-cancer agent in colon cancer treatment.
Collapse
Affiliation(s)
- Jie Zheng
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea.,Current address: Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Byung Kook Hyun
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hyung Ok Chun
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Sung Hee Jung
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hyun Ok Seo
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Young Wan Ham
- Department of Chemistry, Utah Valley University 800 W, University Pkwy, Orem, UT 84058, USA
| | - Sang-Bae Han
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| |
Collapse
|
30
|
Feyzi A, Delkhosh A, Nasrabadi HT, Cheraghi O, khakpour M, Barekati-Mowahed M, Soltani S, Mohammadi SM, Kazemi M, Hassanpour M, Rezabakhsh A, Maleki‐Dizaji N, Rahbarghazi R, Namdarian R. Copper sulfate pentahydrate reduced epithelial cytotoxicity induced by lipopolysaccharide from enterogenic bacteria. Biomed Pharmacother 2017; 89:454-461. [DOI: 10.1016/j.biopha.2017.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/31/2017] [Indexed: 11/28/2022] Open
|
31
|
Farooqi AA, Gadaleta CD, Ranieri G, Fayyaz S, Marech I. New Frontiers in Promoting TRAIL-Mediated Cell Death: Focus on Natural Sensitizers, miRNAs, and Nanotechnological Advancements. Cell Biochem Biophys 2016; 74:3-10. [PMID: 26972296 DOI: 10.1007/s12013-015-0712-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a multifaceted and genomically complex disease, and rapidly emerging scientific evidence is emphasizing on intra-tumor heterogeneity within subpopulations of tumor cells and rapidly developing resistance against different molecular therapeutics. There is an overwhelmingly increasing list of agents currently being tested for efficacy against cancer. In accordance with the concept that therapeutic agents must have fewer off target effects and considerable efficacy, TRAIL has emerged as one among the most deeply investigated proteins reportedly involved in differential killing of tumor cells. Considerable killing activity of TRAIL against different cancers advocated its entry into clinical trials. However, data obtained through preclinical and cell culture studies are deepening our understanding of wide-ranging mechanisms which induce resistance against TRAIL-based therapeutics. These include downregulation of death receptors, overexpression of oncogenes, inactivation of tumor suppressor genes, imbalance of pro- and anti-apoptotic proteins, and inactivation of intrinsic and extrinsic pathways. Substantial fraction of information has been added into existing pool of knowledge related to TRAIL biology and recently accumulating evidence is adding new layers to regulation of TRAIL-induced apoptosis. Certain hints have emerged underscoring miR135a-3p- and miR-143-mediated regulation of TRAIL-induced apoptosis, and natural agents have shown remarkable efficacy in improving TRAIL-based therapeutics by increasing expression of tumor suppressor miRNAs. In this review, we summarize most recent breakthroughs related to naturopathy and strategies to nanotechnologically deliver TRAIL to the target site in xenografted mice. We also set spotlight on positive and negative regulators of TRAIL-mediated signaling. Comprehensive knowledge of genetics and proteomics of TRAIL-based signaling network obtained from cancer patients of different populations will be helpful in getting a step closer to personalized medicine.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Cosmo Damiano Gadaleta
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Girolamo Ranieri
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Ilaria Marech
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
32
|
Nakane D, Tagami T, Inomata T, Ichikawa Y, Nakada A, Ozeki T, Masuda H. Dissolution of Water-insoluble Curcumin by Femtosecond-laser Ablation in the Presence of Cyclodextrins and Its Cytotoxic Bioactivity against Lung Cancer Cells. CHEM LETT 2016. [DOI: 10.1246/cl.160509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Zheng J, Son DJ, Gu SM, Woo JR, Ham YW, Lee HP, Kim WJ, Jung JK, Hong JT. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway. Sci Rep 2016; 6:26357. [PMID: 27198178 PMCID: PMC4873819 DOI: 10.1038/srep26357] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/29/2016] [Indexed: 12/11/2022] Open
Abstract
Piperlongumine has anti-cancer activity in numerous cancer cell lines via various signaling pathways. But there has been no study regarding the mechanisms of PL on the lung cancer yet. Thus, we evaluated the anti-cancer effects and possible mechanisms of PL on non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Our findings showed that PL induced apoptotic cell death and suppressed the DNA binding activity of NF-κB in a concentration dependent manner (0-15 μM) in NSCLC cells. Docking model and pull down assay showed that PL directly binds to the DNA binding site of nuclear factor-κB (NF-κB) p50 subunit, and surface plasmon resonance (SPR) analysis showed that PL binds to p50 concentration-dependently. Moreover, co-treatment of PL with NF-κB inhibitor phenylarsine oxide (0.1 μM) or p50 siRNA (100 nM) augmented PL-induced inhibitory effect on cell growth and activation of Fas and DR4. Notably, co-treatment of PL with p50 mutant plasmid (C62S) partially abolished PL-induced cell growth inhibition and decreased the enhanced expression of Fas and DR4. In xenograft mice model, PL (2.5-5 mg/kg) suppressed tumor growth of NSCLC dose-dependently. Therefore, these results indicated that PL could inhibit lung cancer cell growth via inhibition of NF-κB signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Jie Zheng
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Ju Rang Woo
- New Drug Development Center, KBio, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Young Wan Ham
- Department of Chemistry, Utah Valley University, 800 West University Parkway, Orem, UT 84508, USA
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Wun Jae Kim
- College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae Kyung Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| |
Collapse
|
34
|
Samie N, Haerian BS, Muniandy S, Marlina A, Kanthimathi MS, Abdullah NB, Ahmadian G, Aziddin RER. Mechanism of Action of the Novel Nickel(II) Complex in Simultaneous Reactivation of the Apoptotic Signaling Networks Against Human Colon Cancer Cells. Front Pharmacol 2016; 6:313. [PMID: 26858642 PMCID: PMC4729910 DOI: 10.3389/fphar.2015.00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the cytotoxic potential of a novel nickel(II) complex (NTC) against WiDr and HT-29 human colon cancer cells by determining the IC50 using the standard MTT assay. The NTC displayed a strong suppressive effect on colon cancer cells with an IC50 value of 6.07 ± 0.22 μM and 6.26 ± 0.13 μM against WiDr and HT-29 respectively, after 24 h of treatment. Substantial reduction in the mitochondrial membrane potential and increase in the release of cytochrome c from the mitochondria directed the induction of the intrinsic apoptosis pathway by the NTC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. The NTC was also shown to activate the extrinsic pathway of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of the current work indicates that NTC possess a potent cancer cell abolishing activity by simultaneous induction of intrinsic and extrinsic pathways of apoptosis in colon cancer cell lines.
Collapse
Affiliation(s)
- Nima Samie
- Department of Pharmacology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
- Drug and Research Unit, Department of Pathology, Hospital Kuala LumpurKuala Lumpur, Malaysia
| | - Batoul Sadat Haerian
- Department of Pharmacology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Anita Marlina
- Department of Chemistry, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - M. S. Kanthimathi
- Department of Molecular Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
- Faculty of Medicine, University of Malaya Centre for Proteomics Research, University of MalayaKuala Lumpur, Malaysia
| | - Norbani B. Abdullah
- Department of Chemistry, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Gholamreza Ahmadian
- Department of Environmental and Industrial Biotechnology, National Institute of Genetic Engineering and BiotechnologyTehran, Iran
| | - Raja E. R. Aziddin
- Drug and Research Unit, Department of Pathology, Hospital Kuala LumpurKuala Lumpur, Malaysia
| |
Collapse
|