1
|
Kruglikov IL, Scherer PE. Is the endotoxin-complement cascade the major driver in lipedema? Trends Endocrinol Metab 2024; 35:769-780. [PMID: 38688780 PMCID: PMC11387139 DOI: 10.1016/j.tem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Lipedema is a poorly understood disorder of adipose tissue characterized by abnormal but symmetrical deposition of subcutaneous white adipose tissue (WAT) in proximal extremities. Here, we propose that the underlying cause for lipedema could be triggered by a selective accumulation of bacterial lipopolysaccharides (LPS; also known as endotoxin) in gluteofemoral WAT. Together with a malfunctioning complement system, this induces low-grade inflammation in the depot and raises its uncontrollable expansion. Correspondingly, more attention should be paid in future research to the endotoxemia prevalent in patients with lipedema. We would like to propose that proper management of endotoxemia can reduce the progression and even improve the state of disease in patients with lipedema.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
2
|
Yan Z, Kavanagh T, Harrabi RDS, Lust ST, Tang C, Beavil R, Müller MM, Beavil A, Ameer-Beg S, da Silva RM, Gentleman E. FRET Sensor-Modified Synthetic Hydrogels for Real-Time Monitoring of Cell-Derived Matrix Metalloproteinase Activity using Fluorescence Lifetime Imaging. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202309711. [PMID: 38779415 PMCID: PMC7615971 DOI: 10.1002/adfm.202309711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Indexed: 05/25/2024]
Abstract
Matrix remodeling plays central roles in a range of physiological and pathological processes and is driven predominantly by the activity of matrix metalloproteinases (MMPs), which degrade extracellular matrix (ECM) proteins. Our understanding of how MMPs regulate cell and tissue dynamics is often incomplete as in vivo approaches are lacking and many in vitro strategies cannot provide high-resolution, quantitative measures of enzyme activity in situ within tissue-like 3D microenvironments. Here, we incorporate a Förster resonance energy transfer (FRET) sensor of MMP activity into fully synthetic hydrogels that mimic many properties of the native ECM. We then use fluorescence lifetime imaging to provide a real-time, fluorophore concentration-independent quantification of MMP activity, establishing a highly accurate, readily adaptable platform for studying MMP dynamics in situ. MCF7 human breast cancer cells encapsulated within hydrogels highlight the detection of MMP activity both locally, at the sub-micron level, and within the bulk hydrogel. Our versatile platform may find use in a range of biological studies to explore questions in the dynamics of cancer metastasis, development, and tissue repair by providing high-resolution, quantitative and in situ readouts of local MMP activity within native tissue-like environments.
Collapse
Affiliation(s)
- Ziqian Yan
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Thomas Kavanagh
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | | | - Suzette T. Lust
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Chunling Tang
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Rebecca Beavil
- Randall Centre of Cell and Molecular Biophysics, King’s College London, London, UK
| | | | - Andrew Beavil
- Randall Centre of Cell and Molecular Biophysics, King’s College London, London, UK
| | - Simon Ameer-Beg
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | | | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Wenzel EM, Pedersen NM, Elfmark LA, Wang L, Kjos I, Stang E, Malerød L, Brech A, Stenmark H, Raiborg C. Intercellular transfer of cancer cell invasiveness via endosome-mediated protease shedding. Nat Commun 2024; 15:1277. [PMID: 38341434 PMCID: PMC10858897 DOI: 10.1038/s41467-024-45558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Overexpression of the transmembrane matrix metalloproteinase MT1-MMP/MMP14 promotes cancer cell invasion. Here we show that MT1-MMP-positive cancer cells turn MT1-MMP-negative cells invasive by transferring a soluble catalytic ectodomain of MT1-MMP. Surprisingly, this effect depends on the presence of TKS4 and TKS5 in the donor cell, adaptor proteins previously implicated in invadopodia formation. In endosomes of the donor cell, TKS4/5 promote ADAM-mediated cleavage of MT1-MMP by bridging the two proteases, and cleavage is stimulated by the low intraluminal pH of endosomes. The bridging depends on the PX domains of TKS4/5, which coincidently interact with the cytosolic tail of MT1-MMP and endosomal phosphatidylinositol 3-phosphate. MT1-MMP recruits TKS4/5 into multivesicular endosomes for their subsequent co-secretion in extracellular vesicles, together with the enzymatically active ectodomain. The shed ectodomain converts non-invasive recipient cells into an invasive phenotype. Thus, TKS4/5 promote intercellular transfer of cancer cell invasiveness by facilitating ADAM-mediated shedding of MT1-MMP in acidic endosomes.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ingrid Kjos
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Espen Stang
- Laboratory for Molecular and Cellular Cancer Research, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Lene Malerød
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Section for Physiology and Cell Biology, Dept. of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Ge D, Chen J, Zhao Z, Sui B, Liang F, Wang H. Characterizing the function-related specific assembly pattern of matrix metalloproteinase-14 by dSTORM imaging. Talanta 2023; 260:124523. [PMID: 37105082 DOI: 10.1016/j.talanta.2023.124523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
As transmembrane proteolytic enzyme, matrix metalloproteinase-14 (MMP14) regulates cell migration and cancer metastasis, but how it works at the single molecule level is unclear. Molecular localization is closely related to its function, and revealing its spatial assemble details is thus helpful to understand bio-function. Here, we apply aptamer probe and dSTORM to characterize MMP14 distribution. With demonstrating labeling properties of the probe, we investigate the specific distributed pattern of MMP14 on various cell membranes with different migratory capacities, and find that MMP14 mostly aggregate in clustering state, which becomes more significant with enhancing its hydrolysis efficiency on high-migratory cells. Lots of MMP14 are revealed to be co-localized with its substrate PTK7, and this colocalization decreases with weakening cell migration, suggesting that MMP14 may coordinate cell migration by altering its spatial relationship with substrate proteins. This work will promote a deep understanding of the roles of MMP14 in cell migration and cancer metastasis.
Collapse
Affiliation(s)
- Dian Ge
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Junling Chen
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China.
| | - Zhiyong Zhao
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Binglin Sui
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Feng Liang
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin, 130022, China.
| |
Collapse
|
5
|
Bugaeva O, Maliniemi P, Prestvik WS, Leivo E, Kluger N, Salava A, Virtanen S, Jäntti K, Saksela O, Lehti K, Kujala P, Krohn K, Ranki A. Tumour Suppressor Neuron Navigator 3 and Matrix Metalloproteinase 14 are Co-expressed in Most Melanomas but Downregulated in Thick Tumours. Acta Derm Venereol 2023; 103:adv00883. [PMID: 36883877 PMCID: PMC10010123 DOI: 10.2340/actadv.v103.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
Melanoma is a highly metastatic tumour originating from neural crest-derived melanocytes. The aim of this study was to analyse the expression of neuron navigator 3 (NAV3) in relation to membrane type-1 matrix metalloproteinase MMP14, a major regulator of invasion, in 40 primary melanomas, 15 benign naevi and 2 melanoma cell lines. NAV3 copy number changes were found in 18/27 (67%) primary melanomas, so that deletions dominated (16/27 of samples, 59%). NAV3 protein was found to be localized at the leading edge of migrating melanoma cells in vitro. Silencing of NAV3 reduced both melanoma cell migration in 2-dimensional conditions, as well as sprouting in 3-dimensional collagen I. NAV3 protein expression correlated with MMP14 in 26/37 (70%) primary melanomas. NAV3 and MMP14 were co-expressed in all tumours with Breslow thickness < 1 mm, in 11/23 of mid-thickness tumours (1-5 mm), but in only 1/6 samples of thick (> 5 mm) melanomas. Altogether, NAV3 number changes are frequent in melanomas, and NAV3 and MMP14, while expressed in all thin melanomas, are often downregulated in thicker tumours, suggesting that the lack of both NAV3 and MMP14 favours melanoma progression.
Collapse
Affiliation(s)
- Olga Bugaeva
- 1Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, University of Helsinki, Helsinki, Finland.
| | - Pilvi Maliniemi
- 1Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,
| | - Wenche S Prestvik
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eeva Leivo
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nicolas Kluger
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alexander Salava
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Kirsi Jäntti
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Saksela
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaisa Lehti
- 1Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, University of Helsinki, Helsinki, Finland
| | | | - Kaj Krohn
- Clinical Research Institute HUCH, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Fan T, Kuang G, Long R, Han Y, Wang J. The overall process of metastasis: From initiation to a new tumor. Biochim Biophys Acta Rev Cancer 2022; 1877:188750. [PMID: 35728735 DOI: 10.1016/j.bbcan.2022.188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Metastasis-a process that involves the migration of cells from the primary site to distant organs-is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.
Collapse
Affiliation(s)
- Tianyue Fan
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guicheng Kuang
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runmin Long
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
7
|
Parveen S, Khamari A, Raju J, Coppolino MG, Datta S. Syntaxin 7 contributes to breast cancer cell invasion by promoting invadopodia formation. J Cell Sci 2022; 135:275829. [PMID: 35762511 DOI: 10.1242/jcs.259576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
Invasion in various cancer cells requires coordinated delivery of signaling proteins, adhesion proteins, actin-remodeling proteins and proteases to matrix-degrading structures called invadopodia. Vesicular trafficking involving SNAREs plays a crucial role in the delivery of cargo to the target membrane. Screening of 13 SNAREs from the endocytic and recycling route using a gene silencing approach coupled with functional assays identified syntaxin 7 (STX7) as an important player in MDA-MB-231 cell invasion. Total internal reflection fluorescence microscopy (TIRF-M) studies revealed that STX7 resides near invadopodia and co-traffics with MT1-MMP (also known as MMP14), indicating a possible role for this SNARE in protease trafficking. STX7 depletion reduced the number of invadopodia and their associated degradative activity. Immunoprecipitation studies revealed that STX7 forms distinct SNARE complexes with VAMP2, VAMP3, VAMP7, STX4 and SNAP23. Depletion of VAMP2, VAMP3 or STX4 abrogated invadopodia formation, phenocopying what was seen upon lack of STX7. Whereas depletion of STX4 reduced MT1-MMP level at the cell surfaces, STX7 silencing significantly reduced the invadopodia-associated MT1-MMP pool and increased the non-invadosomal pool. This study highlights STX7 as a major contributor towards the invadopodia formation during cancer cell invasion. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| | - Amrita Khamari
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| | - Jyothikamala Raju
- Thazhathemalayil House, Thodupuzha East PO, Keerikode, Kerala 685585, India
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| |
Collapse
|
8
|
Greaves D, Calle Y. Epithelial Mesenchymal Transition (EMT) and Associated Invasive Adhesions in Solid and Haematological Tumours. Cells 2022; 11:649. [PMID: 35203300 PMCID: PMC8869945 DOI: 10.3390/cells11040649] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In solid tumours, cancer cells that undergo epithelial mesenchymal transition (EMT) express characteristic gene expression signatures that promote invasive migration as well as the development of stemness, immunosuppression and drug/radiotherapy resistance, contributing to the formation of currently untreatable metastatic tumours. The cancer traits associated with EMT can be controlled by the signalling nodes at characteristic adhesion sites (focal contacts, invadopodia and microtentacles) where the regulation of cell migration, cell cycle progression and pro-survival signalling converge. In haematological tumours, ample evidence accumulated during the last decade indicates that the development of an EMT-like phenotype is indicative of poor disease prognosis. However, this EMT phenotype has not been directly linked to the assembly of specific forms of adhesions. In the current review we discuss the role of EMT in haematological malignancies and examine its possible link with the progression towards more invasive and aggressive forms of these tumours. We also review the known types of adhesions formed by haematological malignancies and speculate on their possible connection with the EMT phenotype. We postulate that understanding the architecture and regulation of EMT-related adhesions will lead to the discovery of new therapeutic interventions to overcome disease progression and resistance to therapies.
Collapse
Affiliation(s)
| | - Yolanda Calle
- School of Life Sciences and Health, University of Roehampton, London SW15 4JD, UK;
| |
Collapse
|
9
|
Fakhari S, Jalili A, Nikkhoo B, Ghaderi B, Boshagh MA, Mirzaie S, Moradzad M. MT2-MMP is differentially expressed in multiple myeloma cells and mediates their growth and progression. Cell Signal 2022; 92:110248. [PMID: 35041985 DOI: 10.1016/j.cellsig.2022.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Membrane type-matrix metalloproteinases (MT-MMPs) are known as key regulators of cancer progression/metastasis. However, their roles in the growth and progression of multiple myeloma (MM) have not been yet elucidated. METHODS AND MATERIALS The expression of 6 MT-MMPs in MM, B cell lines, and normal peripheral blood (PB) cells were measured by RT-PCR, qRT-PCR, flow cytometry, western blotting, and immunocytochemistry. B lymphocytes, CD19-/CD138-, and CD19-/CD138+ cells, known as malignant plasma cells (MPC), were sorted from bone marrow (BM) aspirations of 10 MM patients, and MT2-MMP expression was examined in these cells using qRT-PCR, flow cytometry and immunohistochemistry, and western blotting. Moreover, the expression of MT2-MMP in BM biopsies from 13 normal individuals and 14 MM patients was analyzed by immunohistochemistry. MT2-MMP was also knocked down in U266 cells using siRNA technology and the adhesion, invasion, migration abilities, and cell proliferation were determined and compared with scrambled ones in both in vitro and in vivo studies. RESULTS Our results showed that MT2-MMP expression is significantly higher in MM cell lines and MPC cells than B cell lines and other PB- or BM-derived cells. MT2-MMP is expressed in BM biopsies from all 14 patients with MM, and 67.85% ± 32.38 of BM cells were positive for MT2-MMP. In contrast, only 0.38 ± 0.76 of BM biopsies from normal individuals were positive for MT2-MMP. Importantly, MT2-MMP was expressed in all the patients' BM biopsies at the diagnosis, but not in the remission phase. MT2-MMP siRNA significantly decreased adhesion, invasion, migration, and 3D cell proliferation of U266 cells. Moreover, in the xenographic model, MT2-MMP siRNA prevented the growth and development of plasmacytoma. Taken together, these data demonstrate that MT2-MMP is strongly expressed in MM cells and plays important role in the growth and progression of these cells, suggesting that MT2-MMP is an appropriate biomarker in diagnosis and therapeutic interventions of MM.
Collapse
Affiliation(s)
- Shohreh Fakhari
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Ali Jalili
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Bahram Nikkhoo
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bayazid Ghaderi
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Amin Boshagh
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mohammad Moradzad
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
10
|
Zhang X, Zheng Q, Wang Z, Xu C, Han H, Li A, Ma G, Li J, Lu C, Chen H, Zhang Z. Qualitative and Quantitative Analysis of Tumor Cell Invasion Using Au Clusters. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:145. [PMID: 35010094 PMCID: PMC8746878 DOI: 10.3390/nano12010145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022]
Abstract
Tumor invasion/metastasis is still the major cause of death in cancer patients. Membrane type-1 matrix metalloproteinase (MT1-MMP) is directly related to tumor invasion/metastasis. To accurately and quickly distinguish the risk of invasion/metastasis of primary tumor cells, it is urgent to develop a simple and precise quantitative method to distinguish the expression level of MT1-MMP. In this work, we have constructed red fluorescent Au clusters with peroxidase-like properties that could specifically bind to MT1-MMP on human cervical cancer cells. After MT1-MMP was labelled with Au clusters, we could visually see red fluorescence of MT1-MMP on cervical cancer cells via fluorescence microscopy and catalytic color imaging using an ordinary optical microscope. The constructed Au clusters contained 26 Au atoms; thus, the amount of MT1-MMP on cervical cancer cells could be accurately quantified using inductively coupled plasma mass spectrometry (ICP-MS). More importantly, the invasion/metastasis capabilities of the cervical cancer Siha, Caski and Hela cells with different MT1-MMP amounts could be accurately distinguished by fluorescence/catalysis qualitative imaging and ICP-MS quantitative analysis. This method of qualitative/quantitative analysis of tumor-associated proteins on cancer cells has great potential for accurately diagnosing aggressive tumor cells and assessment of their invasion/metastasis risk.
Collapse
Affiliation(s)
- Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China;
| | - Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Aiping Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Guicen Ma
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Jiaojiao Li
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China;
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Zhichao Zhang
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
11
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
12
|
Yamahana H, Terashima M, Takatsuka R, Asada C, Suzuki T, Uto Y, Takino T. TGF-β1 facilitates MT1-MMP-mediated proMMP-9 activation and invasion in oral squamous cell carcinoma cells. Biochem Biophys Rep 2021; 27:101072. [PMID: 34381878 PMCID: PMC8339144 DOI: 10.1016/j.bbrep.2021.101072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinase
- Con A, concanavalin A
- DMEM, Dulbecco's modified Eagle's medium
- ECM
- ECM, extracellular matrix
- FBS, fetal bovine serum
- Invasion
- MAPK, mitogen-activated protein kinase
- MMP
- MMP, matrix metalloproteinase
- MT1-MMP, membrane type-1 MMP
- OSCC, oral squamous cell carcinoma
- Oral cancer
- PBS, phosphate-buffered saline
- TGF, transforming growth factor
- TGF-β1
- TIMP, tissue inhibitor of MMP
Collapse
Affiliation(s)
- Hirari Yamahana
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Minoru Terashima
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Risa Takatsuka
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chikako Asada
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshihiro Uto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
13
|
Hu Z, Gu H, Ni J, Hu S, Hu J, Wang X, Liu X, Liu X. Matrix metalloproteinase-14 regulates collagen degradation and migration of mononuclear cells during infection with genotype VII Newcastle disease virus. J Gen Virol 2021; 102. [PMID: 33090092 DOI: 10.1099/jgv.0.001505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upregulation of matrix metalloproteinase (MMP)-14, a major driven force of extracellular-matrix (ECM) remodelling and cell migration, correlates with ECM breakdown and pathologic manifestation of genotype VII Newcastle disease virus (NDV) in chickens. However, the functional relevance between MMP-14 and pathogenesis of genotype VII NDV remains to be investigated. In this study, expression, biofunction and regulation of MMP-14 induced by genotype VII NDV were analysed in chicken peripheral blood mononuclear cells (PBMCs). The results showed that JS5/05 significantly increased expression and membrane accumulation of MMP-14 in PBMCs, correlating to enhanced collagen degradation and cell migration. Specific MMP-14 inhibition significantly impaired collagen degradation and migration of JS5/05-infected cells, suggesting dependence of these features on MMP-14. In addition, MMP-14 upregulation correlated with activation of the extracellular signal-regulated kinase (ERK) pathway upon JS5/05 infection, and blockage of the ERK signalling significantly suppressed MMP-14-mediated collagen degradation and migration of JS5/05-infected cells. Using a panel of chimeric NDVs derived from gene exchange between genotype VII and IV NDV, the fusion and haemagglutinin-neuraminidase genes were identified as the major viral determinants for MMP-14 expression and activity. In conclusion, MMP-14 was defined as a critical regulator of collagen degradation and cell migration of chicken PBMCs infected with genotype VII NDV, which may contribute to pathology of the virus. Our findings add novel information to the body of knowledge regarding virus-host biology and NDV pathogenesis.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Han Gu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Jie Ni
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Shunlin Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Jiao Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiaoquan Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiaowen Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
14
|
Butler SS, Date K, Okumura T, Lueck C, Ghosh B, Maitra A, Suh J. Membrane-bound MMP-14 protease-activatable adeno-associated viral vectors for gene delivery to pancreatic tumors. Gene Ther 2021; 29:138-146. [PMID: 33958732 PMCID: PMC8571120 DOI: 10.1038/s41434-021-00255-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/28/2021] [Accepted: 03/26/2021] [Indexed: 11/09/2022]
Abstract
Adeno-associated virus' (AAV) relatively simple structure makes it accommodating for engineering into controllable delivery platforms. Cancer, such as pancreatic ductal adenocarcinoma (PDAC), are often characterized by upregulation of membrane-bound proteins, such as MMP-14, that propagate survival integrin signaling. In order to target tumors, we have engineered an MMP-14 protease-activatable AAV vector that responds to both membrane-bound and extracellularly active MMPs. This "provector" was generated by inserting a tetra-aspartic acid inactivating motif flanked by the MMP-14 cleavage sequence IPESLRAG into the capsid subunits. The MMP-14 provector shows lower background transduction than previously developed provectors, leading to a 9.5-fold increase in transduction ability. In a murine model of PDAC, the MMP-14 provector shows increased delivery to an allograft tumor. This proof-of-concept study illustrates the possibilities of membrane-bound protease-activatable gene therapies to target tumors.
Collapse
Affiliation(s)
- Susan S Butler
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Kenjiro Date
- Departments of Translational Molecular Pathology and Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Takashi Okumura
- Departments of Translational Molecular Pathology and Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cooper Lueck
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Bidyut Ghosh
- Departments of Translational Molecular Pathology and Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Departments of Translational Molecular Pathology and Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, USA. .,Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA.
| |
Collapse
|
15
|
Fan R, Cui W, Chen J, Ma Y, Yang Z, Payne TJ, Ma JZ, Li MD. Gene-based association analysis reveals involvement of LAMA5 and cell adhesion pathways in nicotine dependence in African- and European-American samples. Addict Biol 2021; 26:e12898. [PMID: 32281736 DOI: 10.1111/adb.12898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Nicotine dependence (ND) is a chronic brain disorder that causes heavy social and economic burdens. Although many susceptibility genetic loci have been reported, they can explain only approximately 5%-10% of the genetic variance for the disease. To further explore the genetic etiology of ND, we genotyped 242 764 SNPs using an exome chip from both European-American (N = 1572) and African-American (N = 3371) samples. Gene-based association analysis revealed 29 genes associated significantly with ND. Of the genes in the AA sample, six (i.e., PKD1L2, LAMA5, MUC16, MROH5, ATP8B1, and FREM1) were replicated in the EA sample with p values ranging from 0.0031 to 0.0346. Subsequently, gene enrichment analysis revealed that cell adhesion-related pathways were significantly associated with ND in both the AA and EA samples. Considering that LAMA5 is the most significant gene in cell adhesion-related pathways, we did in vitro functional analysis of this gene, which showed that nicotine significantly suppressed its mRNA expression in HEK293T cells (p < 0.001). Further, our cell migration experiment showed that the migration rate was significantly different in wild-type and LAMA5-knockout (LAMA5-KO)-HEK293T cells. Importantly, nicotine-induced cell migration was abolished in LAMA5-KO cells. Taken together, these findings indicate that LAMA5, as well as cell adhesion-related pathways, play an important role in the etiology of smoking addiction, which warrants further investigation.
Collapse
Affiliation(s)
- Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Thomas J. Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences University of Mississippi Medical Center Jackson Mississippi USA
| | - Jennie Z. Ma
- Department of Public Health Sciences University of Virginia Charlottesville Virginia USA
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Research Center for Air Pollution and Health Zhejiang University Hangzhou China
| |
Collapse
|
16
|
Ning H, Lu W, Jia Q, Wang J, Yao T, Lv S, Li Y, Wen H. Discovery of oxyepiberberine as a novel tubulin polymerization inhibitor and an anti-colon cancer agent against LS-1034 cells. Invest New Drugs 2020; 39:386-393. [PMID: 32997210 DOI: 10.1007/s10637-020-01006-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Coptis chinensis Franch. has been extensively used in traditional Chinese medicine. The chemical structure of oxyepiberberine, as an alkaloid isolated from Coptis chinensis Franch., has been previously studied. However, anti-cancer effects and underlying mechanisms of oxyepiberberine need to be explored. This study aimed to investigate the anti-cancer effects and underlying mechanisms of oxyepiberberine on LS-1034 human colon cancer cells. The anti-proliferative effects of six derivatives of oxyepiberberine on colon cancer cells were assessed. Among six derivatives, oxyepiberberine showed the greatest anti-proliferative effect on LS-1034 cells with an IC50 value of 1.36 μM. Oxyepiberberine also induced apoptosis and inhibited migration of LS-1034 cells in a concentration-dependent manner. Importantly, oxyepiberberine was identified as a potent tubulin polymerization inhibitor. The tubulin polymerization inhibitory effects of oxyepiberberine in a concentration-dependent manner with an IC50 value of 1.26 μM were observed. A xenograft mouse model of colon cancer showed that oxyepiberberine could suppress tumor growth without an obvious toxicity. Conclusion Oxyepiberberine was found as a novel tubulin polymerization inhibitor, and it could be a promising agent to treat colon cancer.
Collapse
Affiliation(s)
- Hanbing Ning
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Wenquan Lu
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiaoyu Jia
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingyun Wang
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tingting Yao
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuai Lv
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingxia Li
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongtao Wen
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
17
|
Pan S, Hu Y, Hu M, Jian H, Chen M, Gan L, Zheng P, He Y, Wang J. Platelet-derived PDGF promotes the invasion and metastasis of cholangiocarcinoma by upregulating MMP2/MMP9 expression and inducing EMT via the p38/MAPK signalling pathway. Am J Transl Res 2020; 12:3577-3595. [PMID: 32774720 PMCID: PMC7407735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumour with a poor prognosis due to its late clinical presentation and the lack of effective non-surgical therapies. Previous studies have reported that platelets are implicated in tumour invasion and metastasis, while their role and the underlying mechanism in CCA remain unclear. Here, we show that platelets are hyperactivated in patients with CCA and that platelet-derived growth factor (PDGF) promotes the migration of CCA tumour cells both in vitro and in vivo. Further investigations revealed that PDGF can upregulate the expression of MMP2/MMP9 and induce epithelial-mesenchymal transition (EMT) by activating the p38/MAPK signalling pathway in CCA cells. In addition, the expression of MMP2/MMP9 was associated with lymph node metastasis and poor prognosis in CCA patients after surgical resection. In conclusion, our findings demonstrate that platelets play an important role in facilitating the invasion and metastasis of CCA cells by secreting PDGF, which may provide a novel target for CCA treatment.
Collapse
Affiliation(s)
- Shuguang Pan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical UniversityChongqing 400038, China
| | - Ying Hu
- Oncology Department, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical UniversityChongqing 400038, China
| | - Hongmei Jian
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical UniversityChongqing 400038, China
| | - Lang Gan
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Ping Zheng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Yu He
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical UniversityChongqing 400038, China
| |
Collapse
|
18
|
Willson JA, Bork BS, Muir CA, Damjanovski S. Modulation of RECK levels in Xenopus A6 cells: effects on MT1-MMP, MMP-2 and pERK levels. ACTA ACUST UNITED AC 2019; 26:16. [PMID: 31799217 PMCID: PMC6881977 DOI: 10.1186/s40709-019-0108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/13/2019] [Indexed: 11/10/2022]
Abstract
Background MT1-MMP is a cell-surface enzyme whose regulation of pro-MMP-2 and ERK activation position it as a key facilitator of ECM remodelling and cell migration. These processes are modulated by endogenous MMP inhibitors, such as RECK, a GPI-anchored protein which has been shown to inhibit both MT1-MMP and MMP-2 activity. Our previous studies have revealed a link between MT1-MMP levels, and pro-MMP-2 and ERK activation in mammalian cells, as well as MT1-MMP and RECK co-localization in Xenopus embryos. We here investigated how modulation of RECK would impact MT1-MMP and MMP-2 levels, as well as ERK signalling in Xenopus A6 cells. Results We used a Morpholino approach to knockdown RECK, plasmid transfection to overexpress RECK, and PI-PLC treatment to shed RECK from the cell surface of Xenopus A6 cells. RECK reduction did not alter pERK or MT1-MMP levels, nor MMP-2 activity as measured by zymography; thus RECK-knockdown cells maintained the ability to remodel the ECM. RECK overexpression and PI-PLC treatment both increased ECM remodelling potential through increased MT1-MMP protein and relative MMP-2 activation levels. Conclusions RECK changes that reduce the ability of the cell to remodel the ECM (overexpression and cell surface shedding) are compensated for by increases in MT1-MMP, and MMP-2 levels as seen by zymography.
Collapse
Affiliation(s)
- Jessica A Willson
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| | - Bradley S Bork
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| | - Carlie A Muir
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| | - Sashko Damjanovski
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| |
Collapse
|
19
|
DCLK1 Plays a Metastatic-Promoting Role in Human Breast Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1061979. [PMID: 31223610 PMCID: PMC6541964 DOI: 10.1155/2019/1061979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023]
Abstract
Background Doublecortin-like kinase 1 (DCLK1) has been universally identified as a cancer stem cell (CSC) marker and is found to be overexpressed in many types of cancers including breast cancer. However, there is little data regarding the functional role of DCLK1 in breast cancer metastasis. In the present study, we sought to investigate whether and how DCLK1 plays a metastatic-promoting role in human breast cancer cells. Methods We used Crispr/Cas9 technology to knock out DCLK1 in breast cancer cell line BT474, which basically possesses DCLK1 at a higher level, and stably overexpressed DCLK1 in another breast cancer cell line, T47D, that basically expresses DCLK1 at a lower level. We further analyzed the alterations of metastatic characteristics and the underlying mechanisms in these cells. Results It was shown that, compared with the corresponding control cells, DCLK1 overexpression led to an increase in metastatic behaviors including enhanced migration and invasion of T47D cells. By contrast, forced depletion of DCLK1 drastically inhibited these metastatic characteristics in BT474 cells. Mechanistically, the epithelial-mesenchymal transition (EMT) program, which is critical for cancer metastasis, was prominently activated in DCLK1-overexpressing cancer cells, evidenced by a decrease in an epithelial marker ZO-1 and an enhancement in several mesenchymal markers including ZEB1 and Vimentin. In addition, DCLK1 overexpression induced the ERK MAPK pathway, which resultantly enhanced the expression of MT1-MMP that is also involved in cancer metastasis. Knockout of DCLK1 could reverse these events, further supporting a metastatic-promoting role for DCLK1. Conclusions Collectively, our data suggested that DCLK1 overexpression may be responsible for the increased metastatic features in breast cancer cells. Targeting DCLK1 may become a therapeutic option for breast cancer metastasis.
Collapse
|
20
|
Invadopodia are chemosensing protrusions that guide cancer cell extravasation to promote brain tropism in metastasis. Oncogene 2019; 38:3598-3615. [PMID: 30651600 PMCID: PMC6756237 DOI: 10.1038/s41388-018-0667-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
Invadopodia are cell protrusions that mediate cancer cell extravasation but the microenvironmental cues and signaling factors that induce invadopodia formation during extravasation remain unclear. Using intravital imaging and loss of function experiments, we determined invadopodia contain receptors involved in chemotaxis, namely GABA receptor and EGFR. These chemotaxis capabilities are mediated in part by PAK1 which controls invadopodia responsiveness to ligands such as GABA and EGF via assembly, stability, and turnover of invadopodia in vivo. PAK1 knockdown rendered cells unresponsive to chemotactic stimuli present in the stroma, resulting in dramatically lower rates of cancer cell extravasation and metastatic colony formation compared to stimulated cancer cells. In an experimental mouse model of brain metastasis, inhibition of PAK1 significantly reduced overall tumor burden and reduced the average size of brain metastases. In summary, invadopodia contain chemotaxis receptors that can respond to microenvironmental cues to guide cancer cell extravasation, and when PAK1 is depleted, brain tropism of metastatic breast cancer cells is significantly reduced, blocking secondary colony growth at sites otherwise permissive for metastatic outgrowth.
Collapse
|
21
|
Arkadash V, Radisky ES, Papo N. Combinatorial engineering of N-TIMP2 variants that selectively inhibit MMP9 and MMP14 function in the cell. Oncotarget 2018; 9:32036-32053. [PMID: 30174795 PMCID: PMC6112833 DOI: 10.18632/oncotarget.25885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Developing selective inhibitors for proteolytic enzymes that share high sequence homology and structural similarity is important for achieving high target affinity and functional specificity. Here, we used a combination of yeast surface display and dual-color selective library screening to obtain selective inhibitors for each of the matrix metalloproteinases (MMPs) MMP14 and MMP9 by modifying the non-specific N-terminal domain of the tissue inhibitor of metalloproteinase-2 (N-TIMP2). We generated inhibitor variants with 30- to 1175-fold improved specificity to each of the proteases, respectively, relative to wild type N-TIMP2. These biochemical results accurately predicted the selectivity and specificity obtained in cell-based assays. In U87MG cells, the activation of MMP2 by MMP14 was inhibited by MMP14-selective blockers but not MMP9-specific inhibitors. Target specificity was also demonstrated in MCF-7 cells stably expressing either MMP14 or MMP9, with only the MMP14-specific inhibitors preventing the mobility of MMP14-expressing cells. Similarly, the mobility of MMP9-expressing cells was inhibited by the MMP9-specific inhibitors, yet was not altered by the MMP14-specific inhibitors. The strategy developed in this study for improving the specificity of an otherwise broad-spectrum inhibitor will likely enhance our understanding of the basis for target specificity of inhibitors to proteolytic enzymes, in general, and to MMPs, in particular. We, moreover, envision that this study could serve as a platform for the development of next-generation, target-specific therapeutic agents. Finally, our methodology can be extended to other classes of proteolytic enzymes and other important target proteins.
Collapse
Affiliation(s)
- Valeria Arkadash
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
22
|
Li F, Zhang J, Guo J, Jia Y, Han Y, Wang Z. RNA interference targeting CD147 inhibits metastasis and invasion of human breast cancer MCF-7 cells by downregulating MMP-9/VEGF expression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:676-684. [PMID: 29901696 DOI: 10.1093/abbs/gmy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is one of the most common malignancies. It is necessary to identify new markers for predicting tumor progression and therapeutic molecular targets. It has been reported that CD147 is one of the most commonly expressed proteins in primary tumors and in metastatic cells. In this study, we investigated the role of CD147 in human breast cancer metastasis and invasion, and examined its underlying molecular mechanisms. Immunohistochemistry results revealed high expression of CD147 in human breast tumor tissues, which was positively correlated with the malignancy of breast cancer. MCF-7 cells were transfected with CD147 siRNA eukaryotic expression vector, which resulted in significant knockdown of CD147. We found that CD147 siRNA dramatically inhibited cell proliferation, metastasis, and invasion. Furthermore, our results demonstrated that CD147 siRNA inhibited the synthesis of matrix metalloproteinase 9 (MMP-9) but had no significant effect on matrix metalloproteinase 2 (MMP-2). In addition, CD147 siRNA significantly inhibited the production of vascular endothelial growth factor (VEGF). Taken together, these data indicate that CD147 promotes breast cancer cell proliferation, metastasis, and invasion by modulating MMP-9 and VEGF expression. Thus, CD147 may be used as an important indicator for the judgment of malignant behavior of breast cancer, and may be a potential novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
- Department of Oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, China
| | - Junping Zhang
- Department of Oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, China
| | - Jiqiang Guo
- Department of Oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, China
| | - Yuan Jia
- Department of Oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, China
| | - Yaping Han
- Department of Oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, China
| | - Zhuanhua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
23
|
Willson JA, Muir CA, Evered CL, Cepeda MA, Damjanovski S. Stable expression of α1-antitrypsin Portland in MDA-MB-231 cells increased MT1-MMP and MMP-9 levels, but reduced tumour progression. J Cell Commun Signal 2017; 12:479-488. [PMID: 28849349 DOI: 10.1007/s12079-017-0407-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/16/2017] [Indexed: 11/29/2022] Open
Abstract
The membrane bound matrix metalloproteinase MT1-MMP plays roles in modulating cell movement, independent of its abilities to remodel the extracellular matrix. Unlike many MMPs, MT1-MMP is activated in the Golgi prior to secretion by a pro-protein convertase, primarily furin. Regulation of the activation of pro-MT1-MMP has been methodically investigated, as altering the level of the active protein has broad implications in both activating other pro-MMPs, including pro-MMP-2, and many subsequent remodelling events. Our previous work in MCF-7 cells has demonstrated that modest, and not extremely high, levels of active MT1-MMP manifests into altered cell morphology and movement. At this low but optimal amount of MT1-MMP protein, changes to MT1-MMP levels are always mirrored by MMP-9 and pERK levels, and always opposite to MMP-2 levels. In this study, stable expression of the furin inhibitor α1-antitrypsin Portland (α1-PDX) in MDA-MB-231 cells increased overall MT1-MMP levels, but cells maintained a 21% proportion of pro-MT1-MMP. The increase in MT1-MMP was mirrored by increases in MMP-9 and pERK, but a decrease in MMP-2. These changes were associated with increased NF-κB transcription. In vitro analysis showed that α1-PDX decreased cell protrusions and migration, and this manifested as decreased tumourigenesis when examined in vivo using a chick CAM assay.
Collapse
Affiliation(s)
- J A Willson
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - C A Muir
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - C L Evered
- Ontario Veterinary College, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| | - M A Cepeda
- Department of Urology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55902, USA
| | - S Damjanovski
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| |
Collapse
|
24
|
Seager RJ, Hajal C, Spill F, Kamm RD, Zaman MH. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017; 3. [PMID: 30079253 DOI: 10.1088/2057-1739/aa7e86] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the tumour microenvironment, cancer cells directly interact with both the immune system and the stroma. It is firmly established that the immune system, historically believed to be a major part of the body's defence against tumour progression, can be reprogrammed by tumour cells to be ineffective, inactivated, or even acquire tumour promoting phenotypes. Likewise, stromal cells and extracellular matrix can also have pro-and anti-tumour properties. However, there is strong evidence that the stroma and immune system also directly interact, therefore creating a tripartite interaction that exists between cancer cells, immune cells and tumour stroma. This interaction contributes to the maintenance of a chronically inflamed tumour microenvironment with pro-tumorigenic immune phenotypes and facilitated metastatic dissemination. A comprehensive understanding of cancer in the context of dynamical interactions of the immune system and the tumour stroma is therefore required to truly understand the progression toward and past malignancy.
Collapse
Affiliation(s)
- R J Seager
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215
| | - Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Fabian Spill
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215.,Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215.,Howard Hughes Medical Institute, Boston University, Boston, MA 02215
| |
Collapse
|
25
|
Xu YZ, Chen FF, Zhang Y, Zhao QF, Guan XL, Wang HY, Li A, Lv X, Song SS, Zhou Y, Li XJ. The long noncoding RNA FOXCUT promotes proliferation and migration by targeting FOXC1 in nasopharyngeal carcinoma. Tumour Biol 2017. [PMID: 28635400 DOI: 10.1177/1010428317706054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs play an important role in various biological processes, including tumorigenesis. FOXC1 (Forkhead box C1) is a member of the Forkhead box family of transcription factors and plays a crucial role in nasopharyngeal carcinoma. In this study, a novel long noncoding RNA (FOXCUT) located upstream of FOXC1 was investigated in 42 nasopharyngeal carcinoma patients. Our analysis revealed that the expression levels of FOXCUT and FOXC1 in nasopharyngeal carcinoma tissues were significantly higher than those observed in chronic nasopharyngitis tissues and that FOXCUT expression was positively correlated with FOXC1 expression. Additionally, knockdown of FOXCUT significantly inhibited proliferation and migration of nasopharyngeal carcinoma cell lines and resulted in downregulated expression of the matrix metalloproteinase 7 and matrix metalloproteinase 9, as well as vascular endothelial growth factor A and β-catenin. Our findings suggested that FOXCUT expression contributed to the development and progression of nasopharyngeal carcinoma by targeting FOXC1 and that FOXCUT might be useful as a potential nasopharyngeal carcinoma biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yu-Zhong Xu
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China.,2 Department of Clinical Laboratory, Shenzhen Bao'an Hospital, Southern Medical University, Shenzhen, China
| | - Fang-Fang Chen
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yu Zhang
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Qin-Fei Zhao
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Xiao-Long Guan
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Hai-Yong Wang
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Ang Li
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Xin Lv
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Shu-Sheng Song
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Ying Zhou
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Xiao-Jun Li
- 1 Institute of Clinical Laboratory Science, Jinling Hospital, Southern Medical University, Nanjing, China
| |
Collapse
|
26
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
27
|
Turunen SP, Tatti-Bugaeva O, Lehti K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1974-1988. [PMID: 28390905 DOI: 10.1016/j.bbamcr.2017.04.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Membrane-type matrix metalloproteases (MT-MMP) are pivotal regulators of cell invasion, growth and survival. Tethered to the cell membranes by a transmembrane domain or GPI-anchor, the six MT-MMPs can exert these functions via cell surface-associated extracellular matrix degradation or proteolytic protein processing, including shedding or release of signaling receptors, adhesion molecules, growth factors and other pericellular proteins. By interactions with signaling scaffold or cytoskeleton, the C-terminal cytoplasmic tail of the transmembrane MT-MMPs further extends their functionality to signaling or structural relay. MT-MMPs are differentially expressed in cancer. The most extensively studied MMP14/MT1-MMP is induced in various cancers along malignant transformation via pathways activated by mutations in tumor suppressors or proto-oncogenes and changes in tumor microenvironment including cellular heterogeneity, extracellular matrix composition, tissue oxygenation, and inflammation. Classically such induction involves transcriptional programs related to epithelial-to-mesenchymal transition. Besides inhibition by endogenous tissue inhibitors, MT-MMP activities are spatially and timely regulated at multiple levels by microtubular vesicular trafficking, dimerization/oligomerization, other interactions and localization in the actin-based invadosomes, in both tumor and the stroma. The functions of MT-MMPs are multifaceted within reciprocal cellular responses in the evolving tumor microenvironment, which poses the importance of these proteases beyond the central function as matrix scissors, and necessitates us to rethink MT-MMPs as dynamic signaling proteases of cancer. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- S Pauliina Turunen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden
| | - Olga Tatti-Bugaeva
- Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden; Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland; K. Albin Johansson Foundation, Finnish Cancer Institute, P.O. Box 63, FI-00014, Helsinki, Finland.
| |
Collapse
|
28
|
Inhibition of MT1-MMP proteolytic function and ERK1/2 signalling influences cell migration and invasion through changes in MMP-2 and MMP-9 levels. J Cell Commun Signal 2017; 11:167-179. [PMID: 28070797 DOI: 10.1007/s12079-016-0373-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/19/2016] [Indexed: 10/25/2022] Open
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14) is a unique protease that cleaves extracellular proteins, activates proMMPs, and initiates intracellular signalling. MCF-7 cells are non-invasive and deficient in MT1-MMP, MMP-2, and MMP-9 expression. We created an MCF-7 cell line (C2) that stably produces active MT1-MMP and demonstrated increased ERK1/2 phosphorylation. MAPK inhibition in this cell line showed an inverse relationship in MMP-2 and MMP-9 transcripts where levels of these genes increased and decreased, respectively. Using invasive MDA-MB 231 cells that endogenously produce MT1-MMP and have naturally high pERK levels, we demonstrated the identical inverse relationship between MMP-2 and -9 transcript and protein levels, suggesting that this novel relationship is conserved amongst MT1-MMP positive breast cancer cells. To further analyze the relationship between MMP-2 and -9 levels, we chemically inhibited activation and catalytic activity of MT1-MMP using a furin and MMP inhibitor, respectively, to show that interference with the functions of MT1-MMP induced changes in MMP-2 and 9 transcript levels that were always inverse of each other, and likely mediated by differential transcriptional activity of the NF-κB transcription factor. Furthermore, we analyzed the functional consequences of these expression changes to show MMP, and in particular ERK, inhibition decreased migration and invasion using 2D culture, and inhibits the formation of an invasive phenotype in Matrigel 3D culture. This study demonstrated a novel inverse transcriptional relationship between MMP-2 and -9 levels and MT1-MMP activity that have functional consequences, and also showed that increases in the levels of MMPs does not necessarily correlate with an invasive phenotype.
Collapse
|
29
|
Cepeda MA, Pelling JJ, Evered CL, Leong HS, Damjanovski S. The cytoplasmic domain of MT1-MMP is dispensable for migration augmentation but necessary to mediate viability of MCF-7 breast cancer cells. Exp Cell Res 2016; 350:169-183. [PMID: 27889376 DOI: 10.1016/j.yexcr.2016.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/28/2023]
Abstract
Membrane-type-1 Matrix Metalloproteinase (MT1-MMP) is a multifunctional protease that regulates ECM degradation, proMMP-2 activation, and varied cellular processes including migration and viability. MT1-MMP is believed to be a central mediator of tumourigenesis whose role is dictated by its functionally distinct protein domains. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain, exemplifying diverse regulatory functions. To further our understanding of the multifunctional contributions of MT1-MMP to cellular processes, we overexpressed cytoplasmic domain altered constructs in MCF-7 breast cancer cells and analyzed migration and viability in 2D culture conditions, morphology in 3D Matrigel culture, and tumorigenic ability in vivo. We found that the cytoplasmic domain was not needed for MT1-MMP mediated migration promotion, but was necessary to maintain viability during serum depravation in 2D culture. Similarly, during 3D Matrigel culture the cytoplasmic domain of MT1-MMP was not needed to initiate a protrusive phenotype, but was necessary to prevent colony blebbing when cells were serum deprived. We also tested in vivo tumorigenic potential to show that cells expressing cytoplasmic domain altered constructs demonstrated a reduced ability to vascularize tumours. These results suggest that the cytoplasmic domain regulates MT1-MMP function in a manner required for cell survival, but is dispensable for cell migration.
Collapse
Affiliation(s)
- Mario A Cepeda
- Department of Biology, Faculty of Science, University of Western Ontario, London, ON, Canada
| | - Jacob Jh Pelling
- Department of Biology, Faculty of Science, University of Western Ontario, London, ON, Canada
| | - Caitlin L Evered
- Department of Biology, Faculty of Science, University of Western Ontario, London, ON, Canada
| | - Hon S Leong
- Department of Surgery, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada
| | - Sashko Damjanovski
- Department of Biology, Faculty of Science, University of Western Ontario, London, ON, Canada; Associate Scientist, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|