1
|
Gaur V, Tyagi W, Das S, Ganguly S, Bhattacharyya J. CD40 agonist engineered immunosomes modulated tumor microenvironment and showed pro-immunogenic response, reduced toxicity, and tumor free survival in mice bearing glioblastoma. Biomaterials 2024; 311:122688. [PMID: 38943821 DOI: 10.1016/j.biomaterials.2024.122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
CD40 agonist antibodies (αCD40) have shown promising anti-tumor response in both preclinical and early clinical studies. However, its systemic administration is associated with immune- and hepato-toxicities which hampers its clinical usage. In addition, αCD40 showed low tumor retention and induced PD-L1 expression which makes tumor microenvironment (TME) immunosuppressive. To overcome these issues, in this study, we have developed a multifunctional Immunosome where αCD40 is conjugated on the surface and RRX-001, a small molecule immunomodulator was encapsulated inside it. Immunosomes showed higher tumor accumulation till 96 h of administration and displayed sustained release of αCD40 in vivo. Immunosomes significantly delayed tumor growth and showed tumor free survival in mice bearing GL-261 glioblastoma by increasing the population of CD45+CD8+ T cells, CD45+CD20+ B cells, CD45+CD11c+ DCs and F4/80+CD86+ cells in TME. Immunosome significantly reduced the population of T-regulatory cells, M2 macrophage, and MDSCs and lowered the PD-L1 expression. Moreover, Immunosomes significantly enhanced the levels of Th1 cytokines (IFN-γ, IL-6, IL-2) over Th2 cytokines (IL-4 and IL-10) which supported anti-tumor response. Most interestingly, Immunosomes averted the in vivo toxicities associated with free αCD40 by lowering the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), IL-6, IL-1α and reduced the degree of liver damage. In addition, Immunosomes treated long-term surviving mice showed tumor specific immune memory response which prevented tumor growth upon rechallenge. Our results suggested that this novel formulation can be further explored in clinics to improve in vivo anti-tumor efficacy of αCD40 with long-lasting tumor specific immunity while reducing the associated toxicities.
Collapse
Affiliation(s)
- Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, India
| | - Witty Tyagi
- Molecular Oncology Laboratory, National Institute of Immunology, Delhi, India
| | - Sanjeev Das
- Molecular Oncology Laboratory, National Institute of Immunology, Delhi, India
| | - Surajit Ganguly
- Department of Molecular Medicine, Jamia Hamdard University, Delhi, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, India.
| |
Collapse
|
2
|
Lin C, Wu J, Wang Z, Xiang Y. Long non-coding RNA LNC-POTEM-4 promotes HCC progression via the LNC-POTEM-4/miR-149-5p/Wnt4 signaling axis. Cell Signal 2024; 124:111412. [PMID: 39278454 DOI: 10.1016/j.cellsig.2024.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Information on the potential role of the long non-coding RNA LNC-POTEM-4 in cancer progression is limited. Our preliminary study found that LNC-POTEM-4 was overexpressed in hepatocellular carcinoma (HCC) tissues, which led us to further investigate the biological function and molecular mechanism of LNC-POTEM-4 in HCC development. LNC-POTEM-4 expression in HCC tissues was examined using transcriptome sequencing and quantitative reverse transcription PCR. The relationships between LNC-POTEM-4 and the stage and prognosis of HCC in patient data from the TCGA database were analyzed. The effects of LNC-POTEM-4 on proliferation, invasion/migration, and epithelial-mesenchymal transition marker expression in HCC cells were evaluated in vitro using gain- and loss-of-function assays, while its effects on tumor growth and metastasis were explored through animal experiments. A LNC-POTEM-4/microRNA (miR)-149-5p/Wnt4 regulatory signaling axis was identified using bioinformatics analysis, and dual luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Co-transfection of LNC-POTEM-4 and Wnt4 expression plasmids was employed to confirm the new signaling pathway. We found that LNC-POTEM-4 was overexpressed in HCC tissues and was linked to poor staging and prognosis. LNC-POTEM-4 promoted proliferation, invasion, migration, and the epithelial-mesenchymal transition of HCC cells in vitro. Silencing of LNC-POTEM-4 inhibited HCC growth and distant metastasis in vivo. Mechanically, LNC-POTEM-4 was found to function as a competitive endogenous RNA, upregulating Wnt4 by sponging miR-149-5p to promote HCC progression. Wnt4 overexpression may have counteracted the tumor-inhibition effect of LNC-POTEM-4 silencing. In conclusion, LNC-POTEM-4 upregulated Wnt4 to activate the Wnt signaling pathway and stimulate the malignancy tendency of HCC by sponging miR-149-5p, providing a prospective target for the detection and therapy of HCC. However, the effects of LNC-POTEM-4 on the miR-149-5p/Wnt4 signaling axis should be further studied in animal experiments.
Collapse
Affiliation(s)
- Chao Lin
- Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jiacheng Wu
- Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Zhixuan Wang
- Intensive Care Medicine, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Yien Xiang
- Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
3
|
Ferreira JM, Gonçalves CS, Costa BM. Emerging roles and biomarker potential of WNT6 in human cancers. Cell Commun Signal 2024; 22:538. [PMID: 39529066 PMCID: PMC11552340 DOI: 10.1186/s12964-024-01892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The WNT6 ligand is a well-known activator of the WNT signaling pathway, considered a vital player in several important physiologic processes during embryonic development and maintaining homeostasis throughout life, regulating the proliferation and differentiation of multiple stem/progenitor cell types. More recently, as it is the case for many key molecular regulators of embryonic development, dysregulation of WNT6 has been implicated in cancer development and progression in multiple studies. In this review, we overview the most significant recent findings regarding WNT6 in the context of human malignancies, exploring its influence on multiple dimensions of tumor pathophysiology and highlighting the putative underlying WNT6-associated molecular mechanisms. We also discuss the potential clinical implications of WNT6 as a prognostic and therapeutic biomarker. This critical review highlights the emerging relevance of WNT6 in multiple human cancers, and its potential as a clinically-useful biomarker, addressing key unanswered questions that could lead to new opportunities in patient diagnosis, stratification, and the development of rationally-designed precision therapies.
Collapse
Affiliation(s)
- Joana M Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Wu F, Zhang K, Song Z, Zhou Q, Sun H, Tan Z, Huang Z, Wang F, Wang Z, Yang R, Huang Y. Reduced Proline-Rich Tyrosine Kinase 2 Promotes Tumor Metastasis by Activating Epithelial-Mesenchymal Transition in Colorectal Cancer. Dig Dis Sci 2024; 69:4098-4107. [PMID: 39414740 DOI: 10.1007/s10620-024-08643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Proline-rich tyrosine kinase 2 (PYK2) is involved in the occurrence, proliferation, migration, and invasion of various tumors. However, few studies have reported the role of PYK2 in colorectal cancer (CRC). AIM To explore the effects of PYK2 on CRC metastasis and elucidate the detailed molecular mechanisms involved. METHODS The expression and prognosis value of PYK2 in CRC prognosis were analyzed using data from The Cancer Genome Atlas (TCGA). PYK2 was knocked down or overexpressed in human CRC cell line, HCT116. Cell proliferation, migration, invasion, and cycle changes were analyzed using CCK-8, Transwell, and flow cytometry assays. Western blotting and quantitative real-time PCR were performed to detect the mRNA and protein levels of cell proliferation and epithelial-mesenchymal transition (EMT) indicators. Fluorescence staining was performed to examine the cytoskeleton. RESULTS Lower expression of PYK2 was observed in CRC tissues and associated with poor prognosis and metastasis in patients with CRC in TCGA database. PYK2 knockdown significantly induced the migration and invasion of CRC cells but did not affect cell proliferation or cycle. Immunofluorescence staining of phalloidin showed that the downregulation of PYK2 increased the cytoskeleton in CRC cells. Moreover, low expression of PYK2 induced the downregulation of E-cadherin and upregulation of snail and vimentin by activating Wnt/β-catenin signaling, thus promoting EMT in CRC cells. CONCLUSIONS Low PYK2 expression was found in tumor tissues, especially metastases, and significantly correlated with patient prognosis. Moreover, decreased PYK2 induces EMT by activating Wnt/β-catenin signaling, which is the potential mechanism of CRC metastasis. Regulating the expression of PYK2 to suppress tumor cell metastasis may represent a promising therapeutic strategy for metastatic CRC.
Collapse
Affiliation(s)
- Fangquan Wu
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ke Zhang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhengyang Song
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qishuo Zhou
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongxia Sun
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zenglin Tan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhenxuan Huang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhonglin Wang
- Department of Anorectal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Riwei Yang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yingpeng Huang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Li J, Zhu X, Ye S, Dong Q, Hou J, Liu J, She W. Tanshinone IIA potentiates the therapeutic efficacy of glucocorticoids in lipopolysaccharide-treated HEI-OC1 cells through modulation of the FOXP3/Nrf2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39483046 DOI: 10.3724/abbs.2024194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Glucocorticoids (GCs) are commonly used to treat sudden sensorineural hearing loss (SSNHL), although some patients are resistant to this therapeutic approach. Clinical studies have demonstrated the efficacy of tanshinone IIA (TA) in combination with GC for managing various human ailments. However, it remains unclear whether TA can mitigate GC resistance in SSNHL. Our aim is to elucidate the role of NRF2-induced transcriptional regulation of HDAC2 in influencing GC resistance and investigate the involvement of TA-related molecular pathways in GC resistance. Here, HEI-OC1 cells are treated with lipopolysaccharide (LPS) to establish an in vitro model for SSNHL. The cells are subsequently treated with dexamethasone (DXE) or DXE+TA. RT-qPCR and western blot analysis are used to measure the mRNA and protein levels of Forkhead box P3 (FOXP3), nuclear factor erythroid 2-related factor 2 (NRF2), and histone deacetylase 2 (HDAC2). Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays are carried out to assess cell proliferation. Flow cytometry analysis is performed to evaluate apoptosis. Mechanistic studies involve chromatin immunoprecipitation (ChIP), luciferase reporter, and DNA pull-down assays. Our results show that treatment with TA+DEX significantly increases proliferation and suppresses apoptosis in LPS-treated HEI-treated OC1 cells. TA upregulates HDAC2 expression by activating NRF2-mediated transcription of HDAC2, with the NRF2-HDAC2 binding site located at bases 419-429 (ATGACACTCCA) in the promoter sequence of HDAC2. Furthermore, TA upregulates FOXP3 expression to activate NRF2 transcription, with the predicted FOXP3-binding site located at bases 864-870 (GCAAACA) in the promoter sequence of NRF2. In summary, these findings suggest that TA enhances the therapeutic effects of GC on the proliferation and apoptosis of HEI OC1 cells by increasing FOXP3/Nrf2 expression. These results indicate that TA may be promising for ameliorating GC resistance in patients with SSNHL.
Collapse
Affiliation(s)
- Jie Li
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Department of Otolaryngology, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong 226000, China
| | - Xiaoyan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Shiming Ye
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Qi Dong
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Otorhinolaryngology Research Institute of Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Jie Hou
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Otorhinolaryngology Research Institute of Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Jing Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Otorhinolaryngology Research Institute of Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Otorhinolaryngology Research Institute of Nanjing Drum Tower Hospital, Nanjing 210008, China
| |
Collapse
|
6
|
Zhang Y, Liu J, Yang G, Zou J, Tan Y, Xi E, Geng Q, Wang Z. Asiaticoside Inhibits Growth and Metastasis in Non-Small Cell Lung Cancer by Disrupting EMT via Wnt/β-Catenin Pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:4859-4870. [PMID: 38888371 DOI: 10.1002/tox.24359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/07/2024] [Accepted: 05/11/2024] [Indexed: 06/20/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the primary inducer of cancer-related death worldwide. Asiaticoside (ATS) is a triterpenoid saponin that has been indicated to possess an antitumor activity in several malignancies. Nonetheless, its detailed functions in NSCLC remain unclarified. In this study, NSCLC cells were exposed to various doses of ATS. Functional experiments were employed to estimate the ATS effect on NSCLC cell behaviors. Western blotting was implemented for protein expression evaluation. A xenograft mouse model was established to assess the ATS effect on NSCLC in vivo. The results showed that ATS restrained NSCLC cell proliferation, cell cycle progression, migration, and invasiveness. ATS reversed TGF-β-induced promotion in epithelial-mesenchymal transition (EMT). Mechanistically, ATS inhibited Wnt/β-catenin signaling in NSCLC. Upregulating β-catenin restored ATS-mediated suppression of NSCLC cell aggressiveness. Moreover, ATS administration repressed tumorigenesis in tumor-bearing mice. In conclusion, ATS represses growth and metastasis in NSCLC by blocking EMT via the inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiangyong Liu
- Department of Radiography, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Gang Yang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Jiani Zou
- Department of Radiography, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Yan Tan
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Erping Xi
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| |
Collapse
|
7
|
Chen X, Dai L. WTAP Promotes the Excessive Proliferation of Airway Smooth Muscle Cells in Asthma by Enhancing AXIN1 Levels Through the Recognition of YTHDF2. Biochem Genet 2024:10.1007/s10528-024-10947-7. [PMID: 39453546 DOI: 10.1007/s10528-024-10947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Asthma is a common chronic respiratory disease in children, the incidence rate of which has increased in recent years. Wilms tumour 1-associated protein (WTAP) is an N6-methyladenosine (m6A) methyltransferase. The purpose of this study was to explore the specific mechanism of WTAP in asthma progression, and clarify the intricate interplay between m6A modifications, WTAP, AXIN1, and their collective impact on airway smooth muscle cells (ASMCs) proliferation in asthma. Platelet-derived growth factor-BB (PDGF-BB)-treated ASMCs were used to establish an asthma model in vitro. The cell phenotype was tested using CCK-8, transwell, and wound healing assays. The expression of the Wnt signalling pathway was detected by western blotting. In addition, the relationship between WTAP/YTDHF2 and AXIN1 was assessed by a double luciferase reporter assay. Actinomycin D treatment and RT‒qPCR assays were performed to determine the mRNA stability of AXIN1. We found that WTAP was significantly increased in PDGF-BB-treated ASMCs. Knockdown of WTAP inhibited the excessive cell viability and migration of ASMCs induced by PDGF-BB. Furthermore, WTAP knockdown increased AXIN1 levels and inhibited the Wnt signalling pathway. Furthermore, WTAP knockdown decreased the m6A levels and enhanced the mRNA stability of AXIN1. WTAP overexpression showed the opposite effect. In addition, YTHDF2 was demonstrated to be the reader that recognizes the WTAP-mediated m6A modification of AXIN1. YTHDF2 knockdown enhanced the mRNA stability of AXIN1 and reversed the effect of WTAP overexpression on PDGF-BB-treated ASMCs. WTAP knockdown inhibited the excessive cell viability and migration of ASMCs by enhancing the m6A levels of AXIN1, which was further recognized by YTHDF2. The upregulation of AXIN1 mediated by the WTAP/YTHDF2 axis further inhibited the Wnt signalling pathway. Our study provides a new method for the treatment of asthma. This work not only deepens our understanding of the molecular underpinnings of asthma but also identifies potential therapeutic targets for the development of novel treatments aimed at inhibiting ASMC proliferation and alleviating asthma symptoms.
Collapse
Affiliation(s)
- Xueli Chen
- Pediatric department, Maternal and Child Health of Hubei Province, NO.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Li Dai
- Pediatric department, Maternal and Child Health of Hubei Province, NO.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Zhou J, Zhou D, Zhang Q, Zhang X, Liu X, Ding L, Wen J, Xu X, Cheng Z. DCLK1 mediated cooperative acceleration of EMT by avian leukosis virus subgroup J and Marek's disease virus via the Wnt/β-catenin pathway promotes tumor metastasis. J Virol 2024:e0111224. [PMID: 39445786 DOI: 10.1128/jvi.01112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Co-infection with oncogenic retrovirus and herpesvirus significantly facilitates tumor metastasis in human and animals. Co-infection with avian leukosis virus subgroup J (ALV-J) and Marek's disease virus (MDV), which are typical oncogenic retrovirus and herpesvirus, respectively, leads to enhanced oncogenicity and accelerated tumor formation, resulting in increased mortality of affected chickens. Previously, we found that ALV-J and MDV cooperatively promoted tumor metastasis. However, the molecular mechanism remains elusive. Here, we found that doublecortin-like kinase 1 (DCLK1) mediated cooperative acceleration of epithelial-mesenchymal transition (EMT) by ALV-J and MDV promoted tumor metastasis. Mechanistically, DCLK1 induced EMT via activating Wnt/β-catenin pathway by interacting with β-catenin, thereby cooperatively promoting tumor metastasis. Initially, we screened and found that DCLK1 was a potential mediator for the cooperative activation of EMT by ALV-J and MDV, and enhanced cell proliferation, migration, and invasion. Subsequently, we revealed that DCLK1 physically interacted with β-catenin to promote the formation of the β-catenin-TCF4 complex, inducing transcription of the Wnt target gene, c-Myc, promoting EMT by increasing the expression of N-cadherin, Vimentin, and Snail, and decreasing the expression of E-cadherin. Taken together, we discovered that jointly activated DCLK1 by ALV-J and MDV accelerated cell proliferation, migration and invasion, and ultimately activated EMT, paving the way for tumor metastasis. This study elucidated the molecular mechanism underlying cooperative metastasis induced by co-infection with retrovirus and herpesvirus. IMPORTANCE Tumor metastasis, a complex phenomenon in which tumor cells spread to new organs, is one of the greatest challenges in cancer research and is the leading cause of cancer-induced death. Numerous studies have shown that oncoviruses and their encoded proteins significantly affect metastasis, especially the EMT process. ALV-J and MDV are classic tumorigenic retrovirus and herpesvirus, respectively. We found that ALV-J and MDV synergistically promoted EMT. Further, we identified the tumor stem cell marker DCLK1 in ALV-J and MDV co-infected cells. DCLK1 directly interacted with β-catenin, promoting the formation of the β-catenin-TCF4 complex. This interaction activated the Wnt/β-catenin pathway, thereby inducing EMT and paving the way for synergistic tumor metastasis. Exploring the molecular mechanisms by which ALV-J and MDV cooperate during EMT will contribute to our understanding of tumor progression and metastasis. This study provides new insights into the cooperative induced tumor metastasis by retroviruses and herpesviruses.
Collapse
Affiliation(s)
- Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Qian Zhang
- Department of Neurology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Xinyue Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoyang Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Longying Ding
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Jing Wen
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoyu Xu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
9
|
Tan C, Xu J, Zhang S, Liu S, Yang X, Wu D, Yu B, Huang Y. Transcription Factor Forkhead Box Protein 3 (FOXP3) as a Prognostic Indicator for Postoperative Outcomes in Patients with Breast Cancer: Establishment of a Prognostic Nomogram. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:705-723. [PMID: 39464238 PMCID: PMC11505482 DOI: 10.2147/bctt.s484055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Purpose The current investigation is to assess FOXP3 expression in breast cancer patients and evaluate the predictive significance of FOXP3. Patients and Methods A cohort of 313 cases between January 2015 and November 2015 were enrolled this research. Immunohistochemistry (IHC) assay was utilized to detect the expression levels of FOXP3 in primary breast carcinoma specimens. These patients were separated into two groups by semiquantitative scoring approach. Chi-square test and Fisher's exact test were conducted to investigate the correlations between FOXP3 expression in tumors and clinicopathological variables. Kaplan-Meier method and Log rank test were utilized to generate survival curves for disease-free survival (DFS) and overall survival (OS). The independent factors were examined using Cox regression analysis. Nomogram models were created for assessing DFS and OS rates. Results Depending on the levels of FOXP3 expression in tumors, these patients were categorized into two groups: low FOXP3 expression (174 cases) and high FOXP3 expression (139 cases). The patients exhibiting low levels of FOXP3 expression in tumors demonstrated a longer survival duration contrasted with those with high expression (DFS: 88.75 vs 65.87 months, χ2=36.1100, P<0.0001; OS: 89.70 vs 78.37 months, χ2=32.4900, P<0.0001). Multivariate analysis revealed that FOXP3 was a significant prognostic factor [DFS: hazard ratio (HR): 2.822, 95% CI: 1.595-4.992, P<0.0001; OS: HR: 3.232, 95% CI: 1.812-5.763, P<0.0001]. The good predictive clinical utility of FOXP3-based nomograms within the threshold probability range for different survival rates was demonstrated by calibration curve and decision curve analyses. Conclusion FOXP3 expression serves as a crucial prognostic indicator in breast cancer patients, and may aid preoperative evaluation in clinical practice.
Collapse
Affiliation(s)
- Chunlei Tan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Jinling Xu
- Endoscope Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Shiyuan Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Shuqiang Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Xiaotian Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Danping Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Boqian Yu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yuanxi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
10
|
Goyal A, Murkute SL, Bhowmik S, Prasad CP, Mohapatra P. Belling the "cat": Wnt/β-catenin signaling and its significance in future cancer therapies. Biochim Biophys Acta Rev Cancer 2024; 1879:189195. [PMID: 39413855 DOI: 10.1016/j.bbcan.2024.189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The WNT/β-catenin is among one of the most extensively studied cellular signaling pathways involved in the initiation and progression of several deadly cancers. It is now understood that the WNT/β-catenin signaling, during tumor progression operates in a very complex fashion beyond the earlier assumed simple WNT 'On' or 'Off' mode as it recruits numerous WNT ligands, receptors, transcriptional factors and also cross-talks with other signaling molecules including the noncanonical WNT regulators. WNT/β-catenin signaling molecules are often mutated in different cancers which makes them very challenging to inhibit and sometimes ranks them among the undruggable targets. Furthermore, due to the evolutionary conservation of this pathway, inhibiting WNT/β-catenin has caused significant toxicity in normal cells. These challenges are reflected in clinical trial data, where the use of WNT/β-catenin inhibitors as standalone treatments remains limited. In this review, we have highlighted the crucial functional associations of diverse WNT/β-catenin signaling regulators with cancer progression and the phenotypic switching of tumor cells. Next, we have shed light on the roles of WNT/β-catenin signaling in drug resistance, clonal evolution, tumor heterogeneity, and immune evasion. The present review also focuses on various classes of routine and novel WNT/β-catenin therapeutic regimes while addressing the challenges associated with targeting the regulators of this complex pathway. In the light of multiple case studies on WNT/β-catenin inhibitors, we also highlighted the challenges and opportunities for future clinical trial strategies involving these treatments. Additionally, we have proposed strategies for future WNT/β-catenin-based drug discovery trials, emphasizing the potential of combination therapies and AI/ML-driven prediction approaches. Overall, here we showcased the opportunities, possibilities, and potentialities of WNT/β-catenin signaling modulatory therapeutic regimes as promising precision cancer medicines for the future.
Collapse
Affiliation(s)
- Akansha Goyal
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Satyajit Laxman Murkute
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Sujoy Bhowmik
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Purusottam Mohapatra
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India.
| |
Collapse
|
11
|
Zang Y, Lu Y, Yu J, Dong Q, Shi Y, Ying G, Liang Z. FOXP3 inhibits proliferation and migration by competitively inhibiting YAP1 in nasopharyngeal carcinoma. Oral Oncol 2024; 159:107066. [PMID: 39413576 DOI: 10.1016/j.oraloncology.2024.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024]
Abstract
Hippo signalling is involved in the coordination of extracellular signals that control tissue homeostasis and organ size. Yes-associated protein 1 (YAP1) is regulated primarily by Hippo signalling through coactivation of transcription factors with GATA domains called TEADs. However, small-molecule orthosteric inhibitors of YAP1 are difficult to develop due to its tight binding to TEAD4 via a flat interface. Previous studies have shown that chlorpromazine (CPZ) can inhibit YAP1 expression. MTT, colony formation, wound healing, Transwell migration and Western blot assays were performed to explore how CPZ affects nasopharyngeal carcinoma (NPC) cells through FOXP3. In addition, immunofluorescence and live-cell imaging were used to detect YAP1 intracellular localization after CPZ administration. Through the HDOCK website, we predicted protein binding regions between FOXP3 and TEAD4. Western blot and co-IP experiments were used to verify the relationship between FOXP3 and YAP1. The UCSC Xena database, LinkedOmics database and KM plotter website were used to assess the prognostic value of FOXP3 in head and neck squamous cell carcinoma (HNSCC). Age, sex, pathological tumour-node-metastasis (pTMN) stage, grade, smoking status and FOXP3 expression were included in an overall survival nomogram model. Our findings revealed that FOXP3 has the ability to competitively interacts competitively with TEAD4 to inhibit YAP1 expression. By increasing FOXP3 expression, CPZ induces YAP1 nuclear export and phosphorylation, consequently suppressing NPC cell proliferation and migration. Collectively, our findings indicate that FOXP3 competitively binds TEAD4 to regulate YAP1 localization in the nucleus and cytoplasm to suppress NPC progression. Consequently, FOXP3 may be a prognostic indicator for HNSCC.
Collapse
Affiliation(s)
- Yiqing Zang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Yi Lu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Jiaxi Yu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Qiuping Dong
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China
| | - Yue Shi
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China
| | - Guoguang Ying
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China.
| | - Zheng Liang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, PR China.
| |
Collapse
|
12
|
Monleón-Guinot I, Bravo-Baranda L, Milián L, Sancho-Tello M, Llop-Miguel M, Galbis JM, Cremades A, Carda C, Mata M. Cancer Epithelial Cells Participate in the Self-Organization of Lung Tumor Spheroids: A Morphological Approach. Cells Tissues Organs 2024:1-23. [PMID: 39383853 DOI: 10.1159/000541524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION/AIMS The tumor microenvironment is known to play an important role in tumor progression. However, the specific mechanisms underlying this process are still not known in detail and more research is needed on the elements that control tumor progression in lung cancer. In this work, we aimed to investigate the involvement of epithelial and stromal cancer cells in growth, cell migration, and epithelial-to-mesenchymal transition (EMT) in a 3D in vitro model consisting of cell spheroids cultured in a type I collagen scaffold. METHODS Spheroids were manufactured using different combinations of epithelial cells, particularly H460 and H1792 cell lines, with cancer-associated fibroblasts and normal fibroblasts, both isolated from adenocarcinoma patients. We evaluated the morphology of the spheroids by analysis of F-actin and pankeratin with confocal microscopy. We determined the ultrastructure of cells in the spheroids by transmission electron microscopy and the expression of CDH1, CDH2, and VIM by RT-PCR. RESULTS We observed that, on the one hand, the type of epithelial cell influences the morphology of spheroids. Stromal cells stimulated spheroid growth and cell dissemination through the collagen matrix, either alone or organized in branches with a nucleus of epithelial cells preceded by fibroblast cells. They also induced the appearance of new cell groups in the scaffold and the presence of EMT markers. CONCLUSION The results presented here indicate the participation of both epithelial and stromal cells in the control of spheroid self-organization. The experimental model proposed here, although preliminary, is useful for the study of some aspects related to tumor progression in lung cancer.
Collapse
Affiliation(s)
- Irene Monleón-Guinot
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Lucía Bravo-Baranda
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - María Sancho-Tello
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Mauro Llop-Miguel
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | | | | | - Carmen Carda
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
13
|
Yan Q, Li S, He L, Chen N. Prognostic implications of tumor-infiltrating lymphocytes in non-small cell lung cancer: a systematic review and meta-analysis. Front Immunol 2024; 15:1476365. [PMID: 39372398 PMCID: PMC11449740 DOI: 10.3389/fimmu.2024.1476365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs) have demonstrated potential as prognostic biomarkers across various cancer types. However, their prognostic implications in non-small cell lung cancer (NSCLC) remain ambiguous. Methods An exhaustive electronic search was executed across the Pubmed, EMBASE, Web of Science, and Cochrane Library databases to locate relevant studies published up until December 19, 2023. Studies were eligible if they assessed the association between TILs and overall survival (OS) and disease-free survival (DFS) in NSCLC patients. The OS and DFS were subsequently extracted for analysis. The prognostic significance of TILs was evaluated by calculating the Pooled Hazard Ratios (HRs) and their corresponding 95% Confidence Intervals (CIs). Results The meta-analysis incorporated 60 studies, which collectively included 15829 NSCLC patients. The collective analysis indicated that NSCLC patients exhibiting TILs infiltration demonstrated a significantly improved OS(HR: 0.67; 95%CI: 0.55-0.81). Subgroup analyses, based on TIL subtypes (CD8+, CD3+ and CD4+), consistently revealed a favorable prognostic impact on OS. However, it was observed that FOXP3+ was correlated with a poor OS (HR: 1.35; 95% CI: 0.87-2.11). Conclusion This comprehensive systematic review and meta-analysis substantiate the prognostic significance of TILs in patients diagnosed with NSCLC. Notably, elevated TILs infiltration correlates with a favorable prognosis, particularly among CD8+, CD3+ and CD4+ subtypes. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023468089 PROSPERO, identifier CRD42023468089.
Collapse
Affiliation(s)
- Qin Yan
- Department of Head and Neck Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Shuai Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lang He
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Nianyong Chen
- Department of Head and Neck Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Li J, Xie B, Wang H, Wang Q, Wu Y. Investigating MATN3 and ASPN as novel drivers of gastric cancer progression via EMT pathways. Hum Mol Genet 2024:ddae129. [PMID: 39301785 DOI: 10.1093/hmg/ddae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related deaths globally, necessitating the identification of novel therapeutic targets. This study investigates the roles of MATN3 and ASPN in GC progression via the epithelial-mesenchymal transition (EMT) pathway. Analysis of the Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset revealed that both MATN3 and ASPN are significantly upregulated in GC tissues and correlate with poor patient survival. Protein-protein interaction and co-expression analyses confirmed a direct interaction between MATN3 and ASPN, suggesting their synergistic role in EMT activation. Functional assays demonstrated that MATN3 promotes GC cell proliferation, migration, and invasion, while its knockdown inhibits these malignant behaviors and induces apoptosis. ASPN overexpression further amplified these oncogenic effects. In vivo, studies in a mouse model corroborated that co-overexpression of MATN3 and ASPN enhances tumor growth and metastasis. These findings highlight the MATN3-ASPN axis as a potential therapeutic target in GC, offering new insights into the molecular mechanisms driving GC progression.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou 215004, Jiangsu Province, China
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - Bo Xie
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - Hu Wang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - QingKang Wang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - YongYou Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou 215004, Jiangsu Province, China
| |
Collapse
|
15
|
Khambholja K, Gehani M, Kothari R, Marulkar S. Prognostic value of tumour-associated regulatory T-cells as a biomarker in non-small cell lung cancer: a systematic review and meta-analysis. Syst Rev 2024; 13:233. [PMID: 39272135 PMCID: PMC11401299 DOI: 10.1186/s13643-024-02642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Tumour, nodes, and metastases (TNM) staging has been deficient in prognosticating in patients suffering from non-small cell lung cancer (NSCLC). To supplement TNM staging, this systematic review and meta-analysis aimed to evaluate the prognostic value of the regulatory T cells (Treg). METHODS A keyword search was conducted in MEDLINE and EMBASE for full-text original human studies from any region published in English during the last 12 years. Eligible for inclusion were studies evaluating the prognostic value of the number of Treg cells in NSCLC except case studies, case series, systematic reviews, and meta-analyses. Two reviewers (one reviewer used an automation tool) independently screened the studies and assessed risk-of-bias using the Quality in Prognosis Studies (QUIPS) tool. Meta-analysis was done for studies reporting significant multivariate hazard ratio (HR). RESULTS Out of 809 retrievals, 24 studies were included in the final review. The low number of Treg cells was found significantly associated with improved overall survival (pooled log OR, 1.646; 95% CI, 1.349, 1.944; p (2-tailed) < .001; SE, 0.1217), improved recurrence-free survival (HR, 1.99; 95% CI, 1.15, 3.46; p = .01), improved progression-free survival (pooled log OR, 2.231; 95% CI, 0.424, 4.038; p (2-tailed) .034; SE, 0.4200), and worse disease-free survival (pooled log OR, 0.992; 95% CI, 0.820, 1.163; p (2-tailed) .009; SE, 0.0135), especially when identified by forkhead box P3 (FOXP3), in any stage or non-metastatic NSCLC. CONCLUSION A low number of Treg cells indicated better survival, suggesting its potential use as a prognostic biomarker in NSCLC. SYSTEMATIC REVIEW REGISTRATION The protocol of this review was prospectively registered on PROSPERO on August 28, 2021, and was assigned the registration number CRD42021270598. The protocol can be accessed from PROSPERO website.
Collapse
Affiliation(s)
- Kapil Khambholja
- Department of Medical Writing, Catalyst Clinical Research, 2528 Independence Blvd, Suite 100, Wilmington, NC, 28412, USA
| | - Manish Gehani
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana, 500078, India.
| | - Rushabh Kothari
- Medical Oncology Department, Narayana Multispecialty Hospital, Opposite Police Station, Near Chakudiya Mahadev, Rakhial, Ahmedabad, Gujarat, 380023, India
| | - Sachin Marulkar
- Catalyst Clinical Research, 2528 Independence Blvd, Suite 100, Wilmington, NC, 28412, USA
| |
Collapse
|
16
|
Li S, Guo Y, Zhu G, Sun L, Zhou F. Identify BCAT1 plays an oncogenic role and promotes EMT in KIRC via single cell RNA-seq and experiment. Front Oncol 2024; 14:1446324. [PMID: 39324007 PMCID: PMC11422235 DOI: 10.3389/fonc.2024.1446324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is a major subtype of renal cell carcinoma with poor prognosis due to its invasive and metastatic nature. Despite advances in understanding the molecular underpinnings of various cancers, the role of branched-chain amino acid transferase 1 (BCAT1) in KIRC remains underexplored. This study aims to fill this gap by investigating the oncogenic role of BCAT1 in KIRC using single-cell RNA-seq data and experimental validation. Methods Single-cell transcriptomic data GSE159115 was utilized to investigate potential biomarkers in KIRC. After screening, we used BCAT1 as a target gene and investigated its function and mechanism in KIRC through databases such as TCGA-GTEx, using genome enrichment analysis (GSEA), genome variation analysis (GSVA), gene ontology (GO) and Kyoto Encyclopedia of the Genome (KEGG). BCAT1 expression was detected in clinical tissue samples using Western Blotting (WB) and immunohistochemical (IHC) staining techniques. We established cell lines stably overexpressing and knocking down BCAT1 and performed WB, qRT-PCR, cell scratch assay and transwell assay. Results BCAT1 was highly expressed in KIRC and was associated with disease prognosis and TME. Patients with mutations in the BCAT1 gene had shorter overall survival (OS) and disease-free survival (DFS). patients with high BCAT1 expression had shorter OS, progression-free interval (PFI), and disease-specific survival (DSS). GSEA showed that BCAT1 was significantly enriched in epithelial mesenchymal transition (EMT). Bioinformatics analysis and WB and IHC staining showed that BCAT1 expression was higher in KIRC than in paracancerous tissues. In vitro experiments confirmed that BCAT1 in KIRC cells may promote EMT affecting its invasion, migration. We constructed a protein interaction network (PPI) to hypothesize proteins that may interact with BCAT1. Single-sample gene set enrichment analysis (ssGSEA) revealed the immune infiltration environment of BCAT1. Furthermore, hypomethylation of the BCAT1 promoter region in KIRC may contribute to disease progression by promoting BCAT1 expression. Conclusion BCAT1 promotes KIRC invasion and metastasis through EMT and has prognostic predictive value and potential as a biomarker. It may become a novel biomarker.
Collapse
Affiliation(s)
- Shiqing Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yinsheng Guo
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanhua Zhu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Sun
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Ge J, Yin X, Chen L. Regulatory T cells: masterminds of immune equilibrium and future therapeutic innovations. Front Immunol 2024; 15:1457189. [PMID: 39290699 PMCID: PMC11405253 DOI: 10.3389/fimmu.2024.1457189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+T cells marked by the expression of the transcription factor forkhead box protein 3 (Foxp3), are pivotal in maintaining immune equilibrium and preventing autoimmunity. In our review, we addressed the functional distinctions between Foxp3+Tregs and other T cells, highlighting their roles in autoimmune diseases and cancer. We uncovered the dual nature of Tregs: they prevented autoimmune diseases by maintaining self-tolerance while contributing to tumor evasion by suppressing anti-tumor immunity. This study underscored the potential for targeted therapeutic strategies, such as enhancing Treg activity to restore balance in autoimmune diseases or depleting Foxp3+Tregs to augment anti-tumor immune responses in cancer. These insights laid the groundwork for future research and clinical applications, emphasizing the critical role of Foxp3+Tregs in immune regulation and the advancement of next-generation immunotherapies.
Collapse
Affiliation(s)
- Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuan Yin
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
18
|
Sundar R, Chia DKA, Zhao JJ, Lee ARYB, Kim G, Tan HL, Pang A, Shabbir A, Willaert W, Ma H, Huang KK, Hagihara T, Tan ALK, Ong CAJ, Wong JSM, Seo CJ, Walsh R, Chan G, Cheo SW, Soh CCC, Callebout E, Geboes K, Ng MCH, Lum JHY, Leow WQ, Selvarajan S, Hoorens A, Ang WH, Pang H, Tan P, Yong WP, Chia CSL, Ceelen W, So JBY. Phase I PIANO trial-PIPAC-oxaliplatin and systemic nivolumab combination for gastric cancer peritoneal metastases: clinical and translational outcomes. ESMO Open 2024; 9:103681. [PMID: 39288528 PMCID: PMC11421236 DOI: 10.1016/j.esmoop.2024.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
INTRODUCTION Pressurized intraperitoneal aerosol chemotherapy-oxaliplatin (PIPAC-OX) induces direct DNA damage and immunogenic cell death in patients with gastric cancer peritoneal metastases (GCPM). Combining PIPAC-OX with immune checkpoint inhibition remains untested. We conducted a phase I first-in-human trial evaluating the safety and efficacy of PIPAC-OX combined with systemic nivolumab (NCT03172416). METHODS Patients with GCPM who experienced disease progression on at least first-line systemic therapy were recruited across three centers in Singapore and Belgium. Patients received PIPAC-OX at 90 mg/m2 every 6 weeks and i.v. nivolumab 240 mg every 2 weeks. Translational studies were carried out on GCPM samples acquired during PIPAC-OX procedures. RESULTS In total, 18 patients with GCPM were prospectively recruited. The PIPAC-OX and nivolumab combination was well tolerated with manageable treatment-related adverse events, although one patient suffered from grade 4 vomiting. At second and third PIPAC-OX, respectively, the median decrease in peritoneal cancer index (PCI) was -5 (interquartile range: -12 to +1) and -7 (interquartile range: -6 to -20) and peritoneal regression grade 1 or 2 was observed in 66.7% (6/9) and 100% (3/3). Translational analyses of 43 GCPM samples revealed enrichment of immune/stromal infiltration and inflammatory signatures in peritoneal tumors after PIPAC-OX and nivolumab. M2 macrophages were reduced in treated peritoneal tumor samples while memory CD4+, CD8+ central memory and naive CD8+ T-cells were increased. CONCLUSIONS The first-in-human trial combining PIPAC-OX and nivolumab demonstrated safety and tolerability, coupled with enhanced T-cell infiltration within peritoneal tumors. This trial sets the stage for future combinations of systemic immunotherapy with locoregional intraperitoneal treatments.
Collapse
Affiliation(s)
- R Sundar
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; Singapore Gastric Cancer Consortium, Singapore.
| | - D K A Chia
- Division of Upper Gastrointestinal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore
| | - J J Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore; Department of Medicine, National University Hospital, Singapore, Singapore
| | - A R Y B Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - G Kim
- Division of Upper Gastrointestinal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore
| | - H L Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - A Pang
- Division of Upper Gastrointestinal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore
| | - A Shabbir
- Division of Upper Gastrointestinal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore
| | - W Willaert
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - H Ma
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - K K Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - T Hagihara
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - A L K Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - C-A J Ong
- Singapore Gastric Cancer Consortium, Singapore; Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - J S M Wong
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - C J Seo
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - R Walsh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - G Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - S W Cheo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - C C C Soh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - E Callebout
- Department of Digestive Oncology, Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - K Geboes
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - M C H Ng
- Division of Medical Oncology, National Cancer Centre, Singapore; Duke NUS Medical School, Singapore
| | - J H Y Lum
- Department of Pathology, National University Hospital, Singapore
| | - W Q Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - S Selvarajan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - A Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - W H Ang
- Department of Chemistry, National University of Singapore, Singapore
| | - H Pang
- Department of Chemistry, National University of Singapore, Singapore
| | - P Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Singapore Gastric Cancer Consortium, Singapore
| | - W P Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore; Singapore Gastric Cancer Consortium, Singapore
| | - C S L Chia
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - W Ceelen
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - J B Y So
- Singapore Gastric Cancer Consortium, Singapore; Division of Upper Gastrointestinal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Surgical Oncology, National University Cancer Institute of Singapore (NCIS), Singapore, Singapore.
| |
Collapse
|
19
|
Alqithami SM, Machwe A, Orren DK. Cigarette Smoke-Induced Epithelial-to-Mesenchymal Transition: Insights into Cellular Mechanisms and Signaling Pathways. Cells 2024; 13:1453. [PMID: 39273025 PMCID: PMC11394110 DOI: 10.3390/cells13171453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
This review delves into the molecular complexities underpinning the epithelial-to-mesenchymal transition (EMT) induced by cigarette smoke (CS) in human bronchial epithelial cells (HBECs). The complex interplay of pathways, including those related to WNT//β-catenin, TGF-β/SMAD, hypoxia, oxidative stress, PI3K/Akt, and NF-κB, plays a central role in mediating this transition. While these findings significantly broaden our understanding of CS-induced EMT, the research reviewed herein leans heavily on 2D cell cultures, highlighting a research gap. Furthermore, the review identifies a stark omission of genetic and epigenetic factors in recent studies. Despite these shortcomings, the findings furnish a consolidated foundation not only for the academic community but also for the broader scientific and industrial sectors, including large tobacco companies and manufacturers of related products, both highlighting areas of current understanding and identifying areas for deeper exploration. The synthesis herein aims to propel further research, hoping to unravel the complexities of the EMT in the context of CS exposure. This review not only expands our understanding of CS-induced EMT but also reveals critical limitations in current methodologies, primarily the reliance on 2D cell cultures, which may not adequately simulate more complex biological interactions. Additionally, it highlights a significant gap in the literature concerning the genetic and epigenetic factors involved in CS-induced EMT, suggesting an urgent need for comprehensive studies that incorporate these types of experiments.
Collapse
Affiliation(s)
- Sarah Mohammed Alqithami
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | |
Collapse
|
20
|
Wang G, Hiramoto K, Ma N, Ohnishi S, Morita A, Xu Y, Yoshikawa N, Chinzei Y, Murata M, Kawanishi S. Immunohistochemical analyses reveal FoxP3 expressions in spleen and colorectal cancer in mice treated with AOM/DSS, and their suppression by glycyrrhizin. PLoS One 2024; 19:e0307038. [PMID: 39150932 PMCID: PMC11329161 DOI: 10.1371/journal.pone.0307038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/27/2024] [Indexed: 08/18/2024] Open
Abstract
We previously demonstrated that glycyrrhizin (GL) suppressed inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer (CC). In this study, we found an accumulation of regulatory T cells (Tregs) in the spleen and suppression by GL in model mice. ICR mice were divided into four groups: Control, GL, CC, and GL-treated CC (CC+GL), and were sacrificed 20 weeks after AOM/DSS treatment. We measured spleen weight, areas of white and red pulp, and CD8+ T cells (cytotoxic T lymphocytes, CTL), and CD11c-positive cells (dendritic cells) in splenic tissues and forkhead box protein 3 (FoxP3)-positive cells (Tregs) in colorectal and splenic tissues. In all cases, the CC group showed a significant increase compared with those in Control group, and GL administration significantly attenuated this increase. These results indicate that Tregs accumulated in the spleen may participate in inflammation-related carcinogenesis by suppressing CTL. We also suggest that GL which binds to high-mobility group box 1 (HMGB1), suppresses carcinogenesis with decreasing Tregs in the spleen. Furthermore, there was an expression of FoxP3 in cancer cells, indicating that it may be involved in the malignant transformation of cancer cells.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Acupuncture and Moxibustion Medical Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Akihiro Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yifei Xu
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Yasuo Chinzei
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
21
|
Meyiah A, Elkord E. What is the relevance of FoxP3 in the tumor microenvironment and cancer outcomes? Expert Rev Clin Immunol 2024; 20:803-809. [PMID: 38512803 DOI: 10.1080/1744666x.2024.2334258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Forkhead box P3 (FoxP3) transcription factor plays critical roles in controlling immune responses and cancer progression in different cancers. FoxP3 expression within the tumor microenvironment (TME) may influence clinical outcomes negatively or positively, and it could play dual roles in cancer, either by promoting or inhibiting tumor development and progression. Some studies reported that high levels of FoxP3 could be associated with tumor progression and worse prognosis, while others reported contradictory results. AREAS COVERED In this special report, we present a brief account on the role and function of FoxP3 in the TME, and its contribution to the clinical outcomes of cancer patients. Importantly, we give insights on the potential factors that could contribute to different clinical outcomes in cancer patients. EXPERT OPINION Different studies showed that FoxP3 expression can be associated with bad prognoses in cancer patients. However, FoxP3 could have opposing roles by enhancing cancer progression or regression. Location and expression of FoxP3 in T cells or tumor cells can have different impacts on cancer prognoses. Different factors should be considered to establish FoxP3 as a more robust prognostic biomarker and a potential therapeutic target for enhancing anti-tumor immunity and improving clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Abdo Meyiah
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Eyad Elkord
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK
| |
Collapse
|
22
|
Zhang H, Ly A, Chou E, Wang L, Zhang P, Prado K, Gu Y, Pellegrini M, Chin AI. Role of Forkhead Box P3 in IFNγ-Mediated PD-L1 Expression and Bladder Cancer Epithelial-to-Mesenchymal Transition. CANCER RESEARCH COMMUNICATIONS 2024; 4:2228-2241. [PMID: 39099201 PMCID: PMC11345674 DOI: 10.1158/2767-9764.crc-23-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Antagonism of the PD-1/PD-L1 axis is a critical therapeutic strategy for patients with advanced bladder cancer. IFNγ functions as a key regulator of PD-L1 in both immune as well as cancer cells. Forkhead box P3 (FOXP3) is a transcription factor synonymous in T regulatory cell function but with increasingly described functions in cancer cells. Here, we investigated the relationship between FOXP3 and PD-L1 in bladder cancer. We showed that FOXP3 is critical in the ability for IFNγ to activate PD-L1 in bladder cancer cells. FOXP3 can bind to the PD-L1 promoter and induces a gene program that leads to regulation of multiple immune-related genes and genes involved in epithelial-to-mesenchymal transition (EMT). Using in vitro and in vivo human and murine models, we showed that FOXP3 can influence bladder cancer EMT as well as promote cancer metastases. Furthermore, FOXP3 may be a convergent factor for multiple activators of PD-L1, including the chemotherapeutic drug cisplatin. SIGNIFICANCE Historically a key transcription factor driving T regulatory cell function, FOXP3 has an increasingly recognized role in cancer cells. In bladder cancer, we defined a novel mechanism whereby FOXP3 mediates the activation of the immune checkpoint PD-L1 by the cytokine IFNγ. We also showed that FOXP3 induces other immune checkpoints as well as genes involved in EMT, promoting immune resistance and cancer metastases.
Collapse
Affiliation(s)
- Hanwei Zhang
- Department of Urology, University of California, Los Angeles, California.
| | - Ann Ly
- Department of Urology, University of California, Los Angeles, California.
| | - Emily Chou
- Department of Urology, University of California, Los Angeles, California.
| | - Liang Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California.
| | - Paul Zhang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California.
| | - Kris Prado
- Department of Urology, University of California, Los Angeles, California.
| | - Yiqian Gu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California.
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California.
- UCLA Broad Stem Cell Research Center, Los Angeles, California.
| | - Arnold I. Chin
- Department of Urology, University of California, Los Angeles, California.
- UCLA Broad Stem Cell Research Center, Los Angeles, California.
| |
Collapse
|
23
|
Li TH, Zhao BB, Qin C, Wang YY, Li ZR, Cao HT, Yang XY, Zhou XT, Wang WB. IFIT1 modulates the proliferation, migration and invasion of pancreatic cancer cells via Wnt/β-catenin signaling. Cell Oncol (Dordr) 2024; 47:1253-1265. [PMID: 38536650 DOI: 10.1007/s13402-024-00925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVES Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/β-catenin pathway. RESULTS We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/β-catenin signaling, and that a Wnt/β-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/β-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Hao Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bang-Bo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan-Yang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ze-Ru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong-Tao Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao-Ying Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xing-Tong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Bin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Kast RE. IC Regimen: Delaying Resistance to Lorlatinib in ALK Driven Cancers by Adding Repurposed Itraconazole and Cilostazol. Cells 2024; 13:1175. [PMID: 39056757 PMCID: PMC11274432 DOI: 10.3390/cells13141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lorlatinib is a pharmaceutical ALK kinase inhibitor used to treat ALK driven non-small cell lung cancers. This paper analyses the intersection of past published data on the physiological consequences of two unrelated drugs from general medical practice-itraconazole and cilostazol-with the pathophysiology of ALK positive non-small cell lung cancer. A conclusion from that data analysis is that adding itraconazole and cilostazol may make lorlatinib more effective. Itraconazole, although marketed worldwide as a generic antifungal drug, also inhibits Hedgehog signaling, Wnt signaling, hepatic CYP3A4, and the p-gp efflux pump. Cilostazol, marketed worldwide as a generic thrombosis preventative drug, acts by inhibiting phosphodiesterase 3, and, by so doing, lowers platelets' adhesion, thereby partially depriving malignant cells of the many tumor trophic growth factors supplied by platelets. Itraconazole may enhance lorlatinib effectiveness by (i) reducing or stopping a Hedgehog-ALK amplifying feedback loop, by (ii) increasing lorlatinib's brain levels by p-gp inhibition, and by (iii) inhibiting growth drive from Wnt signaling. Cilostazol, surprisingly, carries minimal bleeding risk, lower than that of aspirin. Risk/benefit assessment of the combination of metastatic ALK positive lung cancer being a low-survival disease with the predicted safety of itraconazole-cilostazol augmentation of lorlatinib favors a trial of this drug trio in ALK positive lung cancer.
Collapse
|
25
|
Palizkaran Yazdi M, Barjasteh A, Moghbeli M. MicroRNAs as the pivotal regulators of Temozolomide resistance in glioblastoma. Mol Brain 2024; 17:42. [PMID: 38956588 PMCID: PMC11218189 DOI: 10.1186/s13041-024-01113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive nervous system tumor with a poor prognosis. Although, surgery, radiation therapy, and chemotherapy are the current standard protocol for GBM patients, there is still a poor prognosis in these patients. Temozolomide (TMZ) as a first-line therapeutic agent in GBM can easily cross from the blood-brain barrier to inhibit tumor cell proliferation. However, there is a high rate of TMZ resistance in GBM patients. Since, there are limited therapeutic choices for GBM patients who develop TMZ resistance; it is required to clarify the molecular mechanisms of chemo resistance to introduce the novel therapeutic targets. MicroRNAs (miRNAs) regulate chemo resistance through regulation of drug metabolism, absorption, DNA repair, apoptosis, and cell cycle. In the present review we discussed the role of miRNAs in TMZ response of GBM cells. It has been reported that miRNAs mainly induced TMZ sensitivity by regulation of signaling pathways and autophagy in GBM cells. Therefore, miRNAs can be used as the reliable diagnostic/prognostic markers in GBM patients. They can also be used as the therapeutic targets to improve the TMZ response in GBM cells.
Collapse
Affiliation(s)
- Mahsa Palizkaran Yazdi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Chen L, Yi H, Li Q, Duan T, Liu X, Li L, Wang HY, Xing C, Wang R. T-bet Regulates Ion Channels and Transporters and Induces Apoptosis in Intestinal Epithelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401654. [PMID: 38650111 PMCID: PMC11267362 DOI: 10.1002/advs.202401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Indexed: 04/25/2024]
Abstract
T-bet, encoded by TBX21, is extensively expressed across various immune cell types, and orchestrates critical functions in their development, survival, and physiological activities. However, the role of T-bet in non-immune compartments, notably the epithelial cells, remains obscure. Herein, a Tet-O-T-bet transgenic mouse strain is generated for doxycycline-inducible T-bet expression in adult animals. Unexpectedly, ubiquitous T-bet overexpression causes acute diarrhea, intestinal damage, and rapid mortality. Cell-type-specific analyses reveal that T-bet-driven pathology is not attributable to its overexpression in CD4+ T cells or myeloid lineages. Instead, inducible T-bet overexpression in the intestinal epithelial cells is the critical determinant of the observed lethal phenotype. Mechanistically, T-bet overexpression modulates ion channel and transporter profiles in gut epithelial cells, triggering profound fluid secretion and subsequent lethal dehydration. Furthermore, ectopic T-bet expression enhances gut epithelial cell apoptosis and markedly suppresses colon cancer development in xenograft models. Collectively, the findings unveil a previously unrecognized role of T-bet in intestinal epithelial cells for inducing apoptosis, diarrhea, and local inflammation, thus implicating its potential as a therapeutic target for the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Lang Chen
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of General SurgeryThird Xiangya HospitalXiangya School of MedicineCentral South UniversityChangsha410013China
| | - Hongwei Yi
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjing210009China
| | - Qingtian Li
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineBaylor College of MedicineHoustonTX77030USA
| | - Tianhao Duan
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Xin Liu
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Linfeng Li
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of Thoracic SurgeryXiangya HospitalCentral South UniversityChangsha410008China
| | - Helen Y. Wang
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Changsheng Xing
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Rong‐Fu Wang
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Department of PediatricsChildren's Hospital Los AngelesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90027USA
- Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| |
Collapse
|
27
|
Wang H, Zhang L, Hu C, Li H, Jiang M. Wnt signaling and tumors (Review). Mol Clin Oncol 2024; 21:45. [PMID: 38798312 PMCID: PMC11117032 DOI: 10.3892/mco.2024.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Wnt signaling is a highly conserved evolutionary pathway that plays a key role in regulation of embryonic development, as well as tissue homeostasis and regeneration. Abnormalities in Wnt signaling are associated with tumorigenesis and development, leading to poor prognosis in patients with cancer. However, the pharmacological effects and mechanisms underlying Wnt signaling and its inhibition in cancer treatment remain unclear. In addition, potential side effects of inhibiting this process are not well understood. Therefore, the present review outlines the role of Wnt signaling in tumorigenesis, development, metastasis, cancer stem cells, radiotherapy resistance and tumor immunity. The present review further identifies inhibitors that target Wnt signaling to provide a potential novel direction for cancer treatment. This may facilitate early application of safe and effective drugs targeting Wnt signaling in clinical settings. An in-depth understanding of the mechanisms underlying inhibition of Wnt signaling may improve the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Huaishi Wang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Lihai Zhang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Chao Hu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Mingyan Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| |
Collapse
|
28
|
Chang X, Zheng Y, Xu K. Single-Cell RNA Sequencing: Technological Progress and Biomedical Application in Cancer Research. Mol Biotechnol 2024; 66:1497-1519. [PMID: 37322261 PMCID: PMC11217094 DOI: 10.1007/s12033-023-00777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Single-cell RNA-seq (scRNA-seq) is a revolutionary technology that allows for the genomic investigation of individual cells in a population, allowing for the discovery of unusual cells associated with cancer and metastasis. ScRNA-seq has been used to discover different types of cancers with poor prognosis and medication resistance such as lung cancer, breast cancer, ovarian cancer, and gastric cancer. Besides, scRNA-seq is a promising method that helps us comprehend the biological features and dynamics of cell development, as well as other disorders. This review gives a concise summary of current scRNA-seq technology. We also explain the main technological steps involved in implementing the technology. We highlight the present applications of scRNA-seq in cancer research, including tumor heterogeneity analysis in lung cancer, breast cancer, and ovarian cancer. In addition, this review elucidates potential applications of scRNA-seq in lineage tracing, personalized medicine, illness prediction, and disease diagnosis, which reveals that scRNA-seq facilitates these events by producing genetic variations on the single-cell level.
Collapse
Affiliation(s)
- Xu Chang
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yunxi Zheng
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
29
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
30
|
Yu J, Sun J, Tang J, Xu J, Qian G, Zhou J. C6orf15 promotes liver metastasis via WNT/β-catenin signalling in colorectal cancer. Cancer Cell Int 2024; 24:146. [PMID: 38654238 DOI: 10.1186/s12935-024-03324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Colon cancer ranks third among global tumours and second in cancer-related mortality, prompting an urgent need to explore new therapeutic targets. C6orf15 is a novel gene that has been reported only in Sjogren's syndrome and systemic lupus erythematosus patients. We found a close correlation between increased C6orf15 expression and the occurrence of colon cancer. The aim of this study was to explore the potential of C6orf15 as a therapeutic target for colorectal cancer. METHOD RNA-seq differential expression analysis of the TCGA database was performed using the R package 'limma.' The correlation between target genes and survival as well as tumour analysis was analysed using GEPIA. Western blot and PCR were used to assess C6orf15 expression in colorectal cancer tissue samples. Immunofluorescence and immunohistochemistry were used to assess C6orf15 subcellular localization and tissue expression. The role of C6orf15 in liver metastasis progression was investigated via a mouse spleen infection liver metastasis model. The association of C6orf15 with signalling pathways was assessed using the GSEA-Hallmark database. Immunohistochemistry (IHC), qPCR and western blotting were performed to assess the expression of related mRNAs or proteins. Biological characteristics were evaluated through cell migration assays, MTT assays, and Seahorse XF96 analysis to monitor fatty acid metabolism. RESULTS C6orf15 was significantly associated with liver metastasis and survival in CRC patients as determined by the bioinformatic analysis and further verified by immunohistochemistry (IHC), qPCR and western blot results. The upregulation of C6orf15 expression in CRC cells can promote the nuclear translocation of β-catenin and cause an increase in downstream transcription. This leads to changes in the epithelial-mesenchymal transition (EMT) and alterations in fatty acid metabolism, which together promote liver metastasis of CRC. CONCLUSION Our study identified C6orf15 as a marker of liver metastasis in CRC. C6orf15 can activate the WNT/β-catenin signalling pathway to promote EMT and fatty acid metabolism in CRC.
Collapse
Affiliation(s)
- Jiankang Yu
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jian Sun
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jiayu Xu
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Guanru Qian
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China.
| |
Collapse
|
31
|
Ziółkowska-Suchanek I, Żurawek M. FOXP3: A Player of Immunogenetic Architecture in Lung Cancer. Genes (Basel) 2024; 15:493. [PMID: 38674427 PMCID: PMC11050689 DOI: 10.3390/genes15040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is considered to be a prominent component of the immune system expressed in regulatory T cells (Tregs). Tregs are immunosuppressive cells that regulate immune homeostasis and self-tolerance. FOXP3 was originally thought to be a Tregs-specific molecule, but recent studies have pinpointed that FOXP3 is expressed in a diversity of benign tumors and carcinomas. The vast majority of the data have shown that FOXP3 is correlated with an unfavorable prognosis, although there are some reports indicating the opposite function of this molecule. Here, we review recent progress in understanding the FOXP3 role in the immunogenetic architecture of lung cancer, which is the leading cause of cancer-related death. We discuss the prognostic significance of tumor FOXP3 expression, tumor-infiltrating FOXP3-lymphocytes, tumor FOXP3 in tumor microenvironments and the potential of FOXP3-targeted therapy.
Collapse
|
32
|
Wang Y, Pan Z, Cui J, Zhang X, Li D, Sun H, Yang B, Li Y. Adhesive hydrogel releases protocatechualdehyde-Fe 3+ complex to promote three healing stages for accelerated therapy of oral ulcers. Acta Biomater 2024; 178:68-82. [PMID: 38452962 DOI: 10.1016/j.actbio.2024.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Oral ulcers can significantly reduce the life quality of patients and even lead to malignant transformations. Local treatments using topical agents are often ineffective because of the wet and dynamic environment of the oral cavity. Current clinical treatments for oral ulcers, such as corticosteroids, have limitations and side effects for long-term usage. Here, we develop adhesive hydrogel patches (AHPs) that effectively promote the healing of oral ulcers in a rat model. The AHPs are comprised of the quaternary ammonium salt of chitosan, aldehyde-functionalized hyaluronic acid, and a tridentate complex of protocatechualdehyde and Fe3+ (PF). The AHPs exhibit tunable mechanical properties, self-healing ability, and wet adhesion on the oral mucosa. Through controlling the formula of the AHPs, PF released from the AHPs in a temporal manner. We further show that the AHPs have good biocompatibility and the capability to heal oral ulcers rapidly. Both in vitro and in vivo experiments indicate that the PF released from AHPs facilitated ulcer healing by suppressing inflammation, promoting macrophage polarization, enhancing cell proliferation, and inducing epithelial-mesenchymal transition involving inflammation, proliferation, and maturation stages. This study provides insights into the healing of oral ulcers and presents an effective therapeutic biomaterial for the treatment of oral ulcers. STATEMENT OF SIGNIFICANCE: By addressing the challenges associated with current clinical treatments for oral ulcers, the development of adhesive hydrogel patches (AHPs) presents an effective approach. These AHPs possess unique properties, such as tunable mechanical characteristics, self-healing ability, and strong adhesion to the mucosa. Through controlled release of protocatechualdehyde-Fe3+ complex, the AHPs facilitate the healing process by suppressing inflammation, promoting cell proliferation, and inducing epithelial-mesenchymal transition. The study not only provides valuable insights into the healing mechanisms of oral ulcers but also introduces a promising therapeutic biomaterial. This work holds significant scientific interest and demonstrates the potential to greatly improve the treatment outcomes and quality of life for individuals suffering from oral ulcers.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, China
| | - Ziyi Pan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, China
| | - Xu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, China.
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, China.
| |
Collapse
|
33
|
Cao W, He Y, Lan J, Luo S, Sun B, Xiao C, Yu W, Zeng Z, Lei S. FOXP3 promote the progression of glioblastoma via inhibiting ferroptosis mediated by linc00857/miR-1290/GPX4 axis. Cell Death Dis 2024; 15:239. [PMID: 38561331 PMCID: PMC10984987 DOI: 10.1038/s41419-024-06619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The oncogenic properties of members belonging to the forkhead box (FOX) family have been extensively documented in different types of cancers. In this study, our objective was to investigate the impact of FOXP3 on glioblastoma multiforme (GBM) cells. By conducting a screen using a small hairpin RNA (shRNA) library, we discovered a significant association between FOXP3 and ferroptosis in GBM cells. Furthermore, we observed elevated levels of FOXP3 in both GBM tissues and cell lines, which correlated with a poorer prognosis. FOXP3 was found to promote the proliferation of GBM cells by inhibiting cell ferroptosis in vitro and in vivo. Mechanistically, FOXP3 not only directly upregulated the transcription of GPX4, but also attenuated the degradation of GPX4 mRNA through the linc00857/miR-1290 axis, thereby suppressing ferroptosis and promoting proliferation. Additionally, the FOXP3 inhibitor epirubicin exhibited the ability to impede proliferation and induce ferroptosis in GBM cells both in vitro and in vivo. In summary, our study provided evidences that FOXP3 facilitates the progression of glioblastoma by inhibiting ferroptosis via the linc00857/miR-1290/GPX4 axis, highlighting FOXP3 as a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| | - Ya He
- Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Jinzhi Lan
- Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Shipeng Luo
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Baofei Sun
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Chaolun Xiao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, China
| | - Zhirui Zeng
- Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| | - Shan Lei
- Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| |
Collapse
|
34
|
Wang J, Huang Z, Zhou J. Radiomics Model for Predicting FOXP3 Expression Level and Survival in Clear Cell Renal Carcinoma. Acad Radiol 2024; 31:1447-1459. [PMID: 37940428 DOI: 10.1016/j.acra.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023]
Abstract
RATIONALE AND OBJECTIVES We aimed to evaluate the predictive significance of forkhead box protein 3 (FOXP3) expression levels among individuals with clear cell renal carcinoma (ccRCC) and establish a radiomics model for predicting FOXP3 expression. MATERIALS AND METHODS 430 patients with ccRCC were included in the gene-based prognostic analyses; 100 samples were used for radiomics feature generation, model development, and evaluation. A gradient boosting machine was employed to model the selected radiomics features. The developed model generated radiomics scores (RS) that predicted FOXP3 expression. The FOXP3 prognostic model combining imaging features was applied for survival and clinical indicator correlation analyses. RESULTS FOXP3 was highly expressed in patients with ccRCC and served as an independent predictive marker (hazard ratio [HR]=2.357, 95% CI [confidence interval]: 1.582-3.511, p < 0.001). The radiomics model formed by three radiomics characteristics was identified as a strong prognostic indicator of overall survival (OS). The predictive power of the model was commendable (areas under the curve: 0.835 and 0.809 for training and validation sets, respectively). Significant between-group variations in RS distribution were identified, as indicated by gene expression levels (p < 0.05). Disparities were observed in pathological stage, pharmaceutical therapy, and neoplasm status between low and high RS cohorts (p < 0.001). Kaplan-Meier curves revealed a significant correlation between increased RS and decreased OS (p = 0.001), which was also observed in the multivariate analyses (HR=3.411, 95% CI: 1.039-11.196, p = 0.043). CONCLUSION Prognostic outcome of ccRCC is closely linked to FOXP3 expression level. Computed tomography-based radiomics shows promise for prognostic prediction in ccRCC.
Collapse
Affiliation(s)
- Jie Wang
- Department of Radiotherapy, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China (J.W., Z.H., J.Z.)
| | - Zaijie Huang
- Department of Radiotherapy, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China (J.W., Z.H., J.Z.)
| | - Jumei Zhou
- Department of Radiotherapy, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China (J.W., Z.H., J.Z.).
| |
Collapse
|
35
|
Jiang JF, Lu HY, Wang MY, He LY, Zhu Y, Qiao Y. Role of regulatory T cells in mouse lung development. Exp Biol Med (Maywood) 2024; 249:10040. [PMID: 38577707 PMCID: PMC10991720 DOI: 10.3389/ebm.2024.10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Regulatory T cells (Tregs) constitute a specialized subset of T cells with dual immunoregulatory and modulatory functions. Recent studies have reported that Tregs mediate immune responses and regulate the development and repair processes in non-lymphoid tissues, including bone and cardiac muscle. Additionally, Tregs facilitate the repair and regeneration of damaged lung tissues. However, limited studies have examined the role of Tregs in pulmonary development. This study aimed to evaluate the role of Tregs in pulmonary development by investigating the dynamic alterations in Tregs and their hallmark cellular factor Forkhead box P3 (Foxp3) at various stages of murine lung development and establishing a murine model of anti-CD25 antibody-induced Treg depletion. During the early stages of murine lung development, especially the canalicular and saccular stages, the levels of Treg abundance and expression of Foxp3 and transforming growth factor-β (TGF-β) were upregulated. This coincided with the proliferation period of alveolar epithelial cells and vascular endothelial cells, indicating an adaptation to the dynamic lung developmental processes. Furthermore, the depletion of Tregs disrupted lung tissue morphology and downregulated lung development-related factors, such as surfactant protein C (SFTPC), vascular endothelial growth factor A (VEGFA) and platelet endothelial cell adhesion molecule-1 (PECAM1/CD31). These findings suggest that Tregs promote murine lung development.
Collapse
Affiliation(s)
| | - Hong-Yan Lu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | | | | | | | | |
Collapse
|
36
|
Ni M, Wang Y, Yang J, Ma Q, Pan W, Li Y, Xu Q, Lv H, Wang Y. IL-33 aggravates extranodal NK/T cell lymphoma aggressiveness and angiogenesis by activating the Wnt/β-catenin signaling pathway. Mol Cell Biochem 2024:10.1007/s11010-024-04944-y. [PMID: 38443748 DOI: 10.1007/s11010-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
Extranodal NK/T cell lymphoma (ENKTCL) is an extremely aggressive form of lymphoma and lacks of specific diagnostic markers. The study intended to unearth the role of interleukin-33 (IL-33) in ENKTCL. RT-qPCR was conducted to assess mRNA levels of ENKTCL tissues and cells, while western blot assay was performed for evaluating protein levels. Plate cloning experiment and transwell assay were employed to measure aggressiveness of ENKTCL. Tube formation assay was executed to determine the angiogenesis ability. Mice ENKTCL xenograft model was designed to probe the impacts of IL-33 in vivo. IL-33 and suppression of tumorigenicity 2 receptor (ST2, receptor of IL-33) were enhanced in ENKTCL. IL-33 inhibition suppressed viability, migration, and invasion of ENKTCL cells. Moreover, IL-33 knockdown restricted angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, Wnt/β-catenin pathway associated proteins (β-catenin, c-myc, and cyclin D1) were downregulated by loss of IL-33. However, these impacts were overturned by Wnt/β-catenin signaling agonist lithium chloride (LiCl). Additionally, IL-33 silencing exerted anti-tumor effect via Wnt/β-catenin pathway in vivo. Silencing of IL-33 inhibited ENKTCL tumorigenesis and angiogenesis by inactivating Wnt/β-catenin signaling pathway. As such, IL-33 might be a prospective treatment target for ENKTCL.
Collapse
Affiliation(s)
- Mingli Ni
- Department of Oncology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, 450099, Henan, China
- Medical Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471099, Henan, China
| | - Yuhui Wang
- Day Operating Room, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Jiezhi Yang
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Qianwen Ma
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Wei Pan
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Yulin Li
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Qian Xu
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Hongqiong Lv
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Yunlong Wang
- Department of Oncology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, 450099, Henan, China.
- Henan Bioengineering Research Center, No. 81, Zhengshang Road, Zhengzhou, 450066, Henan, China.
| |
Collapse
|
37
|
Shi S, Chu Y, Liu H, Yu L, Sun D, Yang J, Tian G, Ji L, Zhang C, Lu X. Predictable regulation of survival by intratumoral microbe-immune crosstalk in patients with lung adenocarcinoma. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:29-40. [PMID: 38375207 PMCID: PMC10876218 DOI: 10.15698/mic2024.02.813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Intratumoral microbiota can regulate the tumor immune microenvironment (TIME) and mediate tumor prognosis by promoting inflammatory response or inhibiting anti-tumor effects. Recent studies have elucidated the potential role of local tumor microbiota in the development and progression of lung adenocarcinoma (LUAD). However, whether intratumoral microbes are involved in the TIME that mediates the prognosis of LUAD remains unknown. Here, we obtained the matched tumor microbiome and host transcriptome and survival data of 478 patients with LUAD in The Cancer Genome Atlas (TCGA). Machine learning models based on immune cell marker genes can predict 1- to 5-year survival with relative accuracy. Patients were stratified into high- and low-survival-risk groups based on immune cell marker genes, with significant differences in intratumoral microbial communities. Specifically, patients in the high-risk group had significantly higher alpha diversity (p < 0.05) and were characterized by an enrichment of lung cancer-related genera such as Streptococcus. However, network analysis highlighted a more active pattern of dominant bacteria and immune cell crosstalk in TIME in the low-risk group compared to the high-risk group. Our study demonstrated that intratumoral microbiota-immune crosstalk was strongly associated with prognosis in LUAD patients, which would provide new targets for the development of precise therapeutic strategies.
Collapse
Affiliation(s)
- Shuo Shi
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yuwen Chu
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, Shandong, China
| | - Haiyan Liu
- College of Information Engineering, Changsha Medical University, Changsha 410219, Hunan, China
- Academician Workstation, Changsha Medical University, Changsha 410219, Hunan, China
| | - Lan Yu
- Clinical Medical Research Center, Inner Mongolian People's Hospital, No. 20, Zhaowuda Road, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of The Metabolic Disease, Inner Mongolian People's Hospital, No. 20, Zhaowuda Road, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, No. 20, Zhaowuda Road, Hohhot, Inner Mongolia, China
| | - Dejun Sun
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, No. 20, Zhaowuda Road, Hohhot, Inner Mongolia, China
- Pulmonary and Critical Care Medicine, Inner Mongolian People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, Shandong, China
- Academician Workstation, Changsha Medical University, Changsha 410219, Hunan, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, Shandong, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, Shandong, China
| | - Cong Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine/No. 39, 12th Bridge Road, Jinniu District, Chengdu City, Sichuan Province, 610072, China
| | - Xinxin Lu
- Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research
| |
Collapse
|
38
|
Wang Z, Zhang Y, Liao Z, Huang M, Shui X. The potential of aryl hydrocarbon receptor as receptors for metabolic changes in tumors. Front Oncol 2024; 14:1328606. [PMID: 38434684 PMCID: PMC10904539 DOI: 10.3389/fonc.2024.1328606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Cancer cells can alter their metabolism to meet energy and molecular requirements due to unfavorable environments with oxygen and nutritional deficiencies. Therefore, metabolic reprogramming is common in a tumor microenvironment (TME). Aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear transcription factor, which can be activated by many exogenous and endogenous ligands. Multiple AhR ligands can be produced by both TME and tumor cells. By attaching to various ligands, AhR regulates cancer metabolic reprogramming by dysregulating various metabolic pathways, including glycolysis, lipid metabolism, and nucleotide metabolism. These regulated pathways greatly contribute to cancer cell growth, metastasis, and evading cancer therapies; however, the underlying mechanisms remain unclear. Herein, we review the relationship between TME and metabolism and describe the important role of AhR in cancer regulation. We also focus on recent findings to discuss the idea that AhR acts as a receptor for metabolic changes in tumors, which may provide new perspectives on the direction of AhR research in tumor metabolic reprogramming and future therapeutic interventions.
Collapse
Affiliation(s)
- Zhiying Wang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihong Liao
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingzhang Huang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
39
|
Zhu D, Zeng S, Su C, Li J, Xuan Y, Lin Y, Xu E, Fan Q. The interaction between DNA methylation and tumor immune microenvironment: from the laboratory to clinical applications. Clin Epigenetics 2024; 16:24. [PMID: 38331927 PMCID: PMC10854038 DOI: 10.1186/s13148-024-01633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
DNA methylation is a pivotal epigenetic modification that affects gene expression. Tumor immune microenvironment (TIME) comprises diverse immune cells and stromal components, creating a complex landscape that can either promote or inhibit tumor progression. In the TIME, DNA methylation has been shown to play a critical role in influencing immune cell function and tumor immune evasion. DNA methylation regulates immune cell differentiation, immune responses, and TIME composition Targeting DNA methylation in TIME offers various potential avenues for enhancing immune cytotoxicity and reducing immunosuppression. Recent studies have demonstrated that modification of DNA methylation patterns can promote immune cell infiltration and function. However, challenges persist in understanding the precise mechanisms underlying DNA methylation in the TIME, developing selective epigenetic therapies, and effectively integrating these therapies with other antitumor strategies. In conclusion, DNA methylation of both tumor cells and immune cells interacts with the TIME, and thus affects clinical efficacy. The regulation of DNA methylation within the TIME holds significant promise for the advancement of tumor immunotherapy. Addressing these challenges is crucial for harnessing the full potential of epigenetic interventions to enhance antitumor immune responses and improve patient outcomes.
Collapse
Affiliation(s)
- Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, No. 1023 Shatai North Road, Guangzhou, 510515, China
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, No.111 Liuhua Road, Guangzhou, 510010, China
| | - Siying Zeng
- School of Traditional Chinese Medicine, Southern Medical University, No. 1023 Shatai North Road, Guangzhou, 510515, China
| | - Chao Su
- School of Traditional Chinese Medicine, Southern Medical University, No. 1023 Shatai North Road, Guangzhou, 510515, China
| | - Jingjun Li
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yiwen Xuan
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, No.111 Liuhua Road, Guangzhou, 510010, China
| | - Yongkai Lin
- Department of Endocrinology, The First Affiliated Hospital, Traditional Chinese Medicine University of Guangzhou, Guangzhou, 510405, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, No.111 Liuhua Road, Guangzhou, 510010, China.
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, No. 1023 Shatai North Road, Guangzhou, 510515, China.
| |
Collapse
|
40
|
Zhan J, Zhou L, Zhang H, Zhou J, He Y, Hu T, Le Y, Lin Y, Wang J, Yu H, Liu Y, Xiang X. A comprehensive analysis of the expression, immune infiltration, prognosis and partial experimental validation of CHST family genes in gastric cancer. Transl Oncol 2024; 40:101843. [PMID: 38101175 PMCID: PMC10727950 DOI: 10.1016/j.tranon.2023.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Previous studies have demonstrated that carbohydrate sulfotransferase family proteins (CHSTs) play a crucial role in the extracellular matrix structural constituent and cancer progression, however, the effect of CHSTs on gastric cancer is still superficial. To investigate these, our study seeks to provide a comprehensive understanding of CHSTs' expression, immune infiltration, and prognostic implications in gastric cancer, utilizing data from the TCGA, GEO and GTEx databases. Furthermore, we conducted experimental validation to elucidate the role of CHST14 specifically in gastric cancer. Our findings suggest that most CHSTs were highly expressed in gastric cancer. Gene copy number variations further indicated prevalent CHSTs amplification in gastric cancer, pointing to its potential relevance in disease progression. Intriguingly, we noted strong positive correlations between most CHSTs and immune cell infiltration. Importantly, most members of CHSTs were related to OS and PFI with gastric cancer, with particular emphasis on CHST14 and CHST9. Multifactorial regression analysis indicates that CHST14 is an independent prognostic factor influencing the overall survival of gastric cancer patients. In further experimental validation, our results demonstrate elevated expression of CHST14 in gastric cancer, and knocking down CHST14 inhibits gastric cancer cell proliferation, invasion, migration and EMT. Additionally, CHST14 may exert its function through the regulation of the Wnt pathway. In summary, our study comprehensively analyzes the hitherto undescribed role of CHSTs in gastric cancer through the analysis of multi-omics data. Importantly, we identify CHST14 as a pivotal promoter in the malignant progression of gastric cancer, offering potential targets for gastric cancer therapy.
Collapse
Affiliation(s)
- Jinbo Zhan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China
| | - Ling Zhou
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China
| | - Hongjiao Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China
| | - Juanjuan Zhou
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China
| | - Yan He
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China
| | - Tingting Hu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China
| | - Yi Le
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China
| | - Yun Lin
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China
| | - Jingru Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China
| | - Haiming Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China
| | - Yawen Liu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, 318 Bayi Road, Nanchang 330006, PR China.
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, PR China; Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
41
|
Tan J, Xue Q, Hu X, Yang J. Inhibitor of PD-1/PD-L1: a new approach may be beneficial for the treatment of idiopathic pulmonary fibrosis. J Transl Med 2024; 22:95. [PMID: 38263193 PMCID: PMC10804569 DOI: 10.1186/s12967-024-04884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a globally prevalent, progressive disease with limited treatment options and poor prognosis. Because of its irreversible disease progression, IPF affects the quality and length of life of patients and imposes a significant burden on their families and social healthcare services. The use of the antifibrotic drugs pirfenidone and nintedanib can slow the progression of the disease to some extent, but it does not have a reverse effect on the prognosis. The option of lung transplantion is also limited owing to contraindications to transplantation, possible complications after transplantation, and the risk of death. Therefore, the discovery of new, effective treatment methods is an urgent need. Over recent years, various studies have been undertaken to investigate the relationship between interstitial pneumonia and lung cancer, suggesting that some immune checkpoints in IPF are similar to those in tumors. Immune checkpoints are a class of immunosuppressive molecules that are essential for maintaining autoimmune tolerance and regulating the duration and magnitude of immune responses in peripheral tissues. They can prevent normal tissues from being damaged and destroyed by the immune response. While current studies have focused on PD-1/PD-L1 and CTLA-4, PD-1/PD-L1 may be the only effective immune checkpoint IPF treatment. This review discusses the application of PD-1/PD-L1 checkpoint in IPF, with the aim of finding a new direction for IPF treatment.
Collapse
Affiliation(s)
- Jie Tan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Xiao Hu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
42
|
Gong R, Chen X, Sun X, Zhang Y, Wang J, Yu Q, Lei K, Ren H. Identification of FOXP3 + epithelial cells contributing to pancreatic proliferation and angiogenesis. Am J Physiol Cell Physiol 2024; 326:C294-C303. [PMID: 38047300 PMCID: PMC11192472 DOI: 10.1152/ajpcell.00461.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Forkhead box protein 3 (FOXP3), traditionally recognized as a specific transcription factor for regulatory T cells (Tregs), has also been identified in various tumor epithelial cells (named as cancer-FOXP3, c-FOXP3). However, the natural state and functional role of FOXP3 positive tumor epithelial cells remain unknown. Monoclonal cells expressing varying levels of c-FOXP3 were isolated from established PANC-1 cells using limited dilution. Whole transcriptome sequencing and weighted gene co-expression network analysis (WGCNA) were conducted on these subsets, followed by in vitro and in vivo functional investigations. In addition, we identified c-FOXP3+E-cadherin- epithelial cells in human pancreatic cancer tissues after radical resection by immunofluorescence co-staining. We also investigated the connection between c-FOXP3+E-cadherin- epithelial cells and their clinicopathological features. Our study uncovered a distinct subset of c-FOXP3+ tumor epithelial cells characterized by reduced E-cadherin expression. C-FOXP3+E-cadherin- cells displayed significant proliferation potential and pro-angiogenic effect through the expression of chemokines, including C-X-C motif ligand 1 (CXCL1), C-X-C motif ligand 5 (CXCL5), and C-X-C motif ligand 8 (CXCL8). Notably, higher counts of c-FOXP3+E-Cadherin- cells correlated with poorer prognosis, lower tumor differentiation, lymph node metastasis, and vascular invasion in pancreatic ductal adenocarcinoma (PDAC). In conclusion, this work revealed the stable expression of FOXP3 in tumor epithelial cells, marking a distinct subset. C-FOXP3+E-cadherin- epithelial cells exhibit active proliferation and promote angiogenesis in a vascular endothelial growth factor A (VEGFA) independent manner. These findings provide novel insights into PDAC prognosis and therapeutic avenues.NEW & NOTEWORTHY In this study, we revealed a novel c-FOXP3+ tumor epithelial cell subset marked by diminished E-cadherin and stable FOXP3 expression. These subpopulations not only show robust proliferation and drive angiogenesis via CXCL1, CXCL5, and CXCL8, bypassing VEGFA pathways, but their heightened presence also correlates with adverse PDAC outcomes. By challenging traditional epithelial cell definitions and extending lymphocyte markers to these cells, our findings present innovative targets for PDAC treatment and enrich our understanding of cell biology.
Collapse
Affiliation(s)
- Ruining Gong
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xianghan Chen
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiaoyuan Sun
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuxing Zhang
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jia Wang
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Qian Yu
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Ke Lei
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - He Ren
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
43
|
Yan B, Cao L, Gao L, Wei S, Wang M, Tian Y, Yang J, Chen E. PEX26 Functions as a Metastasis Suppressor in Colorectal Cancer. Dig Dis Sci 2024; 69:112-122. [PMID: 37957408 DOI: 10.1007/s10620-023-08168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND/AIMS Aberrant Peroxisomal Biogenesis Factor 26 (PEX26) occurs in multiple cell process. However, the role of PEX26 in colorectal cancer (CRC) development remains unknown. We aimed to study PEX26 expression, regulation, and function in CRC cells. METHODS Using the bioinformatic analysis, real-time quantitative PCR, and immunohistochemistry staining, we detected the expression of PEX26 in CRC and normal tissues. We performed functional experiments in vitro to elucidate the effect of PEX26 on CRC cells. We analyzed the RNA-seq data to reveal the downstream regulating network of PEX26. RESULTS PEX26 is significantly down-regulated in CRC and its low expression correlates with the poor overall survival of CRC patients. We further demonstrated that PEX26 over-expression inhibits the ability of CRC cell migration, invasion, and epithelial-mesenchymal transition (EMT), while PEX26 knockdown promotes the malignant phenotypes of migration, invasion, and EMT via activating the Wnt pathway. CONCLUSION Overall, our results showed that the loss of PEX26 contributes to the malignant phenotype of CRC. PEX26 may serve as a novel metastasis repressor for CRC.
Collapse
Affiliation(s)
- Bianbian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Lichao Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Liyang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Shangqing Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Mengwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Jin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
44
|
Shen Y, Wu R, Zhuo Z, Deng X, Li W, Liu C. Identification of circATG9A as a novel biomarker for renal cell carcinoma. Cancer Gene Ther 2024; 31:82-93. [PMID: 37945969 DOI: 10.1038/s41417-023-00684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The incidence and mortality rates of renal cell carcinoma (RCC) have rapidly increased worldwide. To gain new insights into the regulatory role of circular RNAs (circRNAs) in RCC progression, we conducted RNA sequencing on three pairs of ccRCC and adjacent normal tissues. RT-PCR was utilized to analyze RNA expression. We investigated the effects of circATG9A on RCC cells through various assays including CCK-8, Transwell, wound healing, and colony formation assays. Furthermore, we employed FISH, RNA pull-down, luciferase reporter, and RIP assays to elucidate the mechanism by which circATG9A regulates RCC. Ultimately, we identified 118 differentially expressed circRNAs in RCC, including a novel circRNA, circATG9A, which was found to promote RCC progression both in vitro and in vivo. Moreover, mRNA sequencing, western blotting, and rescue experiments indicated that TRPM3 is the target of circATG9A in RCC progression. Bioinformatic analysis, RNA pull-down, FISH, and RIP assays suggested that circATG9A regulates TRPM3 expression by acting as a sponge for miR-497-5p. Finally, Western blotting revealed that circATG9A promotes the epithelial-mesenchymal transition (EMT) process through the Wnt/β-catenin signaling pathway. Our findings demonstrate that circATG9A is a novel circRNA upregulated in RCC that plays a crucial role in the EMT process through the miR-497-5p/TRPM3/Wnt/β-catenin axis. These results suggest that circATG9A could be a promising target for RCC prognosis and therapy.
Collapse
Affiliation(s)
- Ye Shen
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China.
| | - Ruipeng Wu
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Zou Zhuo
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Ximeng Deng
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Weijian Li
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Changkun Liu
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China.
| |
Collapse
|
45
|
Peri SS, Narayanaa Y K, Hubert TD, Rajaraman R, Arfuso F, Sundaram S, Archana B, Warrier S, Dharmarajan A, Perumalsamy LR. Navigating Tumour Microenvironment and Wnt Signalling Crosstalk: Implications for Advanced Cancer Therapeutics. Cancers (Basel) 2023; 15:5847. [PMID: 38136392 PMCID: PMC10741643 DOI: 10.3390/cancers15245847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer therapeutics face significant challenges due to drug resistance and tumour recurrence. The tumour microenvironment (TME) is a crucial contributor and essential hallmark of cancer. It encompasses various components surrounding the tumour, including intercellular elements, immune system cells, the vascular system, stem cells, and extracellular matrices, all of which play critical roles in tumour progression, epithelial-mesenchymal transition, metastasis, drug resistance, and relapse. These components interact with multiple signalling pathways, positively or negatively influencing cell growth. Abnormal regulation of the Wnt signalling pathway has been observed in tumorigenesis and contributes to tumour growth. A comprehensive understanding and characterisation of how different cells within the TME communicate through signalling pathways is vital. This review aims to explore the intricate and dynamic interactions, expressions, and alterations of TME components and the Wnt signalling pathway, offering valuable insights into the development of therapeutic applications.
Collapse
Affiliation(s)
- Shraddha Shravani Peri
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Therese Deebiga Hubert
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Roshini Rajaraman
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - B. Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - Sudha Warrier
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India;
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lakshmi R. Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| |
Collapse
|
46
|
Gao C, Zhu H, Gong P, Wu C, Xu X, Zhu X. The functions of FOXP transcription factors and their regulation by post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194992. [PMID: 37797785 DOI: 10.1016/j.bbagrm.2023.194992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, FOXP2, FOXP3, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, O-GlcNAcylation, and methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Congwen Gao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China; College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Honglin Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors & Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China.
| | - Xuefei Zhu
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors & Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
47
|
Imodoye SO, Adedokun KA. EMT-induced immune evasion: connecting the dots from mechanisms to therapy. Clin Exp Med 2023; 23:4265-4287. [PMID: 37966552 DOI: 10.1007/s10238-023-01229-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic program crucial for organismal development and tissue regeneration. Unfortunately, this program is often hijacked by epithelial tumors to facilitate metastasis. Beyond its role in cancer spread, EMT increases cancer cell survival by activating stem cell programs and bypassing apoptotic programs. Importantly, the capacity of EMT to enforce tumor progression by altering the tumor cell phenotype without triggering immune responses opens the intriguing possibility of a mechanistic link between EMT-driven cancers and immune evasion. Indeed, EMT has been acknowledged as a of driver immune evasion, but the mechanisms are still evolving. Here, we review recent insights into the influence of EMT on tumor immune evasion. Specifically, we focus on the mechanistic roles of EMT in immune escape as the basis that may provide a platform for innovative therapeutic approaches in advanced tumors. We summarize promising therapeutic approaches currently in clinical trials and trending preclinical studies aimed at reinvigorating the tumor microenvironment to create immune-permissive conditions that facilitates immune-mediated tumor clearance. We anticipate that this will assist researchers and pharmaceutical companies in understanding how EMT compromises the immune response, potentially paving the way for effective cancer therapies.
Collapse
Affiliation(s)
- Sikiru O Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA.
| | - Kamoru A Adedokun
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
48
|
Zhang H, Li Z, Jiang J, Lei Y, Xie J, Liu Y, Yi B. SNTB1 regulates colorectal cancer cell proliferation and metastasis through YAP1 and the WNT/β-catenin pathway. Cell Cycle 2023; 22:1865-1883. [PMID: 37592763 PMCID: PMC10599191 DOI: 10.1080/15384101.2023.2244778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 08/19/2023] Open
Abstract
Colorectal cancer is a common type of digestive tract cancer with a significant morbidity and death rate across the world, partially attributing to the metastasis-associated problems. In this study, integrative bioinformatics analyses were performed to identify genes that might contribute to colorectal cancer metastasis, and 293 genes were dramatically increased and 369 genes were decreased within colon cancer samples. Among up-regulated genes, top five genes correlated with colorectal cancer patient's prognosis were verified for expression in clinical samples and syntrophin beta 1 (SNTB1) was the most up-regulated. In vitro, SNTB1 knockdown suppresses the malignant behaviors of colorectal cancer cells, including cell viability, colony formation capacity, as well as the abilities to migrate and invade. Furthermore, SNTB1 knockdown decreased the levels of Wnt1, C-Jun, C-Myc, TCF7, and cyclin D1, and inhibited EMT in both cell lines. In vivo, SNTB1 knockdown inhibited tumor growth and metastasis in nude mice models. SNTB1 positively regulated Yes1 associated transcriptional regulator (YAP1) expression; YAP1 partially reversed the effects of SNTB1 on colorectal cancer cell phenotypes and the Wnt/β-catenin/MYC signaling. In conclusion, SNTB1 knockdown inhibits colorectal cancer cell aggressiveness in vitro and tumor growth and metastasis in vivo through the Wnt/β-catenin/MYC signaling; YAP1 might mediate SNTB1 functions on colorectal cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Li
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Juan Jiang
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Lei
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingmao Xie
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yihui Liu
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Yi
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Heinze K, Cairns ES, Thornton S, Harris B, Milne K, Grube M, Meyer C, Karnezis AN, Fereday S, Garsed DW, Leung SC, Chiu DS, Moubarak M, Harter P, Heitz F, McAlpine JN, DeFazio A, Bowtell DD, Goode EL, Pike M, Ramus SJ, Pearce CL, Staebler A, Köbel M, Kommoss S, Talhouk A, Nelson BH, Anglesio MS. The Prognostic Effect of Immune Cell Infiltration Depends on Molecular Subtype in Endometrioid Ovarian Carcinomas. Clin Cancer Res 2023; 29:3471-3483. [PMID: 37339172 PMCID: PMC10472107 DOI: 10.1158/1078-0432.ccr-22-3815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Endometrioid ovarian carcinoma (ENOC) is the second most-common type of ovarian carcinoma, comprising 10%-20% of cases. Recently, the study of ENOC has benefitted from comparisons to endometrial carcinomas including defining ENOC with four prognostic molecular subtypes. Each subtype suggests differential mechanisms of progression, although tumor-initiating events remain elusive. There is evidence that the ovarian microenvironment may be critical to early lesion establishment and progression. However, while immune infiltrates have been well studied in high-grade serous ovarian carcinoma, studies in ENOC are limited. EXPERIMENTAL DESIGN We report on 210 ENOC, with clinical follow-up and molecular subtype annotation. Using multiplex IHC and immunofluorescence, we examine the prevalence of T-cell lineage, B-cell lineage, macrophages, and populations with programmed cell death protein 1 or programmed death-ligand 1 across subtypes of ENOC. RESULTS Immune cell infiltrates in tumor epithelium and stroma showed higher densities in ENOC subtypes with known high mutation burden (POLEmut and MMRd). While molecular subtypes were prognostically significant, immune infiltrates were not (overall survival P > 0.2). Analysis by molecular subtype revealed that immune cell density was prognostically significant in only the no specific molecular profile (NSMP) subtype, where immune infiltrates lacking B cells (TILB minus) had inferior outcome (disease-specific survival: HR, 4.0; 95% confidence interval, 1.1-14.7; P < 0.05). Similar to endometrial carcinomas, molecular subtype stratification was generally superior to immune response in predicting outcomes. CONCLUSIONS Subtype stratification is critical for better understanding of ENOC, in particular the distribution and prognostic significance of immune cell infiltrates. The role of B cells in the immune response within NSMP tumors warrants further study.
Collapse
Affiliation(s)
- Karolin Heinze
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan S. Cairns
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Shelby Thornton
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Bronwyn Harris
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Katy Milne
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Marcel Grube
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Charlotte Meyer
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Anthony N. Karnezis
- Department of Pathology and Laboratory, UC Davis Medical Center, Sacramento, California
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Samuel C.Y. Leung
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek S. Chiu
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Malak Moubarak
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Philipp Harter
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Florian Heitz
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
- Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jessica N. McAlpine
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ellen L. Goode
- Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, Minnesota
| | - Malcolm Pike
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Sydney, Australia
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
| | - C. Leigh Pearce
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Annette Staebler
- Institute of Pathology, University Hospital of Tübingen, Tübingen, Germany
| | - Martin Köbel
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Aline Talhouk
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Brad H. Nelson
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
| | - Michael S. Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Yang Z, Cao S, Wang F, Du K, Hu F. Characterization and Prognosis of Biological Microenvironment in Lung Adenocarcinoma through a Disulfidptosis-Related lncRNAs Signature. Genet Res (Camb) 2023; 2023:6670514. [PMID: 37575978 PMCID: PMC10421709 DOI: 10.1155/2023/6670514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Background The role of disulfidptosis-related lncRNAs remains unclear in lung adenocarcinoma. Methods Analysis in R software was conducted using different R packages, which are based on the public data from The Cancer Genome Atlas (TCGA) database. The transwell assay was used to evaluate the invasion and migration abilities of lung cancer cells. Results In our study, we identified 1401 lncRNAs significantly correlated with disulfidptosis-related genes (|Cor| > 0.3 and P < 0.05). Then, we constructed a prognosis model consisting of 11 disulfidptosis-related lncRNAs, including AL133445.2, AL442125.1, AC091132.2, AC090948.1, AC020765.2, CASC8, AL606834.1, LINC00707, OGFRP1, U91328.1, and GASAL1. This prognosis model has satisfactory prediction performance. Also, the risk score and clinical information were combined to develop a nomogram. Analyses of biological enrichment and immune-related data were used to identify underlying differences between patients at high-risk and low-risk groups. Moreover, we noticed that the immunotherapy nonresponders have higher risk scores. Meanwhile, patients at a high risk responded more strongly to docetaxel, paclitaxel, and vinblastine. Furthermore, further analysis of the model lncRNA OGFRP1 was conducted, including clinical, immune infiltration, biological enrichment analysis, and a transwell assay. We discovered that by inhibiting OGFRP1, the invasion and migration abilities of lung cancer cells could be remarkably hindered. Conclusion The results of our study can provide directions for future research in the relevant areas. Moreover, the prognosis signature we identified has the potential for clinical application.
Collapse
Affiliation(s)
- Zhuo Yang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Cardiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenglan Cao
- Department of Cardiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fangli Wang
- Department of Cardiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kangming Du
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Hu
- Obstetric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|