1
|
Ismail M, Davies G, Sproat G, Monteverde T, Tart J, Acebrón-García-de-Eulate M, Gohlke A, Hancock D, Adhikari S, Stefanovic-Barrett S, Smith DM, Flemington V, Gleave-Hanford ES, Holdgate GA, Kettle JG, Downward J. High throughput application of the NanoBiT Biochemical Assay for the discovery of selective inhibitors of the interaction of PI3K-p110α with KRAS. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100197. [PMID: 39613028 DOI: 10.1016/j.slasd.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
The NanoBiT Biochemical Assay (NBBA) was designed as a biochemical format of the NanoBiT cellular assay, aiming to screen weak protein-protein interactions (PPIs) in mammalian cell lysates. Here we present a High Throughput Screening (HTS) application of the NBBA to screen small molecule and fragment libraries to identify compounds that block the interaction of KRAS-G12D with phosphatidylinositol 3-kinase (PI3K) p110α. This interaction promotes PI3K activity, resulting in the promotion of cell growth, proliferation and survival, and is required for tumour initiation and growth in mouse lung cancer models, whilst having little effect on the health of normal adult mice, establishing the significance of the p110α/KRAS interaction as an oncology drug target. Despite the weak binding affinity of the p110α/KRAS interaction (KD = 3 μM), the NBBA proved to be robust and displayed excellent Z'-factor statistics during the HTS primary screening of 726,000 compounds, which led to the identification of 8,000 active compounds. A concentration response screen comparing KRAS/p110α with two closely related PI3K isoforms, p110δ and p110γ, identified selective p110α-specific compounds and enabled derivation of an IC50 for these hits. We identified around 30 compounds showing greater than 20-fold selectivity towards p110α versus p110δ and p110γ with IC50 < 2 μM. By using Differential Scanning Fluorimetry (DSF) we confirmed several compounds that bind directly to purified p110α. The most potent hits will be followed up by co-crystallization with p110α to aid further elucidation of the nature of the interaction and extended optimisation of these compounds.
Collapse
Affiliation(s)
- Mohamed Ismail
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Gareth Davies
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Graham Sproat
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tiziana Monteverde
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Tart
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David Hancock
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Santosh Adhikari
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - David M Smith
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Emma S Gleave-Hanford
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Geoffrey A Holdgate
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jason G Kettle
- Early TDE Discovery, R&D Oncology, AstraZeneca, Cambridge, UK
| | - Julian Downward
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
2
|
Wang B, Wang M, Li K, Wang C, Liu X, Rao Q, Song J, Hang Y, Liu S, Wen M, Huang L, Li Y. Calothrixin B derivatives induce apoptosis and cell cycle arrest on HEL cells through the ERK/Ras/Raf/MEK pathway. Biomed Pharmacother 2024; 171:116179. [PMID: 38278023 DOI: 10.1016/j.biopha.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Acute erythroleukemia (AEL) is acute myeloid leukemia characterized by malignant erythroid proliferation. AEL has a low survival rate, which has seriously threatened the health of older adults. Calothrixin B is a carbazole alkaloid isolated from the cyanobacteria Calothrix and exhibits anti-cancer activity. To discover more potential anti-erythroleukemia compounds, we used calothrixin B as the structural skeleton to synthesize a series of new compounds. METHODS In the cell culture model, we evaluated apoptosis and cell cycle arrest using MTT assay, flow cytometry analysis, JC-1 staining, Hoechst 33258 staining, and Western blot. Additionally, assessing the curative effect in the animal model included observation of the spleen, HE staining, flow cytometry analysis, and detection of serum biochemical indexes. RESULTS Among the Calothrixin B derivatives, H-107 had the best activity against leukemic cell lines. H-107 significantly inhibited the proliferation of HEL cells with an IC50 value of 3.63 ± 0.33 μM. H-107 induced apoptosis of HEL cells by damaging mitochondria and activating the caspase cascade and arrested HEL cells in the G0/G1 phase. Furthermore, H-107 downregulated the protein levels Ras, p-Raf, p-MEK, p-ERK and c-Myc. Pretreatment with ERK inhibitor (U0126) increased H-107-induced apoptosis. Thus, H-107 inhibited the proliferation of HEL cells by the ERK /Ras/Raf/MEK signal pathways. Interestingly, H-107 promoted erythroid differentiation into the maturation of erythrocytes and effectively activated the immune cells in erythroleukemia mice. CONCLUSION Overall, our findings suggest that H-107 can potentially be a novel chemotherapy for erythroleukemia.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; College of Basic Medical, Guizhou Medical University, Guizhou 550004, China
| | - Ming Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; College of Pharmacy, Guizhou Medical University, Guizhou 550004, China
| | - Ke Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chaoyan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; College of Pharmacy, Guizhou Medical University, Guizhou 550004, China
| | - Xiang Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; College of Basic Medical, Guizhou Medical University, Guizhou 550004, China
| | - Qing Rao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Jingrui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yubing Hang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Sheng Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Min Wen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou 550004, China; College of Basic Medical, Guizhou Medical University, Guizhou 550004, China; College of Pharmacy, Guizhou Medical University, Guizhou 550004, China.
| | - Lei Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| |
Collapse
|
3
|
Limraksasin P, Nattasit P, Manokawinchoke J, Tiskratok W, Vinaikosol N, Okawa H, Limjeerajarus CN, Limjeerajarus N, Pavasant P, Osathanon T, Egusa H. Application of shear stress for enhanced osteogenic differentiation of mouse induced pluripotent stem cells. Sci Rep 2022; 12:19021. [PMID: 36347883 PMCID: PMC9643422 DOI: 10.1038/s41598-022-21479-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
The self-organizing potential of induced pluripotent stem cells (iPSCs) represents a promising tool for bone tissue engineering. Shear stress promotes the osteogenic differentiation of mesenchymal stem cells, leading us to hypothesize that specific shear stress could enhance the osteogenic differentiation of iPSCs. For osteogenesis, embryoid bodies were formed for two days and then maintained in medium supplemented with retinoic acid for three days, followed by adherent culture in osteogenic induction medium for one day. The cells were then subjected to shear loading (0.15, 0.5, or 1.5 Pa) for two days. Among different magnitudes tested, 0.5 Pa induced the highest levels of osteogenic gene expression and greatest mineral deposition, corresponding to upregulated connexin 43 (Cx43) and phosphorylated Erk1/2 expression. Erk1/2 inhibition during shear loading resulted in decreased osteogenic gene expression and the suppression of mineral deposition. These results suggest that shear stress (0.5 Pa) enhances the osteogenic differentiation of iPSCs, partly through Cx43 and Erk1/2 signaling. Our findings shed light on the application of shear-stress technology to improve iPSC-based tissue-engineered bone for regenerative bone therapy.
Collapse
Affiliation(s)
- Phoonsuk Limraksasin
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,grid.7922.e0000 0001 0244 7875Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330 Thailand
| | - Praphawi Nattasit
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Jeeranan Manokawinchoke
- grid.7922.e0000 0001 0244 7875Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Watcharaphol Tiskratok
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Naruephorn Vinaikosol
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Hiroko Okawa
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Chalida Nakalekha Limjeerajarus
- grid.7922.e0000 0001 0244 7875Center of Excellence for Regenerative Dentistry and Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Nuttapol Limjeerajarus
- grid.7922.e0000 0001 0244 7875Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand ,grid.512238.f0000 0004 0625 2348Research Center for Advanced Energy Technology, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, Thailand
| | - Prasit Pavasant
- grid.7922.e0000 0001 0244 7875Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330 Thailand
| | - Thanaphum Osathanon
- grid.7922.e0000 0001 0244 7875Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330 Thailand
| | - Hiroshi Egusa
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,grid.69566.3a0000 0001 2248 6943Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai-city, 980-8575 Japan
| |
Collapse
|
4
|
Yuan P, Fu C, Yang Y, Adila A, Zhou F, Wei X, Wang W, Lv J, Li Y, Xia L, Li J. Cistanche tubulosa Phenylethanoid Glycosides Induce Apoptosis of Hepatocellular Carcinoma Cells by Mitochondria-Dependent and MAPK Pathways and Enhance Antitumor Effect through Combination with Cisplatin. Integr Cancer Ther 2021; 20:15347354211013085. [PMID: 33949239 PMCID: PMC8113936 DOI: 10.1177/15347354211013085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cistanche tubulosa is a type of Chinese herbal medicine and
exerts various biological functions. Previous studies have been demonstrated
that Cistanche tubulosa phenylethanoid glycosides (CTPG)
exhibit antitumor effects on a variety of tumor cells. However, the antitumor
effects of CTPG on HepG2 and BEL-7404 hepatocellular carcinoma (HCC) cells are
still elusive. Our study showed that CTPG significantly inhibited the growth of
HepG2 and BEL-7404 cells through the induction of cell cycle arrest and
apoptosis, which was associated with the activation of MAPK pathways
characterized by the up-regulated phosphorylation of p38, JNK, and ERK1/2 and
mitochondria-dependent pathway characterized by the reduction of mitochondrial
membrane potential. The release of cytochrome c and the
cleavage of caspase-3, -7, -9, and PARP were subsequently increased by CTPG
treatment. Moreover, CTPG significantly suppressed the migration of HepG2
through reducing the levels of matrix metalloproteinase-2 and vascular
endothelial growth factor. Interestingly, CTPG not only enhanced the
proliferation of splenocytes but also reduced the apoptosis of splenocytes
induced by cisplatin. In H22 tumor mouse model, CTPG combined with cisplatin
further inhibited the growth of H22 cells and reduced the side effects of
cisplatin. Taken together, CTPG inhibited the growth of HCC through direct
antitumor effect and indirect immunoenhancement effect, and improved the
antitumor efficacy of cisplatin.
Collapse
Affiliation(s)
| | | | - Yi Yang
- Xinjiang University, Urumqi, Xinjiang, China
| | | | | | | | - Weilan Wang
- Xinjiang University, Urumqi, Xinjiang, China
| | - Jie Lv
- Xinjiang University, Urumqi, Xinjiang, China
| | - Yijie Li
- Xinjiang University, Urumqi, Xinjiang, China
| | - Lijie Xia
- Xinjiang University, Urumqi, Xinjiang, China
| | - Jinyao Li
- Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Chin HM, Lai DK, Falchook GS. Extracellular Signal-Regulated Kinase (ERK) Inhibitors in Oncology Clinical Trials. ACTA ACUST UNITED AC 2020. [DOI: 10.4103/jipo.jipo_17_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
The mitogen-activated protein kinase (MAPK) pathway consists of the series of protein kinases RAS-RAF-MEK-Extracellular signal-regulated kinase (ERK), and its function is important to cell proliferation, differentiation, motility, and survival. Certain mutations in the pathway, such as KRAS or BRAF V600 mutations are associated with cancer. Inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic, but a variety of selective ERK inhibitors are still being tested in clinical studies. To date, common adverse events associated with ERK inhibitors include diarrhea, nausea, fatigue, and rash. ERK inhibitors have demonstrated preliminary antitumor activity and may be most effective against cancers with RAS, RAF, or MAPK pathway alterations. This review discusses the MAPK pathway, the biological rationale for ERK inhibitors, and clinical trials involving ERK inhibitors.
Collapse
Affiliation(s)
| | - David K Lai
- Rice University, Denver, CO, USA
- University of Colorado – Denver, CO, USA
| | - Gerald S Falchook
- Rice University, Denver, CO, USA
- Sarah Cannon Research Institute at HealthONE, Denver, CO, USA
| |
Collapse
|
6
|
Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B 2018; 8:552-562. [PMID: 30109180 PMCID: PMC6089851 DOI: 10.1016/j.apsb.2018.01.008] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
The mitogen-activated protein kinases (MAPK) pathway, often known as the RAS-RAF-MEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell proliferation, differentiation, survival and death. As the most frequently mutated signaling pathway in human cancer, targeting the MAPK pathway has long been considered a promising strategy for cancer therapy. Substantial efforts in the past decades have led to the clinical success of BRAF and MEK inhibitors. However, the clinical benefits of these inhibitors are compromised by the frequently occurring acquired resistance due to cancer heterogeneity and genomic instability. This review briefly introduces the key protein kinases involved in this pathway as well as their activation mechanisms. We also generalize the correlations between mutations of MAPK members and human cancers, followed by a summarization of progress made on the development of small molecule MAPK kinases inhibitors. In particular, this review highlights the potential advantages of ERK inhibitors in overcoming resistance to upstream targets and proposes that targeting ERK kinase may hold a promising prospect for cancer therapy.
Collapse
|
7
|
Martínez-Jiménez F, Overington JP, Al-Lazikani B, Marti-Renom MA. Rational design of non-resistant targeted cancer therapies. Sci Rep 2017; 7:46632. [PMID: 28436422 PMCID: PMC5402386 DOI: 10.1038/srep46632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/22/2017] [Indexed: 12/29/2022] Open
Abstract
Drug resistance is one of the major problems in targeted cancer therapy. A major cause of resistance is changes in the amino acids that form the drug-target binding site. Despite of the numerous efforts made to individually understand and overcome these mutations, there is a lack of comprehensive analysis of the mutational landscape that can prospectively estimate drug-resistance mutations. Here we describe and computationally validate a framework that combines the cancer-specific likelihood with the resistance impact to enable the detection of single point mutations with the highest chance to be responsible of resistance to a particular targeted cancer therapy. Moreover, for these treatment-threatening mutations, the model proposes alternative therapies overcoming the resistance. We exemplified the applicability of the model using EGFR-gefitinib treatment for Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Cancer (LSCC) and the ERK2-VTX11e treatment for melanoma and colorectal cancer. Our model correctly identified the phenotype known resistance mutations, including the classic EGFR-T790M and the ERK2-P58L/S/T mutations. Moreover, the model predicted new previously undescribed mutations as potentially responsible of drug resistance. Finally, we provided a map of the predicted sensitivity of alternative ERK2 and EGFR inhibitors, with a particular highlight of two molecules with a low predicted resistance impact.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - John P. Overington
- Medicines Discovery Catapult Block 35, Mereside, Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | | | - Marc A. Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|