1
|
Tang JY, Zhao ML, Zhou XM, Chai YQ, Yuan R, Lei YM, Zhuo Y. Engineering DNA Nanodevices with Multi-site Recognition and Multi-signal Output for Accurate Intracellular LncRNA Imaging. Anal Chem 2025; 97:3378-3386. [PMID: 39907677 DOI: 10.1021/acs.analchem.4c05353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Dynamic DNA nanodevices, known for their high programmability and controllability, are pivotal in intracellular biomarker imaging. However, these nanodevices often suffer from inadequate detection sensitivity and specificity due to limited cellular loading capacity and low signal feedback. Herein, we engineered an integrated multi-site recognition and multi-signal output of four-leaf clover dynamic DNA nanodevice (MEMORY) that enables sensitive and accurate intracellular long noncoding RNA (lncRNA) imaging. MEMORY features one fluorophore (FAM)-modified cross-shaped structure as spatial-confinement scaffolds loaded with four identical quenchers (BHQ1)-modified recognition probes (RPs), ensuring a low background signal initially. In the presence of target lncRNA, the multiple recognition sites of MEMORY facilitate hybridization with the target to selectively release the RPs, exposing the toehold region and outputting the green fluorescence (FAM) signal. Furthermore, the exposed toehold region can trigger efficient and rapid hybridization chain reaction (HCR) amplification, outputting the red fluorescence (Cy5) signal. MEMORY's multiple recognition sites increase the likelihood of target collisions, enhancing reaction efficiency, while its multi-signal output provides sequential feedback through FAM and Cy5, boosting overall signal intensity. With the lncRNA metastasis-related lung adenocarcinoma transcript 1 (MALAT1) as a detection model, MEMORY offers a linear detection range from 1 pM to 100 nM, with a limit of detection of 0.29 pM. We demonstrated that MEMORY can differentiate between normal and tumor cells based on intracellular MALAT1 imaging. This integrated DNA nanodevice will offer valuable tools for sensitive and accurate imaging of intracellular biomarkers.
Collapse
Affiliation(s)
- Jing-Yi Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mei-Ling Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue-Mei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Mei Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Li R, Liu Y, Liu J, Chen B, Ji Z, Xu A, Zhang T. CCL2 regulated by the CTBP1-AS2/miR-335-5p axis promotes hemangioma progression and angiogenesis. Immunopharmacol Immunotoxicol 2024; 46:385-394. [PMID: 38622049 DOI: 10.1080/08923973.2024.2330651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
CONTEXT Hemangioma (HA) is a benign vascular neoplasm that can lead to permanent scarring. C-C motif chemokine ligand 2 (CCL2) plays a crucial role in facilitating growth and angiogenesis during HA progression. However, the mechanism regulating CCL2 in HA remains poorly elucidated. OBJECTIVE To elucidate the mechanism regulating CCL2 in HA. METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was employed to determine the expression levels of CCL2, long noncoding RNA (lncRNA) CTBP1 divergent transcript (CTBP1-AS2), and microRNAs (miRNAs). Proliferation, migration, invasion, and angiogenic abilities of human HA endothelial cells (HemECs) were assessed using cell counting kit-8 (CCK-8), colony formation, flow cytometry, transwell, and tube formation assays. Bioinformatics analysis, RNA pull-down, and luciferase reporter assays were conducted to investigate whether CCL2 targets miR-335-5p. Additionally, rescue experiments were performed in this study. RESULTS CCL2 expression was markedly upregulated in HemECs. CCL2 promoted HA cell proliferation, migration, invasion, and angiogenesis while inhibiting apoptosis. CCL2 was directly targeted by miR-335-5p. Additionally, we found that CTBP1-AS2 could function as a competing endogenous RNA (ceRNA) to sponge miR-335-5p, thereby upregulating CCL2. CONCLUSION Our findings suggest that targeting the CTBP1-AS2/miR-335-5p/CCL2 axis may hold promise as a therapeutic strategy for HA.
Collapse
Affiliation(s)
- Ruixuan Li
- Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Ying Liu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jianfeng Liu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Bo Chen
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Zhongjie Ji
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Aixia Xu
- Department of Endocrinology, Changsha Central Hospital, Changsha, PR China
| | - Tianhua Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| |
Collapse
|
3
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
4
|
Liu C, Dai S, Geng H, Jiang Z, Teng X, Liu K, Tuo Z, Peng L, Yang C, Bi L. Development and validation of a kidney renal clear cell carcinoma prognostic model relying on pyroptosis-related LncRNAs-A multidimensional comprehensive bioinformatics exploration. Eur J Med Res 2023; 28:341. [PMID: 37700389 PMCID: PMC10498568 DOI: 10.1186/s40001-023-01277-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a malignant tumour that may develop in the kidney. RCC is one of the most common kinds of tumours of this sort, and its most common pathological subtype is kidney renal clear cell carcinoma (KIRC). However, the aetiology and pathogenesis of RCC still need to be clarified. Exploring the internal mechanism of RCC contributes to diagnosing and treating this disease. Pyroptosis is a critical process related to cell death. Recent research has shown that pyroptosis is a critical factor in the initiation and progression of tumour formation. Thus far, researchers have progressively uncovered evidence of the regulatory influence that long noncoding RNAs (lncRNAs) have on pyroptosis. METHODS In this work, a comprehensive bioinformatics approach was used to produce a predictive model according to pyroptosis-interrelated lncRNAs for the purpose of predicting the overall survival and molecular immune specialties of patients diagnosed with KIRC. This model was verified from multiple perspectives. RESULTS First, we discovered pyroptosis-associated lncRNAs in KIRC patients using the TCGA database and a Sankey diagram. Then, we developed and validated a KIRC patient risk model based on pyroptosis-related lncRNAs. We demonstrated the grouping power of PLnRM through PCA and used PLnRM to assess the tumour immune microenvironment and response to immunotherapy. Immunological and molecular traits of diverse PLnRM subgroups were evaluated, as were clinical KIRC patient characteristics and predictive risk models. On this basis, a predictive nomogram was developed and analyzed, and novel PLnRM candidate compounds were identified. Finally, we investigated possible medications used by KIRC patients. CONCLUSIONS The results demonstrate that the model generated has significant value for KIRC in clinical practice.
Collapse
Affiliation(s)
- Chang Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuxin Dai
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hao Geng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhiwei Jiang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangyu Teng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhouting Tuo
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Longfei Peng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chao Yang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
5
|
Zhang D, Lu W, Zhuo Z, Wang Y, Zhang W, Zhang M. Comprehensive analysis of a cuproptosis-related ceRNA network implicates a potential endocrine therapy resistance mechanism in ER-positive breast cancer. BMC Med Genomics 2023; 16:96. [PMID: 37143115 PMCID: PMC10161630 DOI: 10.1186/s12920-023-01511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND While adjuvant endocrine therapy (ET) may decrease the mortality rate of estrogen receptor-positive (ER+) breast cancer (BC), the likelihood of relapse and metastasis due to ET resistance remains high. Cuproptosis is a recently discovered regulated cell death (RCD), whose role in tumors has yet to be elucidated. Thus, there is a need to study its specific regulatory mechanism in resistance to ET in BC, to identify novel therapeutic targets. METHODS The prognostic cuproptosis-related genes (CRGs) in ER+ BC were filtered by undergoing Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses in TCGA-BRCA, and a CRGs risk signature was constructed using the correlation coefficient. Immune infiltration analysis, immune function analysis, tumor microenvironment (TME) analysis, immune checkpoint analysis, immunotherapy response analysis, drug sensitivity analysis, and pathway activation analysis were carried out among the high- and low-risk groups in turn. The central CRG of cuproptosis in ER+ BC resistance to ET was acquired through the intersection of protein interaction network (PPI) analysis, genes differentially expressed (DEGs) between human BC cells LCC9 and MCF-7 (GSE159968), and CRGs with prognostic significance in TCGA-BRCA ER+ BC. The miRNAs upstream of the core CRGs were predicted based on the intersection of 4 databases, miRDB, RNA22, miRWalk, and RNAlnter. Candidate miRNAs consisted of the intersection of predicted miRNAs and miRNAs differentially expressed in the LCC9 and MCF-7 cell lines (GSE159979). Candidate lncRNAs were the intersection of the differential lncRNAs from the LCC9 and MCF-7 cell lines and the survival-related lncRNAs obtained from a univariate Cox regression analysis. Pearson's correlation analysis was performed between mRNA-miRNA, miRNA-lncRNA, and mRNA-lncRNA expression separately. RESULTS We constructed A risk signature of 4-CRGs to predict the prognosis of ER+ BC in TCGA-BRCA, a risk score = DLD*0.378 + DBT*0.201 + DLAT*0.380 + ATP7A*0.447 was used as the definition of the formula. There were significant differences between the high- and low-risk groups based on the risk score of 4-CRGs in aspects of immune infiltration, immune function, expression levels of immune checkpoint genes, and signaling pathways. DLD was determined to be the central CRG of cuproptosis in ER+ BC resistance to ET through the intersection of the PPI network analysis, DEGs between LCC9 and MCF-7 and 4-CRGs. Two miRNAs hsa-miR-370-3p and hsa-miR-432-5p were found taking DLD mRNA as a target, and the lncRNA C6orf99 has been hypothesized to be a competitive endogenous RNA that regulates DLD mRNA expression by sponging off hsa-miR-370-3p and hsa-miR-432-5p. CONCLUSION This study built a prognostic model based on genes related to cuproptosis in ER+ BC. We considered DLD to be the core gene associated with resistance to ET in ER+ BC via copper metabolism. The search for promising therapeutic targets led to the establishment of a cuproptosis-related ceRNA network C6orf99/hsa-miR-370-3p and hsa-miR-432-5p/DLD.
Collapse
Affiliation(s)
- Dongni Zhang
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Wenping Lu
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.
| | - Zhili Zhuo
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yanan Wang
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Weixuan Zhang
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Mengfan Zhang
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|
6
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
7
|
Sun Y, Liu B, Xiao B, Jiang X, Xiang J, Xie J, Hu X. Metabolism-related lncRNAs signature to predict the prognosis of colon adenocarcinoma. Cancer Med 2023; 12:5994-6008. [PMID: 36366731 PMCID: PMC10028123 DOI: 10.1002/cam4.5412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cell metabolism and long noncoding RNA (lncRNA) played crucial roles in cancer development. However, their association in colon adenocarcinoma (COAD) remains unclear. METHODS The COAD gene expression data and corresponding clinical data were retrieved from The Cancer Genome Atlas (TCGA) database. Differential expression of metabolic genes and lncRNA were identified by comparing tumor and normal colon tissues. Pearson correlation analysis was performed to identify metabolism-associated lncRNA. COAD patients were divided into training cohort and validation cohort by randomization. Then, a univariate Cox regression analysis was introduced to evaluate the correlations between metabolism-related lncRNAs and overall survival (OS) of the patients in the training cohort. The least absolute shrinkage and selection operator (LASSO) method was introduced to determine and establish a prognostic prediction model. Subsequently, survival analysis, receiver operating characteristic (ROC) curve analysis, and Cox regression analysis were generated to estimate the prognostic role of the LncRNA risk score in training, validation, and entire cohorts. RESULTS We identified 152 differentially expressed metabolism-associated lncRNAs (MRLncRNAs). A prognostic prediction model involving four metabolism-related lncRNAs were established using LASSO. In each cohort, COAD patients in the high-risk group had worse OS compared to those in the low-risk group. The ROC analyses demonstrated that the lncRNA signature performed well in predicting OS. Uni- and multivariate analysis indicated that the lncRNA signature as an independent prognostic factor. Furthermore, a correlation analysis demonstrated that LINC01138 was the most closely lncRNA related to metabolic genes. In vitro assays demonstrated that LINC01138 affects tumor progression in COAD. CONCLUSIONS In summary, we established a metabolism-associated lncRNAs model to predict the prognosis in COAD patients.
Collapse
Affiliation(s)
- Yimin Sun
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - Bingyan Liu
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - BaoLai Xiao
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - XueFeng Jiang
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - Jin‐Jian Xiang
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - Jianping Xie
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - Xiao‐Miao Hu
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| |
Collapse
|
8
|
Zhang Q, Ren H, Ge L, Zhang W, Song F, Huang P. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int 2023; 23:16. [PMID: 36732762 PMCID: PMC9893571 DOI: 10.1186/s12935-023-02861-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Renal cell carcinoma (RCC) is the second lethal urogenital malignancy with the increasing incidence and mortality in the world. Clear cell renal cell carcinoma (ccRCC) is one major subtype of RCC, which accounts for about 70 to 80% of all RCC cases. Although many innovative therapeutic options have emerged during the last few decades, the efficacy of these treatments for ccRCC patients is very limited. To date, the prognosis of patients with advanced or metastatic ccRCC is still poor. The 5-year survival rate of these patients remains less than 10%, which mainly attributes to the complexity and heterogeneity of the tumor microenvironment (TME). It has been demonstrated that long non-coding RNAs (lncRNAs) perform an indispensable role in the initiation and progression of various tumors. They mostly function as sponges for microRNAs (miRNAs) to regulate the expression of target genes, finally influence the growth, metastasis, apoptosis, drug resistance and TME of tumor cells. However, the role of lncRNA/miRNA/mRNA axis in the TME of ccRCC remains poorly understood. In this review, we summarized the biological function of lncRNA/miRNA/mRNA axis in the pathogenesis of ccRCC, then discussed how lncRNA/miRNA/mRNA axis regulate the TME, finally highlighted their potential application as novel biomarkers and therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Qi Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Ren
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Luqi Ge
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wen Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Li Y, Li F, Sun Z, Li J. A review of literature: role of long noncoding RNA TPT1-AS1 in human diseases. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:306-315. [PMID: 36112261 DOI: 10.1007/s12094-022-02947-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 01/27/2023]
Abstract
Human diseases are multifactorial processes mainly driven by the intricate interactions of genetic and environmental factors. Long noncoding RNAs (lncRNAs) represent a type of non-coding RNAs with more than 200 nucleotides. Multiple studies have demonstrated that the dysregulation of lncRNAs is associated with complex biological as well as pathological processes through various mechanism, especially the regulation of gene transcription and related signal transduction pathways. Moreover, an increasing number of studies have explored lncRNA-based clinical applications in different diseases. For instance, the lncRNA Tumor Protein Translationally Controlled 1 (TPT1) Antisense RNA 1 (TPT1-AS1) was found to be dysregulated in several types of disease and strongly associated with patient prognosis and diverse clinical features. Recent studies have also documented that TPT1-AS1 modulates numerous biological processes through multiple mechanisms, including cell proliferation, apoptosis, autophagy, invasion, migration, radiosensitivity, chemosensitivity, stemness, and extracellular matrix (ECM) synthesis. Furthermore, TPT1-AS1 was regarded as a promising biomarker for the diagnosis, prognosis and treatment of several human diseases. In this review, we summarize the role of TPT1-AS1 in human diseases with the aspects of its expression, relevant clinical characteristics, molecular mechanisms, biological functions, and subsequent clinical applications.
Collapse
Affiliation(s)
- Yi Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
| | - Fulei Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Bu H, Song Q, Zhang J, Wei Y, Liu B. Development of a Novel KCNN4-Related ceRNA Network and Prognostic Model for Renal Clear Cell Carcinoma. Anal Cell Pathol (Amst) 2023; 2023:2533992. [PMID: 39282155 PMCID: PMC11401688 DOI: 10.1155/2023/2533992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 09/18/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) accounts for more than 80% of renal cell carcinomas. Yet, it has not been fully understood about the derivation and progression of the tumor, as well as the long-term benefits from multimodality therapy. Therefore, reliable and applicable molecular markers are urgently needed for the prediction of diagnosis and prognosis of ccRCC patients. Methods Genetic and clinical information of 533 ccRCC patients from The Cancer Genome Atlas database was collected for comprehensive bioinformatic analyses. UALCAN was used to detect gene expression in paired tumor samples. Two data sets from Gene Expression Omnibus database were analyzed to identify differentially expressed genes (DEGs), and Gene Set Enrichment Analysis was applied for the functional enrichment of DEGs. Tumor Immune Single Cell Hub and Tumor IMmune Estimation Resource databases were separately used for analyses of single-immune cell and immune cell infiltration. Encyclopedia of RNA Interactomes database was explored to predict targeted microRNAs (miRNAs) and corresponding long non-coding RNAs (lncRNAs). Cox regression analysis was performed for the construction of risk signature and prognosis model. Finally, quantitative real-time polymerase chain reaction and western blot were conducted for KCNN4 expression detection in cell lines and clinical samples. Small interfering RNA was employed to knock down KCNN4, and corresponding functional experiments were conducted on ccRCC cells as well. Results KCNN4 showed elevated expression in tumors and prominent clinical correlation in ccRCC. In total, 41 KCNN4-related genes were enriched, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed they were intimately related to immune-related signaling pathways. Spearman's analysis revealed the significantly positive correlation of KCNN4 with immune cell infiltration. By integrating hub miRNA-let-7e-5p and four critical lncRNA, a competitive endogenous RNA network-based risk signature was constructed. The prognosis model derived from it showed considerable predictive value for survival of ccRCC patients. Finally, in vitro experiments confirmed the remarkable tumor-promoting role of KCNN4 in ccRCC cells. Conclusion KCNN4 significantly affected the immune status of tumor microenvironment and immunotherapy elements, through which it promoted tumor progression in ccRCC, and it could be a potential biomarker for prognosis and immunotherapy effects of ccRCC patients.
Collapse
Affiliation(s)
- Hengtao Bu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiexiu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuang Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
11
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Xia D, Liu Q, Jiao W, Peng L, Wang Q, Tuo Z, Bi L. Exploration of the role of Cuproptosis genes and their related long non-coding RNA in clear cell renal cell carcinoma: a comprehensive bioinformatics study. BMC Cancer 2022; 22:1141. [PMID: 36335291 PMCID: PMC9637316 DOI: 10.1186/s12885-022-10278-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022] Open
Abstract
Clear cell renal cell carcinoma is a common malignant tumor of the urinary system. The mechanism of its occurrence and development is unknown, and there is currently few effective comprehensive predictive markers for prognosis and treatment response. With the discovery of a new cell death process - cuproptosis drew the attention of researchers. We constructed a model for the prediction of clinical prognosis and immunotherapy response through integrative analysis of gene expression datasets from KIRC samples in The Cancer Genome Atlas (TCGA) database. During the course of the study, we found that cuproptosis genes are significantly differentially expressed between clear cell renal cell carcinoma samples and normal samples. Based on this, we put forward the prognostic model for cuproptosis gene related-long non-coding RNA. And through various statistic and external independent cohorts, we proved that the model is accurate and stable, worthy of clinical application and further exploration and validation.
Collapse
Affiliation(s)
- Dian Xia
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qi Liu
- grid.412679.f0000 0004 1771 3402Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen Jiao
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Longfei Peng
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qi Wang
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - ZhouTing Tuo
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China. .,Department of Urology, Peking University Shenzhen Hospital, ShenZhen, China.
| |
Collapse
|
13
|
Effects of the Targeted Regulation of CCRK by miR-335-5p on the Proliferation and Tumorigenicity of Human Renal Carcinoma Cells. JOURNAL OF ONCOLOGY 2022; 2022:2960050. [PMID: 36276294 PMCID: PMC9586783 DOI: 10.1155/2022/2960050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
Abstract
Cell cycle-related kinase (CCRK) is most closely related to cyclin-dependent protein kinase, which may activate cyclin-dependent kinase 2 and is associated with the growth of human cancer cells. However, the expression and function of CCRK in the pathogenesis of clear cell renal cell cancer (ccRCC) are unclear. Herein, this research aimed to explore the potential mechanism of the targeted regulation of CCRK by miR-335-5p on the proliferation and tumorigenicity of human ccRCC cells. The results showed that CCRK was significantly overexpressed in ccRCC tissues and cells, and knockdown of the CCRK expression by shRNA inhibited cell proliferation in vitro and in vivo and enhanced cell apoptosis in vitro, which indicated that CCRK could be a potential target for antitumour drugs in the treatment of ccRCC. Moreover, miR-335-5p was found to bind directly to the 3′ untranslated region of CCRK, was expressed at markedly low levels in ccRCC cells, and was closely associated with the tumour stage. The overexpression of CCRK partially reversed the inhibitory effects of miR-335-5p on the cell growth of ccRCC, which implied that miR-335-5p could serve as a promising tumour inhibitor for ccRCC. In summary, CCRK could serve as an alternative antitumour drug target, and miR-335-5p could be a promising therapeutic tumour inhibitor for ccRCC treatment.
Collapse
|
14
|
Functions and underlying mechanisms of lncRNA HOTAIR in cancer chemotherapy resistance. Cell Death Dis 2022; 8:383. [PMID: 36100611 PMCID: PMC9470550 DOI: 10.1038/s41420-022-01174-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Chemotherapy has been one of the most important treatments for advanced cancer in recent decades. Although the sensitivity rate of initial chemotherapy is high, patients with chemotherapy resistant tumors, experience tumor recurrence. In recent years, many studies have shown that homeobox transcript antisense intergenic RNA (HOTAIR) is involved in many pathological processes including carcinogenesis. The abnormal regulation of a variety of cell functions by HOTAIR, such as apoptosis, the cell cycle, epithelial-mesenchymal transition, autophagy, self-renewal, and metabolism, is associated with chemotherapy resistance. Therefore, there is an urgent need to understand the biology and mechanism underlying the role of HOTAIR in tumor behavior and its potential as a biomarker for predicting the effect of chemotherapy. In this manuscript, we review the mechanisms underlying HOTAIR-related drug resistance and discuss the limitations of current knowledge and propose potential future directions.
Collapse
|
15
|
Xia D, Liu Q, Yan S, Bi L. Construction of a Prognostic Model for KIRC and Identification of Drugs Sensitive to Therapies - A Comprehensive Biological Analysis Based on m6A-Related LncRNAs. Front Oncol 2022; 12:895315. [PMID: 35719976 PMCID: PMC9201082 DOI: 10.3389/fonc.2022.895315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
As one of the common malignancies in the urinary system, kidney cancer has been receiving explorations with respect to its pathogenesis, treatment and prognosis due to its high morbidity, high mortality and low drug efficiency. Such epigenetic modifications for RNA molecules as N6-methyladenosine (m6A) usher in another perspective for the research on tumor mechanisms, and an increasing number of biological processes and prognostic markers have been revealed. In this study, the transcriptome data, clinical data and mutation spectrum data of KIRC in the TCGA database were adopted to construct an m6A-related lncRNA prognostic model. Besides, the predictive ability of this model for clinical prognosis was evaluated, and some compounds sensitive to therapies for KIRC were screened. The findings of this study demonstrate that this effective and stable model has certain clinical application value.
Collapse
Affiliation(s)
- Dian Xia
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qi Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Songbai Yan
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
CircSCAF8 promotes growth and metastasis of prostate cancer through the circSCAF8-miR-140-3p/miR-335-LIF pathway. Cell Death Dis 2022; 13:517. [PMID: 35654787 PMCID: PMC9163066 DOI: 10.1038/s41419-022-04913-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) have been increasingly linked to cancer progression. However, the detailed biological functions of circRNAs in prostate cancer (PCa) remain unclear. Using high-throughput circRNA sequencing, we previously identified 18 urine extracellular vesicle circRNAs that were increased in patients with PCa compared with those with benign prostatic hyperplasia. Spearman correlation analysis of the expression levels of the 18 circRNAs between the tumor tissue and matched urine extracellular vesicles in 30 PCa patients showed that circSCAF8 had the highest R2 (R2 = 0.635, P < 0.001). The Cox proportional hazards regression model was used to estimate the effect of circSCAF8 on progression-free survival. The in vitro and in vivo functional experiments were implemented to investigate the effects of circSCAF8 on the phenotype of PCa. We found that the knockdown of circSCAF8 in PCa cells suppressed the proliferation, migration, and invasion ability, while overexpression of circSCAF8 had the opposite effects. Similar results were observed in vivo. In a cohort of 85 patients who had undergone radical prostatectomy, circSCAF8 expression in PCa tissues was a powerful predictor of progression-free survival (HR = 2.14, P = 0.022). Mechanistically, circSCAF8 can function by binding to both miR-140-3p and miR-335 to regulate LIF expression and activate the LIF-STAT3 pathway that leads to the growth and metastasis of PCa. Collectively, our findings demonstrate that circSCAF8 contributes to PCa progression through the circSCAF8-miR-140-3p/miR-335-LIF pathway.
Collapse
|
17
|
Elfert AY, Salem A, Abdelhamid AM, Salama A, Sourour DA, Shaker O, Keshk M. Implication of miR-122, miR-483, and miR-335 Expression Levels as Potential Signatures in HCV-Related Hepatocellular Carcinoma (HCC) in Egyptian Patients. Front Mol Biosci 2022; 9:864839. [PMID: 35651814 PMCID: PMC9150846 DOI: 10.3389/fmolb.2022.864839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related deaths worldwide with chronic hepatitis C virus (HCV) infection as a major risk factor of HCC. Circulating microRNAs are deregulated in HCC and are candidate biomarkers. The aim of this study was to explore the expression profile of miRNA-122, miR-483, and miR-335 in the serum of HCV-related hepatocellular carcinoma (HCC). 90 HCV-related hepatocellular carcinoma (HCC) patients, 90 non-malignant HCV patients, and 60 healthy controls were included. Serum microRNAs were measured by a qRT-PCR custom array. The expression levels of miR-122 and miR-483 were upregulated in HCC patients, while the miR-335 expression level was downregulated versus controls and HCV groups. Receiver-operating characteristic (ROC) curve analysis was created to examine miRNAs. miR-483 presented the best diagnostic potential because it showed the highest diagnostic accuracy for distinguishing HCV-related HCC patients from controls (AUC = 0.98) with 100% sensitivity. Moreover, there was obvious prognostic power in distinguishing HCV from HCC (AUC = 0.95) with 88% sensitivity. In conclusion, studied microRNAs (miR-122, miR-483, and miR-335) could serve as potential non-invasive early diagnostic biomarkers for HCC, and we identified a panel of three serum microRNAs with high accuracy in HCC diagnosis. Additional studies are required to confirm this panel and test its prognostic significance.
Collapse
Affiliation(s)
- Ashraf Y. Elfert
- Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Amel Salem
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Amr M. Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Egypt
- *Correspondence: Amr M. Abdelhamid,
| | - Ahmad Salama
- Tropical Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa A. Sourour
- Department of Medical Research and Radiation, Nuclear Materials Authority, Cairo, Egypt
| | - Olfat Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mofida Keshk
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Cairo, Egypt
| |
Collapse
|
18
|
Xu Y, Ren W, Li Q, Duan C, Lin X, Bi Z, You K, Hu Q, Xie N, Yu Y, Xu X, Hu H, Yao H. LncRNA Uc003xsl.1-Mediated Activation of the NFκB/IL8 Axis Promotes Progression of Triple-Negative Breast Cancer. Cancer Res 2022; 82:556-570. [PMID: 34965935 PMCID: PMC9359739 DOI: 10.1158/0008-5472.can-21-1446] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 12/27/2021] [Indexed: 01/07/2023]
Abstract
Aberrant activation of NFκB orchestrates a critical role in tumor carcinogenesis; however, the regulatory mechanisms underlying this activation are not fully understood. Here we report that a novel long noncoding RNA (lncRNA) Uc003xsl.1 is highly expressed in triple-negative breast cancer (TNBC) and correlates with poor outcomes in patients with TNBC. Uc003xsl.1 directly bound nuclear transcriptional factor NFκB-repressing factor (NKRF), subsequently preventing NKRF from binding to a specific negative regulatory element in the promoter of the NFκB-responsive gene IL8 and abolishing the negative regulation of NKRF on NFκB-mediated transcription of IL8. Activation of the NFκB/IL8 axis promoted the progression of TNBC. Trop2-based antibody-drug conjugates have been applied in clinical trials in TNBC. In this study, a Trop2-targeting, redox-responsive nanoparticle was developed to systematically deliver Uc003xsl.1 siRNA to TNBC cells in vivo, which reduced Uc003xsl.1 expression and suppressed TNBC tumor growth and metastasis. Therefore, targeting Uc003xsl.1 to suppress the NFκB/IL8 axis represents a promising therapeutic strategy for TNBC treatment. SIGNIFICANCE These findings identify an epigenetic-driven NFκB/IL8 cascade initiated by a lncRNA, whose aberrant activation contributes to tumor metastasis and poor survival in patients with triple-negative breast cancer.
Collapse
Affiliation(s)
- Ying Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Ren
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qingjian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chaohui Duan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaorong Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhuofei Bi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Kaiyun You
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qian Hu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ning Xie
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, P.R. China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
19
|
Tao H, Yang J, Zhang P, Zhang N, Suo X, Li X, Liu Y, Chen M. Characterization of XR_311113.2 as a MicroRNA Sponge for Pre-ovulatory Ovarian Follicles of Goats via Long Noncoding RNA Profile and Bioinformatics Analysis. Front Genet 2022; 12:760416. [PMID: 35046999 PMCID: PMC8762113 DOI: 10.3389/fgene.2021.760416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) were identified recently as a large class of noncoding RNAs (ncRNAs) with a length ≥200 base pairs (bp). The function and mechanism of lncRNAs have been reported in a growing number of species and tissues. In contrast, the regulatory mechanism of lncRNAs in the goat reproductive system has rarely been reported. In the present study, we sequenced and analyzed the lncRNAs using bioinformatics to identify their expression profiles. As a result, 895 lncRNAs were predicted in the pre-ovulatory ovarian follicles of goats. Eighty-eight lncRNAs were differentially expressed in the Macheng black goat when compared with Boer goat. In addition, the lncRNA XR_311113.2 acted as a sponge of chi-miR-424-5p, as assessed via a luciferase activity assay. Taken together, our findings demonstrate that lncRNAs have potential effects in the ovarian follicles of goats and may represent a promising new research field to understand follicular development.
Collapse
Affiliation(s)
- Hu Tao
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Juan Yang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pengpeng Zhang
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Nian Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojun Suo
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xiaofeng Li
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yang Liu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
20
|
Suyal G, Pandey P, Saraya A, Sharma R. Tumour suppressor role of microRNA-335-5p in esophageal squamous cell carcinoma by targeting TTK (Mps1). Exp Mol Pathol 2021; 124:104738. [PMID: 34953918 DOI: 10.1016/j.yexmp.2021.104738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Esophageal cancer is an aggressive malignancy. miR-335-5p is reported to possess both tumour suppressor and tumour promoter activities in different cancers. OBJECTIVES We investigated the role of miR-335-5p in esophageal cancer by expression and functional studies. MATERIALS AND METHODS The role of miR-335-5p in ESCC was evaluated using MTT assay, cell cycle analysis, colony formation assay, scratch assay, matrigel invasion, and migration assay. RESULTS Our expression studies showed a significantly decreased expression of tissue and circulating miR-335-5p in esophageal cancer. Our results herein report a key tumour suppressive role of miR-335-5p in esophageal carcinogenesis by inhibiting proliferation, migration, and invasion in ESCC cells. Using RNA-seq and Insilico analysis we found TTK to be a newly identified direct target and confirmed it by using luciferase assay. CONCLUSION Overall, our expression and functional analysis results demonstrated herein point towards the potential role of miR-335-5p in esophageal tumorigenesis. Moreover, this is the first report showing TTK as a downstream target of miR-335-5p.
Collapse
Affiliation(s)
- Geetika Suyal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Prerna Pandey
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India.
| |
Collapse
|
21
|
Yang J, Qi M, Fei X, Wang X, Wang K. Long non-coding RNA XIST: a novel oncogene in multiple cancers. Mol Med 2021; 27:159. [PMID: 34930117 PMCID: PMC8686246 DOI: 10.1186/s10020-021-00421-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is an important lncRNA derived from the XIST gene in mammals. XIST is abnormally expressed in numerous tumors, in most of which XIST functions as an oncogene. XIST is involved in multiple aspects of carcinogenesis, including tumor onset, progression, and prognosis. In our review, we collected and analyzed the recent studies on the impact of XIST in human tumor development. The multilevel molecular functions of XIST in human tumors are comprehensively reviewed to clarify the pathologic mechanisms and to offer a novel direction for further study.
Collapse
Affiliation(s)
- Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Manlong Qi
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping, Liaoning, 110004, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping, Liaoning, 110004, Shenyang, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping, Liaoning, 110004, Shenyang, China.
| |
Collapse
|
22
|
Zhu Y, Li B, Xu G, Han C, Xing G. lncRNA MIR4435‑2HG promotes the progression of liver cancer by upregulating B3GNT5 expression. Mol Med Rep 2021; 25:38. [PMID: 34859256 PMCID: PMC8669657 DOI: 10.3892/mmr.2021.12554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have indicated that dysregulation of long non-coding RNAs (lncRNAs) participates in the initiation and progression of cancer. The lncRNA MIR4435-2HG was previously reported to act as an oncogene in human cancer, including liver cancer. However, its role in the pathogenesis in liver cancer is largely unclear. The present study aimed to reveal the molecular mechanism by which MIR4435-2HG regulates liver cancer. The expression levels of MIR4435-2HG in liver cancer and adjacent normal tissues were analyzed using The Cancer Genome Atlas database. MIR4435-2HG expression was validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in cancer cells in vitro. The target genes of MIR4435-2HG were predicted using bioinformatics analysis. Interactions between miR-136-5p, MIR4435-2HG and B3GNT5 were detected using luciferase reporter assays, and their effects on cell viability, migration and invasion were assessed using Cell Counting Kit-8, wound healing and Transwell assays. The effects of miR-136-5p and MIR4435-2HG on B3GNT5 expression were confirmed by western blot analysis. The results revealed that MIR4435-2HG expression was upregulated in primary liver cancer and liver cancer cell lines, and was positively associated with advanced tumor stage, metastasis and poor prognosis in patients with liver cancer. Knockdown of MIR4435-2HG significantly inhibited the proliferation, migration and invasion of liver cancer cells. Furthermore, miR-136-5p was determined to be a direct target of MIR4435-2HG and suppressed MIR4435-2HG expression by binding with the seed region of the 3′-UTR of MIR4435-2HG in liver cancer cells. Functional studies showed that the inhibitory effects of MIR4435-2HG knockdown on cell proliferation, migration and invasion were significantly rescued by inhibiting miR-136-5p. Furthermore, the target gene, B3GNT5, of miR-136-5p was confirmed by bioinformatics analysis and RT-qPCR. In addition, B3GNT5 expression was regulated by the MIR4435-2HG/miR-136-5p axis. In conclusion, the present study indicated that MIR4435-2HG facilitated the progression of liver cancer via the MIR4435-2HG/miR-136-5p/B3GNT5 axis, which demonstrated that MIR4435-2HG may be a potential biomarker for the prognosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Yungang Zhu
- Radiology Department, Tianjin Teda Hospital, Tianjin 300457, P.R. China
| | - Baoguo Li
- Department of Interventional Treatment, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Guoping Xu
- Medical Imaging Department, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Changrui Han
- Radiology Department, Tianjin Teda Hospital, Tianjin 300457, P.R. China
| | - Gang Xing
- Radiology Department, Tianjin Teda Hospital, Tianjin 300457, P.R. China
| |
Collapse
|
23
|
Shen Y, Lv M, Fang Y, Lu J, Wu Y. LncRNA MNX1-AS1 promotes ovarian cancer process via targeting the miR-744-5p/SOX12 axis. J Ovarian Res 2021; 14:161. [PMID: 34789303 PMCID: PMC8596928 DOI: 10.1186/s13048-021-00910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Ovarian cancer (OC) is the most common malignancy in women with high mortality. Increasing studies have revealed that long non-coding RNA (lncRNA) MNX1-AS1 has a promoting effect on various cancers. However, the mechanisms of MNX1-AS1 in OC are still unclear. Therefore, this study focused on exploring the mechanisms of MNX1-AS1 in OC. Materials and methods The expression of SOX12 at the protein level was detected by western blot. Cell proliferation was detected by CCK8 assay and colony formation assay. Cell cycle and cell apoptosis were detected by flow cytometry. Wound-healing assay, transwell assay and western blot were used to detect the ability of cell migration and invasion. The target binding was confirmed through the luciferase reporter assay. Results The expression of MNX1-AS1 was increased in OC tumor tissues and cells. Elevated MNX1-AS1 expression is associated with advanced stage and lower overall survival rate. Knockdown of MNX1-AS1 inhibited cell proliferation, migration and invasion, blocked cell cycle, and promoted cell apoptosis in SKOV-3 and OVCAR-3 cells. MNX1-AS1 was competitively binding with miR-744-5p, and its downstream target gene was SOX12. miR-544-5p expression was decreased, while SOX12 expression was increased in OC tumor tissues and cells. Overexpression of miR-744-5p inhibited cell proliferation, migration, invasion and promoted cell apoptosis in SKOV-3 and OVCAR-3 cells. Conclusion MNX1-AS1 promoted the development of OC through miR-744-5p/SOX12 axis. This study revealed a novel mechanism of MNX1-AS1 in OC, which may provide a new treatment or scanning target for OC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00910-0.
Collapse
Affiliation(s)
- Yang Shen
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Mengmeng Lv
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Yichen Fang
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Jin Lu
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Yuzhong Wu
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
24
|
LncRNAs in the Regulation of Genes and Signaling Pathways through miRNA-Mediated and Other Mechanisms in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222011193. [PMID: 34681854 PMCID: PMC8539140 DOI: 10.3390/ijms222011193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
The fundamental novelty in the pathogenesis of renal cell carcinoma (RCC) was discovered as a result of the recent identification of the role of long non-coding RNAs (lncRNAs). Here, we discuss several mechanisms for the dysregulation of the expression of protein-coding genes initiated by lncRNAs in the most common and aggressive type of kidney cancer-clear cell RCC (ccRCC). A model of competitive endogenous RNA (ceRNA) is considered, in which lncRNA acts on genes through the lncRNA/miRNA/mRNA axis. For the most studied oncogenic lncRNAs, such as HOTAIR, MALAT1, and TUG1, several regulatory axes were identified in ccRCC, demonstrating a number of sites for various miRNAs. Interestingly, the LINC00973/miR-7109/Siglec-15 axis represents a novel agent that can suppress the immune response in patients with ccRCC, serving as a valuable target in addition to the PD1/PD-L1 pathway. Other mechanisms of action of lncRNAs in ccRCC, involving direct binding with proteins, mRNAs, and genes/DNA, are also considered. Our review briefly highlights methods by which various mechanisms of action of lncRNAs were verified. We pay special attention to protein targets and signaling pathways with which lncRNAs are associated in ccRCC. Thus, these new data on the different mechanisms of lncRNA functioning provide a novel basis for understanding the pathogenesis of ccRCC and the identification of new prognostic markers and targets for therapy.
Collapse
|
25
|
Jin G, Mi H, Ye Y, Yao Q, Yuan L, Wu X. LINC00671 inhibits renal cell cancer progression via regulating miR-221-5p/SOCS1 axis. Am J Transl Res 2021; 13:7524-7537. [PMID: 34377233 PMCID: PMC8340225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 03/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) has gradually received widespread attention due to its role in regulating tumor progression. However, in renal cell cancer (RCC), the exact function of lncRNA LINC00671 remains uncertain. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized for detecting LINC00671 and miR-221-5p expressions in RCC tissues and cell lines. Western blotting technique was utilized for detecting the expressions of epithelial-mesenchymal transition (EMT)-associated proteins (E-cadherin and N-cadherin) and suppressor of cytokine signaling 1 (SOCS1). The correlation between clinicopathological features and LINC00671 expression was also evaluated. RCC cell multiplication, migration and invasion were measured by CCK-8, EdU and Transwell assays, respectively. The targeted relationships between LINC00671 as well as the SOCS1 3'UTR and miR-221-5p were verified by RNA immunoprecipitation (RIP) and luciferase reporter gene assay. RESULTS LINC00671 expression in RCC tissues and cells was significantly reduced. Patients with low LINC00671 expression had relatively shorter disease-free survival and overall survival. Moreover, LINC00671 expression was linked to lymph node metastasis, tumor stage, and tumor size. In Caki-1 and 769-P cell lines, LINC00671 overexpression restrained the multiplication, migration, invasion, as well as the EMT process of RCC cells in vitro. In terms of mechanism, miR-221-5p was identified as a target of LINC00671, and LINC00671 could up-regulate SOCS1 by repressing miR-221-5p. CONCLUSION LINC00671 regulates the miR-221-5p/SOCS1 axis as a tumor suppressor in RCC.
Collapse
Affiliation(s)
- Gang Jin
- Department of Urology Surgery, The No. 1 People’s Hospital of Pinghu CommunityPinghu 314200, China
| | - Haiyan Mi
- Department of Nephrology, Affiliated Nashua Hospital, University of South ChinaHengyang 421002, China
| | - Yunfei Ye
- Department of Radiation Center, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai 201204, China
| | - Qi Yao
- Department of Outpatient, The No. 1 People’s Hospital of Pinghu CommunityPinghu 314200, China
| | - Lei Yuan
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgery HospitalShanghai 200438, China
| | - Xiaoxiong Wu
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of TCMShanghai 200137, China
| |
Collapse
|
26
|
Ding W, Shi Y, Zhang H. Circular RNA circNEURL4 inhibits cell proliferation and invasion of papillary thyroid carcinoma by sponging miR-1278 and regulating LATS1 expression. Am J Transl Res 2021; 13:5911-5927. [PMID: 34306334 PMCID: PMC8290797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 06/13/2023]
Abstract
Circular RNAs (circRNA) are found to be closely associated with cancers as their possibility as "sponges" to miRNAs, thus liberating the downstream target mRNA. However, deep research is still needed to study the function of circRNA in papillary thyroid carcinoma (PTC). Here, we sought to explore new circRNA which could play an important role in the development of PTC. We filtered candidate circRNAs based on microarray data from public database and verified the result using qRT-PCR. We performed CCK8 assay, colony formation assay, apoptosis assay, transwell assays, and xenograft experiments to explore the function of selected circRNA on PTC. We predicted the miRNA targets of the circRNA and the target gene of miRNA through bioinformatic analysis and validated the target by mutant experiments. And by the use of overexpression experiments, knockdown experiments, and the functional assays mentioned above, we figured out the pathway behind the selected circRNA. Based on our data, we found that circNEURL4 was significantly decreased in the PTC samples and lower expression of circNEURL4 was closely associated with a poor prognosis of patients with PTC. Then, we proved that circNEURL4 could inhibit cell proliferation and invasion of PTC in vivo and in vitro. Furthermore, we demonstrated that circNEURL4 may binding to miR-1278 and thus indirectly improving the expression of LATS1. Our findings revealed that circNEURL4 may probably serve as a diagnostic marker to predict PTC patients' prognosis and a possible therapeutic target to PTC via miR-1278/LATS1 axis.
Collapse
Affiliation(s)
- Wei Ding
- Department of Thyroid Surgery, The Second Hospital of Jilin University Changchun, Jilin Province, China
| | - Ying Shi
- Department of Thyroid Surgery, The Second Hospital of Jilin University Changchun, Jilin Province, China
| | - Hong Zhang
- Department of Thyroid Surgery, The Second Hospital of Jilin University Changchun, Jilin Province, China
| |
Collapse
|
27
|
Ye L, Wang F, Wu H, Yang H, Yang Y, Ma Y, Xue A, Zhu J, Chen M, Wang J, Zhang QA. Functions and Targets of miR-335 in Cancer. Onco Targets Ther 2021; 14:3335-3349. [PMID: 34045870 PMCID: PMC8144171 DOI: 10.2147/ott.s305098] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18~25 nt in length) that act as master regulators of eukaryotic gene expression. They might play an oncogenic or tumor-suppressive role in multiple cancers. In recent decades, several studies have focused on the functions and mechanisms of miR-335 in cancer. The expression level of miR-335 in tissues and cells varies with cancer types, and miR-335 has been proposed as a potential biomarker for the prognosis of cancer. Besides, miR-335 may serve as an oncogene or tumor suppressor via regulating different targets or pathways in tumor initiation, development, and metastasis. Furthermore, miR-335 also influences tumor microenvironment and drug sensitivity. MiR-335 is regulated by various factors such as lncRNAs and microRNAs. In this review, we reveal the functions and targets of miR-335 in various cancers and its potential application as a possible biomarker in prognostic judgment and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lingling Ye
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Fen Wang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hao Wu
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hui Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yan Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yajun Ma
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Aili Xue
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Zhu
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Meili Chen
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jinyan Wang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Quan An Zhang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Ma J, Kong FF, Yang D, Yang H, Wang C, Cong R, Ma XX. lncRNA MIR210HG promotes the progression of endometrial cancer by sponging miR-337-3p/137 via the HMGA2-TGF-β/Wnt pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:905-922. [PMID: 34094710 PMCID: PMC8141672 DOI: 10.1016/j.omtn.2021.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) promotes tumorigenesis and metastasis and increases tumor tolerance to treatment intervention. Abnormal activation of transforming growth factor β (TGF-β) and Wnt pathway induces EMT. Long non-coding RNAs (lncRNAs) significantly influence EMT regulation. Herein, we show that MIR210HG is overexpressed in endometrial cancer tissues, which is associated with poor prognosis. MIR210HG silencing significantly inhibited proliferation, migration, invasion, and EMT phenotype formation in vitro as well as tumorigenesis in vivo. Mechanistically, bioinformatics analyses, RNA binding protein immunoprecipitation (RIP) assays, and luciferase assays showed that MIR210HG acts as a molecular sponge of miR-337-3p and miR-137 to regulate the expression of HMGA2. Additionally, MIR210HG overexpression significantly enriched the Wnt/β-catenin and TGF-β/Smad3 signaling pathway genes, while MIR210HG or HMGA2 knockdown suppressed the Wnt/β-catenin and TGF-β/Smad3 signaling pathway. Our findings on the MIR210HG-miR-337-3p/137-HMGA2 axis illustrate its potential as a target for endometrial cancer therapeutic development.
Collapse
Affiliation(s)
- Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fan-Fei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Di Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Rong Cong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiao-Xin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
29
|
Shi H, Yan C, Chen Y, Wang Z, Guo J, Pei H. Propofol inhibits the proliferation, migration, invasion and epithelial to mesenchymal transition of renal cell carcinoma cells by regulating microRNA-363/Snail1. Am J Transl Res 2021; 13:2256-2269. [PMID: 34017387 PMCID: PMC8129390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Renal cell carcinoma (RCC) is one of the most common and life-threatening cancers in the world. Accumulating evidence suggest propofol inhibits the initiation and development of cancers. The main focus of the study was to explore the effect of propofol on RCC and its mechanism of action. METHODS In this study, different doses of propofol were used to treat human RCC cell lines i.e., OSRC-2 and SW839. Western blot and trans-well assays were used for the evaluation of RCC cell invasion, proliferation, migration, and transition of epithelial to mesenchymal (EMT). RCC cells following 5 μmol/L propofol treatment for 24 h were applied in the subsequent experiments. Expression of MicroRNAs-363 (miR-363) in cells with or without propofol treatment were analyzed. The expression of Snail1, Vimentin, N-cadherin, and E-cadherin in RCC cells was measured, and then the effect of loss-of-function of miR-363 and gain-of-function of Snail on RCC cells were analyzed. The targeted relationship between miR-363 and Snail1 was investigated using luciferase assay and RIP, RNA pull down. RESULTS Propofol reduced the migration, proliferation, invasion and EMT of RCC cells in a dose-dependent way. Propofol elevated miR-363 expression but reduced Snail1 expression, and it reduced Vimentin and N-cadherin but increased E-cadherin expression in RCC cells. miR-363 directly bounds to Snail1. miR-363 inhibition or Snail1 promotion reversed propofol-inhibited malignant behaviors of RCC cells. CONCLUSION Our study found that propofol could inhibit invasion, migration, proliferation and EMT of RCC cells by promoting miR-363 expression and suppressing Snail1 expression.
Collapse
Affiliation(s)
- Haohong Shi
- Department of Anesthesiology, Children’s Hospital of Fudan University, National Children’s Medical CenterShanghai City, China
| | - Changting Yan
- Department of Anesthesiology, Liaocheng Dongchangfu District Maternity and Child Health Care HospitalLiaocheng, Shandong Province, China
| | - Yuanyuan Chen
- Department of Anesthesiology, Yancheng Maternity and Child Health Care HospitalYancheng, Jiangsu Province, China
| | - Zhuoqun Wang
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghai City, China
| | - Junhong Guo
- Department of Nursing, Dongchangfu People’s HospitalLiaocheng, Shandong Province, China
| | - Hao Pei
- Department of Anesthesiology, Children’s Hospital of Fudan University, National Children’s Medical CenterShanghai City, China
| |
Collapse
|
30
|
Xiang J, Bian Y. PWAR6 interacts with miR‑106a‑5p to regulate the osteogenic differentiation of human periodontal ligament stem cells. Mol Med Rep 2021; 23:268. [PMID: 33576453 PMCID: PMC7893692 DOI: 10.3892/mmr.2021.11907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) associated with bone regeneration serve an important role in the treatment of periodontal disease. Long non-coding RNAs are involved in the osteogenesis of multiple stem cells and can act as a sponge of microRNAs (miRs). The present study aimed to investigate the interaction between Prader Willi/Angelman region RNA 6 (PWAR6) and miR-106a-5p, as well as their influences on the osteogenic differentiation of hPDLSCs. hPDLSCs were isolated and cultured in osteogenic medium (OM) or growth medium (GM) for 7 days prior to transfection with PWAR6 overexpression vector, short hairpin RNA PWAR6 or miR-106a-5p mimic. The expression levels of runt-related transcription factor 2, osteocalcin and bone morphogenetic protein 2 (BMP2) were detected by western blotting and reverse transcription-quantitative PCR (RT-qPCR), and the expression levels of PWAR6, miR-106a-5p and alkaline phosphatase (ALP) were determined by RT-qPCR. ALP activity assays and Alizarin red staining were performed to detect osteogenesis and mineralization, respectively. Luciferase activities of wild-type and mutant PWAR6 and BMP2 were assessed by conducting a dual-luciferase reporter assay. The results indicated that PWAR6 expression was upregulated in OM-incubated hPDLSCs compared with GM-incubated hPDLSCs, and PWAR6 overexpression increased the osteogenic differentiation and mineralization of hPDLSCs compared with the corresponding control group. By contrast, miR-106a-5p expression was downregulated in OM-incubated hPDLSCs compared with GM-incubated hPDLSCs. PWAR6 acted as a sponge of miR-106a-5p and PWAR6 overexpression promoted the osteogenesis of miR-106a-5p mimic-transfected hPDLSCs. BMP2 was predicted as a target gene of miR-106a-5p. Collectively, the results indicated that PWAR6 displayed a positive influence on the osteogenic differentiation of hPDLSCs. The results of the present study demonstrated that the PWAR6/miR-106a-5p interaction network may serve as a potential regulatory mechanism underlying hPDLSCs osteogenesis.
Collapse
Affiliation(s)
- Juan Xiang
- Department of Oral and Maxillofacial Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Ying Bian
- Department of Oral and Maxillofacial Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
31
|
Zheng Y, Chen Z, Zhou Z, Xu X, Yang H. Silencing of Long Non-Coding RNA LINC00607 Prevents Tumor Proliferation of Osteosarcoma by Acting as a Sponge of miR-607 to Downregulate E2F6. Front Oncol 2021; 10:584452. [PMID: 33585204 PMCID: PMC7877452 DOI: 10.3389/fonc.2020.584452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Osteosarcoma (OS), a type of malignant bone tumor, is commonly found in children and adolescents. Although previous studies have identified that long non-coding RNAs (lncRNAs) regulate OS, it is unclear whether lncRNAs impact the progression of OS. Here, we identified LINC00607, a lncRNA that facilitates OS proliferation, migration, and invasion. Based on the RNA-sequencing results, LINC00607 expression was significantly upregulated in pulmonary metastasis within OS. Functional experiments revealed that LINC00607 promoted migration and invasion of endothelial cells to exacerbate epithelial-mesenchymal transition (EMT). Furthermore, the results of RNA pull-down assay and invasion assay suggested that the binding between LINC00607 and miR-607 promoted OS invasion. Bioinformatic analysis and rescue experiments demonstrated that E2F6, a transcriptional factor, functioned downstream of LINC00607/miR-607. Finally, we found that LINC00607 promoted OS progression in vivo. This work revealed that LINC00607 worked as an miR-607 sponge to upregulate E2F6 expression, which promoted tumor proliferation in OS. These results identified a novel therapeutic target for treating OS.
Collapse
Affiliation(s)
- Yuehuan Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Orthopedics, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Chen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zezhu Zhou
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Xiangyang Xu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Orthopedics, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Peng T, Yang F, Sun Z, Yan J. miR-19a-3p Facilitates Lung Adenocarcinoma Cell Phenotypes by Inhibiting TEK. Cancer Biother Radiopharm 2021; 37:589-601. [PMID: 33493418 DOI: 10.1089/cbr.2020.4456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Both TEK and miR-19a-3p have been reported to regulate lung adenocarcinoma (LUAD) progression. However, the association between TEK and miR-19a-3p in LUAD remained unknown. This research aimed to investigate a novel miR-19a-3p/TEK interactome in LUAD cells. Methods: The mRNA expression and protein expression in the cell lines were determined using qPCR and Western blot assay, respectively. CCK-8 assay, EDU assay, flow cytometry cell apoptosis assay, scratch assay, and cell-to-extracellular matrix adhesion assay were performed to detect the proliferation, apoptosis, migration, and adhesion ability of A549 and H1975 cell lines. Results: Findings revealed that both mRNA and protein levels of TEK were downregulated in the LUAD tumor tissues and cell lines. It was also found that compared with the control group, the transfection of TEK overexpression plasmids into H1975 and A549 cell lines significantly inhibited cancerous phenotypes. However, experimental results indicated that by downregulating TEK, miR-19a-3p promoted LUAD cell phenotypes. Conclusion: This research demonstrated that an interactome existed between miR-19a-3p and TEK and that miR-19a-3p could suppress LUAD tumors by inhibiting TEK. This novel interactome could be used as a novel therapy target for LUAD.
Collapse
Affiliation(s)
- Tao Peng
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Fan Yang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Zhanwen Sun
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Jie Yan
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| |
Collapse
|
33
|
Gao Y, Wang Y, Wang X, Zhao C, Wang F, Du J, Zhang H, Shi H, Feng Y, Li D, Yan J, Yao Y, Hu W, Ding R, Zhang M, Wang L, Huang C, Zhang J. miR-335-5p suppresses gastric cancer progression by targeting MAPK10. Cancer Cell Int 2021; 21:71. [PMID: 33482821 PMCID: PMC7821696 DOI: 10.1186/s12935-020-01684-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies have established the roles of microRNAs (miRNAs) in cancer progression. The aberrant expression of miR-335-5p has been reported in many cancers, including gastric cancer (GC). In this study, the precise roles of miR-335-5p in GC as well as the molecular mechanisms underlying its effects, including the role of its target MAPK10, were evaluated. Methods Quantitative real-time PCR was used to evaluate miR-335-5p levels in GC cell lines and tissues. MTT and colony formation assays were used to detect cell proliferation, and Transwell and wound-healing assays were used to evaluate the invasion and migration of GC cells. The correlation between levels of miR-335-5p and the cell cycle-related target gene mitogen-activated protein kinase 10 (MAPK10) in GC was analyzed. In addition, the candidate target was evaluated by a luciferase reporter assay, qRT-PCR, and western blotting. Results The levels of miR-335-5p were downregulated in GC tissues and cell lines. Furthermore, miR-335-5p inhibited the proliferation and migration of GC cells and induced apoptosis. Additionally, miR-335-5p arrested the cell cycle at the G1/S phase in GC cells in vitro. Levels of miR-335-5p and the cell cycle-related target gene MAPK10 in GC were correlated, and MAPK10 was directly targeted by miR-335-5p. Conclusions These data suggest that miR-335-5p is a tumor suppressor and acts via MAPK10 to inhibit GC progression.
Collapse
Affiliation(s)
- Yi Gao
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Yanfeng Wang
- Department of Medical Genetic and Cell Biology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Changan Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Fenghui Wang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Juan Du
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Huahua Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Haiyan Shi
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Yun Feng
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Dan Li
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Jing Yan
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Yan Yao
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Weihong Hu
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Ruxin Ding
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Mengjie Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Lumin Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China. .,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
34
|
Hao JF, Chen P, Li HY, Li YJ, Zhang YL. Effects of LncRNA HCP5/miR-214-3p/MAPK1 Molecular Network on Renal Cell Carcinoma Cells. Cancer Manag Res 2021; 12:13347-13356. [PMID: 33380840 PMCID: PMC7769072 DOI: 10.2147/cmar.s274426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background Recent researches have shown that long non-coding RNA (LncRNA) is often disordered and acts in many carcinomas. Clear cell renal cell carcinoma (ccRCC) is the main reason for carcinoma-related deaths, which are mainly caused by the metastasis. HCP5 is a newly discovered LcnRNA. Early studies have found that HCP5 acts in neoplasm metastasis, but the mechanism of HCP5 in ccRCC is still unclear. Methods The expression of HCP5 in human renal cell carcinoma (RCC) was detected by real-time quantitative PCR. The biological effect of LncRNAs in proliferation, migration, invasion and metastasis of RCC cells was explored by gain-of-function and loss-of-function tests. The molecular mechanism of LncRNAs was explored by RNA immunoprecipitation and Western blot. Results qRT-PCR revealed that HCP5 was enhanced in neoplasm tissues of ccRCC patients and correlated with the metastatic characteristics of RCC. Over-expression of HCP5 promoted the proliferation, migration and invasion of renal carcinoma cells. The deletion of HCP5 inhibited the proliferation, migration and invasion of RCC in vitro and the metastasis of RCC in vivo. Mechanically, HCP5 inhibited the growth and metastasis of ccRCC cells by regulating miR-214-3p/MAPK1 axis. Conclusion HCP5, as a key LncRNA, can promote ccRCC metastasis by regulating miR-214-3p/MAPK1 axis and may be a biomarker and be helpful for judging the prognosis of ccRCC.
Collapse
Affiliation(s)
- Jun-Feng Hao
- Department of Nephrology and Blood Purification Center, Jin Qiu Hospital of Liaoning Province (Geriatric Hospital of Liaoning Province), Shenyang City, Liaoning Province 110000, People's Republic of China
| | - Pei Chen
- Department of Basic Medical Sciences, Jiangsu College of Nursing, Huai'an, Jiangsu Province 223000, People's Republic of China
| | - He-Yi Li
- Department of Ophthalmology, Jin Qiu Hospital of Liaoning Province (Geriatric Hospital of Liaoning Province), Shenyang City, Liaoning Province 110000, People's Republic of China
| | - Ya-Jing Li
- Department of Nephrology and Blood Purification Center, Jin Qiu Hospital of Liaoning Province (Geriatric Hospital of Liaoning Province), Shenyang City, Liaoning Province 110000, People's Republic of China
| | - Yu-Ling Zhang
- Department of Basic Medical Sciences, Jiangsu College of Nursing, Huai'an, Jiangsu Province 223000, People's Republic of China
| |
Collapse
|
35
|
Li H, Shi H, Zhang F, Xue H, Wang L, Tian J, Xu J, Han Q. LncRNA Tincr regulates PKCɛ expression in a miR-31-5p-dependent manner in cardiomyocyte hypertrophy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2495-2506. [PMID: 32157348 DOI: 10.1007/s00210-020-01847-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Cardiomyocyte hypertrophy is a fatal factor in heart disease resulting in heart failure and even mortality. Although many studies have been focusing on the pathogenesis of cardiomyocyte hypertrophy, the exact molecular mechanisms are still unexclusive. In this study, we first found that the expression level of lncRNA Tincr was significantly decreased in the myocardial tissues of TAC mouse models of cardiomyocyte hypertrophy, and this result was further confirmed in H9C2 cells, a widely used rat myoblast cell lines. More intriguingly, we demonstrated that the aberration of Tincr is essential to the pathogenesis of cardiomyocyte hypertrophy, indicated by the re-induction of Tincr improving the heart functions of hypertrophic mice. In mechanism, we identified miR-31-5p as a direct target of Tincr using a widely used online bioinformatics tool StarBase, and this result was further experimentally validated using dual-luciferase reporter assay and real-time PCR. Also, we identified PRKCE as a direct target of miR-31-5p, and loss function of miR-31-5p significantly blocks the positive regulatory effect of Tincr on PRKCE expression in H9C2 cells. The knockdown of Tincr resulted in increased cardiomyocyte size, and, however, inhibition of miR-31-5p or overexpression of PRKCE significantly reversed the increased cardiomyocyte size. Taken together, our study showed that a novel Tincr-miR-31-5p axis targeting PRKCE was involved in cardiomyocyte hypertrophy, indicating that it may provide potential therapy in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Hao Li
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Hongtao Shi
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fan Zhang
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Honghong Xue
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Lei Wang
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jing Tian
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jianrong Xu
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Qinghua Han
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
36
|
Shen D, Liu Y, Liu Y, Wang T, Yuan L, Huang X, Wang Y. Long non-coding RNA EWSAT1 promoted metastasis and actin cytoskeleton changes via miR-24-3p sponging in osteosarcoma. J Cell Mol Med 2020; 25:716-728. [PMID: 33225581 PMCID: PMC7812296 DOI: 10.1111/jcmm.16121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/10/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Non‐coding RNAs are closely associated with tumorigenesis in multiple malignant tumours, including osteosarcoma (OS). Long non‐coding RNA Ewing sarcoma‐associated transcript 1 (EWSAT1) plays a role in metastasis, and actin cytoskeletal changes in OS remain unclear. In the current study, we showed that EWSAT1 expression was up‐regulated in OS and that an elevation in the EWSAT1 expression level was correlated with poor prognosis in patients with OS. Functionally, we showed that knockdown of EWSAT1 suppressed migration and induced actin stress fibre degradation in MNNG/HOS and 143B cells. Moreover, we found that ROCK1 was a key downstream effector in EWSAT1‐mediated cell migration and actin stress fibre changes. Furthermore, we demonstrated that ROCK1 and EWSAT1 shared a similar microRNA response element of microRNA‐24‐3p (miR‐24‐3p). Moreover, we verified that miR‐24‐3p suppressed ROCK1 and its mediated migration and actin stress fibres change by direct targeting. EWSAT1 promoted ROCK1‐mediated migration and actin stress fibre formation through miR‐24‐3p sponging. Lastly, through an in vivo study, we demonstrated that EWSAT1 promoted lung metastasis in OS. According to the above‐mentioned results, we suggest that EWSAT1 acts as an oncogene and that EWSAT1/miR‐24‐3p/ROCK1 axial could be a new target in the treatment of OS.
Collapse
Affiliation(s)
- Dewei Shen
- 4th Department of Orthopaedic Surgery, Central Hospital affiliated to Shenyang Medical College, Shenyang, China
| | - Yize Liu
- 4th Department of Orthopaedic Surgery, Central Hospital affiliated to Shenyang Medical College, Shenyang, China
| | - Yuexin Liu
- School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Tao Wang
- 4th Department of Orthopaedic Surgery, Central Hospital affiliated to Shenyang Medical College, Shenyang, China
| | - Lin Yuan
- 2nd Department of Orthopaedic Surgery, Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Xuyang Huang
- 2nd Department of Neurology, Central Hospital affiliated to Shenyang Medical College, Shenyang, China
| | - Yong Wang
- 4th Department of Orthopaedic Surgery, Central Hospital affiliated to Shenyang Medical College, Shenyang, China.,Central Laboratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| |
Collapse
|
37
|
Yan L, Li K, Feng Z, Zhang Y, Han R, Ma J, Zhang J, Wu X, Liu H, Jiang Y, Zhang Y, Zhu Y. lncRNA CERS6-AS1 as ceRNA promote cell proliferation of breast cancer by sponging miR-125a-5p to upregulate BAP1 expression. Mol Carcinog 2020; 59:1199-1208. [PMID: 32808708 DOI: 10.1002/mc.23249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) can act as oncogene and tumor suppressor genes in many types of cancers including breast cancer (BC). Our previous study has indicated microRNA (miR)-125a-5p was downregulated and function as a tumor suppressor in BC. However, its upstream regulation mechanism is still unclear. In this study, we used bioinformatics algorithms, RNA pulldown assay, and dual-luciferase reports assay to predict and confirm lncRNA CERS6-AS1 interacted with miR-125a-5p. Then we found CERS6-AS1 was upregulated in BC tissues. Experimental results of tumor growth in nude mice show that CERS6-AS1 promotes tumor growth. Furthermore, CERS6-AS1 regulated BC susceptibility gene 1-associated protein 1 (BAP1) expression via sponging miR-125a-5p via Western blot analysis and quantitative polymerase chain reaction arrays. Finally, we showed that miR-125a-5p had opposing effects to those of CERS6-AS1 on BC cells, demonstrating that CERS6-AS1 may promote cell proliferation and inhibit cell apoptosis via sponging miR-125a-5p. Our results indicated CERS6-AS1 promote BC cell proliferation and inhibit cell apoptosis via sponging miR-125a-5p to upregulate BAP1 expression.
Collapse
Affiliation(s)
- Liang Yan
- Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Kai Li
- Department of Clinical Diagnostics, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Zunyong Feng
- Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Yizongheng Zhang
- Department of Clinical Medicine, The First College of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Renrui Han
- Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Jinzhu Ma
- Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Jieling Zhang
- Department of Clinical Diagnostics, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xu Wu
- Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Haijun Liu
- Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Yuxin Jiang
- Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Yao Zhang
- Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Yiping Zhu
- Department of Clinical Diagnostics, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| |
Collapse
|
38
|
Yang T, Chen WC, Shi PC, Liu MR, Jiang T, Song H, Wang JQ, Fan RZ, Pei DS, Song J. Long noncoding RNA MAPKAPK5-AS1 promotes colorectal cancer progression by cis-regulating the nearby gene MK5 and acting as a let-7f-1-3p sponge. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:139. [PMID: 32690100 PMCID: PMC7370515 DOI: 10.1186/s13046-020-01633-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are considered critical regulators in cancers; however, the clinical significance and mechanisms of MAPKAPK5-AS1 (hereinafter referred to as MK5-AS1) in colorectal cancer (CRC) remain mostly unknown. METHODS In this study, quantitative real-time PCR (qPCR) and western blotting were utilized to detect the levels of MK5-AS1, let-7f-1-3p and MK5 (MAPK activated protein kinase 5) in CRC tissues and cell lines. The biological functions of MK5-AS1, let-7f-1-3p and MK5 in CRC cells were explored using Cell Counting Kit-8 (CCK8), colony formation and transwell assays. The potential mechanisms of MK5-AS1 were evaluated by RNA pull-down, RNA immunoprecipitation (RIP), dual luciferase reporter assay, chromatin immunoprecipitation (ChIP) and bioinformatics analysis. The effects of MK5-AS1 and MK5 on CRC were investigated by a xenotransplantation model. RESULTS We confirmed that MK5-AS1 was significantly increased in CRC tissues. Knockdown of MK5-AS1 suppressed cell migration and invasion in vitro and inhibited lung metastasis in mice. Mechanistically, MK5-AS1 regulated SNAI1 expression by sponging let-7f-1-3p and cis-regulated the adjacent gene MK5. Moreover, MK5-AS1 recruited RBM4 and eIF4A1 to promote the translation of MK5. Our study verified that MK5 promoted the phosphorylation of c-Jun, which activated the transcription of SNAI1 by directly binding to its promoter. CONCLUSIONS MK5-AS1 cis-regulated the nearby gene MK5 and acted as a let-7f-1-3p sponge, playing a vital role in CRC tumorigenesis. This study could provide novel insights into molecular therapeutic targets of CRC.
Collapse
Affiliation(s)
- Ting Yang
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China ,grid.417303.20000 0000 9927 0537Department of Pathology, Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Wei-Cong Chen
- grid.417303.20000 0000 9927 0537Department of Pathology, Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Pei-Cong Shi
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Man-Ru Liu
- grid.417303.20000 0000 9927 0537Department of Pathology, Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Tao Jiang
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Hu Song
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Jia-Qi Wang
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Rui-Zhi Fan
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Dong-Sheng Pei
- grid.417303.20000 0000 9927 0537Department of Pathology, Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Jun Song
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China ,grid.417303.20000 0000 9927 0537Institute of Digestive Diseases of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| |
Collapse
|
39
|
Wang X, Xiao H, Wu D, Zhang D, Zhang Z. miR-335-5p Regulates Cell Cycle and Metastasis in Lung Adenocarcinoma by Targeting CCNB2. Onco Targets Ther 2020; 13:6255-6263. [PMID: 32636645 PMCID: PMC7335273 DOI: 10.2147/ott.s245136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Lots of studies have shown that cyclin disorders can promote tumor development. This study aims to investigate the biological function and molecular mechanism of CCNB2 in lung adenocarcinoma (LUAD). Methods LUAD data were downloaded from GEO database and TCGA-LUAD database. Differential analysis was conducted to find the differentially expressed miRNAs and mRNAs, while targeted prediction was done for the access of potential target mRNAs. Gene expression level was detected by qRT-PCR and Western blot in human LUAD cell lines A-427, A549, Calu-3, PC-9 and human bronchial epithelial cell line BEAS-2B. MTT, colony formation, Transwell and flow cytometry assays were used to detect cell proliferation, metastasis, and cell cycle changes of PC-9 cell line. The dual-luciferase reporter gene was used to detect the targeted binding relationship of the target miRNA and mRNA. Results CCNB2 was highly expressed and served as a biomarker indicating poor prognosis in LUAD patients. Cell function experiments confirmed the inhibitory effects of silencing CCNB2 on the proliferation, migration and invasion of LUAD cells and cell cycle was blocked in the G0/G1 phase. In addition, with regard to the regulatory mechanism, we demonstrated that miR-335-5p had binding sites with 3ʹ-UTR of CCNB2, indicating that miR-335-5p could target the regulation expression of CCNB2. In subsequent cell function tests, overexpression of miR-335-5p inhibited the proliferation and metastasis of cancer cells, and the rescue experiments also verified that miR-335-5p could reverse the promotion of CCNB2 overexpression on the progress of cancer cells. Conclusion In summary, our results revealed that miR-335-5p could target the down-regulation of CCNB2 to inhibit the occurrence and development of LUAD.
Collapse
Affiliation(s)
- Xiyong Wang
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Huaiqing Xiao
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Dongqiang Wu
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Dongliang Zhang
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Zhihao Zhang
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| |
Collapse
|
40
|
LINC00689 promotes prostate cancer progression via regulating miR-496/CTNNB1 to activate Wnt pathway. Cancer Cell Int 2020; 20:215. [PMID: 32518524 PMCID: PMC7275594 DOI: 10.1186/s12935-020-01280-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Accumulating evidence has proved the significant influence of long non-coding RNAs (lncRNAs) in cancer formation and development, including PCa. Methods The role of LINC00689 in PCa was confirmed by RT-qPCR, MTT, colony formation, flow cytometry, western blot and transwell assays. Besides, the binding ability between LINC00689 and miR-496 was validated by using luciferase reporter assay. Then RT-qPCR, RIP and luciferase reporter and western blot assays were employed to verify the interactions among LINC00689, miR-496 and CTNNB1. Furthermore, the rescuing role of CTNNB1 in Wnt pathway was proved by RT-qPCR, TOP/FOP Flash and western blot assays. Results LINC00689 was upregulated in PCa tissues and cells as well as at the terminal stage. Further, knock down of LINC00689 repressed PCa cell proliferation, migration and invasion, and initiated PCa cell apoptosis. Additionally, miR-496 inhibitor and pcDNA3.1/CTNNB1 could neutralize the prohibitive effects of LINC00689 silencing on cell proliferation, migration and invasion, meanwhile, could offset the encouraging role of knocking down LINC00689 in cell apoptosis. Moreover, CTNNB1 upregulation exerted redemptive function in Wnt pathway inhibited by LINC00689 depletion. Conclusions To sum up, LINC00689 promotes PCa progression via regulating miR-496/CTNNB1 to activate Wnt pathway, which may contribute to research about new targets for PCa treatment. ![]()
Collapse
|
41
|
WITHDRAWN: LncRNA KCNQ1OT1 promotes cisplatin resistance of osteosarcoma cancer cells through the miR-335–5p/β-catenin axis. Genes Dis 2020. [DOI: 10.1016/j.gendis.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Wan T, Wang H, Gou M, Si H, Wang Z, Yan H, Liu T, Chen S, Fan R, Qian N, Dai G. LncRNA HEIH promotes cell proliferation, migration and invasion in cholangiocarcinoma by modulating miR-98-5p/HECTD4. Biomed Pharmacother 2020; 125:109916. [PMID: 32062383 DOI: 10.1016/j.biopha.2020.109916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 01/06/2023] Open
Abstract
To date, a large set of long non-coding RNAs (lncRNAs) have been identified in tumorigenesis and progression. The present study focused on functions and mechanisms of HEIH in cholangiocarcinoma (CHOL). We started this study by testing the expression of HEIH in CHOL tissues by qRT-PCR technology. Next, loss-of-function experiments demonstrated the oncogenic nature of HEIH in CHOL. We also used bioinformatics tools to select miRNAs and mRNAs for support of the ceRNA network. Mechanistic experiments including RIP assay, luciferase reporter assay were carried out for further confirmation of binding situation among ceRNA molecules. At last, rescue experiments proved the ceRNA axis in CHOL. According to the results, HEIH expression was up-regulated in CHOL tissues and cells. Functionally, knockdown of HEIH attenuated cell proliferation, migration and invasion. Mechanistically, bioinformatics analysis, RIP assay and luciferase assay verified the ceRNA network among HEIH, miR-98-5p and HECTD4. Rescue experiments further demonstrated the oncogenic role of HEIH and HECTD4. The final in vivo experiments suggested that knockdown of HEIH restrained tumor growth both in weight and volume. In conclusion, HEIH promoted CHOL tumorigenesis and progression by miR-98-5p/HECTD4 axis, which opens up a new insight for CHOL therapeutics.
Collapse
Affiliation(s)
- Tao Wan
- Department of Hepatobiliary Surgery, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China
| | - Hongguang Wang
- Department of Hepatobiliary Surgery, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China
| | - Miaomiao Gou
- Department of Oncology, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China
| | - Haiyan Si
- Department of Oncology, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China
| | - Zhikuan Wang
- Department of Oncology, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China
| | - Huan Yan
- Department of Oncology, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China
| | - Tiee Liu
- Department of Oncology, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China
| | - Shiyun Chen
- Department of Oncology, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China
| | - Runjia Fan
- Department of Oncology, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China
| | - Niansong Qian
- Department of Oncology, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China.
| | - Guanghai Dai
- Department of Oncology, The First Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Fuxing 28 Road, 1000853, Beijing, China.
| |
Collapse
|
43
|
BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 2020; 11:260. [PMID: 32317622 PMCID: PMC7174325 DOI: 10.1038/s41419-020-2417-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
The BCL-2 family of proteins integrates signals that trigger either cell survival or apoptosis. The balance between pro-survival and pro-apoptotic proteins is important for tissue development and homeostasis, while impaired apoptosis contributes to several pathologies and can be a barrier against effective treatment. BCL-w is an anti-apoptotic protein that shares a sequence similarity with BCL-XL, and exhibits a high conformational flexibility. BCL-w level is controlled by a number of signaling pathways, and the repertoire of transcriptional regulators largely depends on the cellular and developmental context. As only a few disease-relevant genetic alterations of BCL2L2 have been identified, increased levels of BCL-w might be a consequence of abnormal activation of signaling cascades involved in the regulation of BCL-w expression. In addition, BCL-w transcript is a target of a plethora of miRNAs. Besides its originally recognized pro-survival function during spermatogenesis, BCL-w has been envisaged in different types of normal and diseased cells as an anti-apoptotic protein. BCL-w contributes to survival of senescent and drug-resistant cells. Its non-apoptotic role in the promotion of cell migration and invasion has also been elucidated. Growing evidence indicates that a high BCL-w level can be therapeutically relevant in neurodegenerative disorders, neuron dysfunctions and after small intestinal resection, whereas BCL-w inhibition can be beneficial for cancer patients. Although several drugs and natural compounds can bi-directionally affect BCL-w level, agents that selectively target BCL-w are not yet available. This review discusses current knowledge on the role of BCL-w in health, non-cancerous diseases and cancer.
Collapse
|
44
|
Ye P, Lv X, Aizemaiti R, Cheng J, Xia P, Di M. H3K27ac-activated LINC00519 promotes lung squamous cell carcinoma progression by targeting miR-450b-5p/miR-515-5p/YAP1 axis. Cell Prolif 2020; 53:e12797. [PMID: 32297697 PMCID: PMC7260072 DOI: 10.1111/cpr.12797] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives Long non‐coding RNAs (lncRNAs) are extensively reported as participants in the biological process of diverse malignancies, including lung squamous cell carcinoma (LUSC). Long intergenic non‐protein coding RNA 519 (LINC00519) is identified as a novel lncRNA which has not yet been studied in cancers. Materials and Methods LINC00519 expression was detected by qRT‐PCR. The effect of LINC00519 on LUSC cellular activities was determined by in vitro and in vivo assays. Subcellular fractionation and FISH assays were conducted to identify the localization of LINC00519. The interaction between miR‐450b‐5p/miR‐515‐5p and LINC00519/YAP1 was verified by RIP, RNA pull‐down and luciferase reporter assays. Results Elevated level of LINC00519 was identified in LUSC tissues and cell lines. High LINC00519 level predicted unsatisfactory prognosis. Then, loss‐of‐function assays suggested the inhibitive role of silenced LINC00519 in cell proliferation, migration, invasion and tumour growth and promoting effect on cell apoptosis in LUSC. Mechanically, LINC00519 was activated by H3K27 acetylation (H3K27ac). Moreover, LINC00519 sponged miR‐450b‐5p and miR‐515‐5p to up‐regulate Yes1 associated transcriptional regulator (YAP1). Additionally, miR‐450b‐5p and miR‐515‐5p elicited anti‐carcinogenic effects in LUSC. Finally, rescue assays validated the effect of LINC00519‐miR‐450b‐5p‐miR‐515‐5p‐YAP1 axis in LUSC. Conclusions H3K27ac‐activated LINC00519 acts as a competing endogenous RNA (ceRNA) to promote LUSC progression by targeting miR‐450b‐5p/miR‐515‐5p/YAP1 axis.
Collapse
Affiliation(s)
- Peng Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiayi Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Rusidanmu Aizemaiti
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jun Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Pinghui Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Meng Di
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Yan M, Gao H, Lv Z, Liu Y, Zhao S, Gong W, Liu W. Circular RNA PVT1 promotes metastasis via regulating of miR-526b/FOXC2 signals in OS cells. J Cell Mol Med 2020; 24:5593-5604. [PMID: 32249539 PMCID: PMC7214167 DOI: 10.1111/jcmm.15215] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
As a class of covalently closed non-coding RNAs, circular RNAs (circRNAs) are key regulators in various malignancies including osteosarcoma (OS). In the present study, we found that circular RNA PVT1 (circPVT1) was up-regulated in OS and correlated with poor prognosis of patients with OS. Functionally, we showed that knockdown of circPVT1 suppressed OS cells metastasis. In addition, we found that (forkhead box C2) FOXC2 was a downstream gene in circPVT1-mediated metastasis in OS cells. We demonstrated that circPVT1 promoted OS cells metastasis via post-transcriptionally regulating of FOXC2. Furthermore, we revealed that microRNA 526b (miR-526b) was a key bridge which connected circPVT1 and FOXC2. We showed that miR-526b was down-regulated in OS tissue and cell lines. Through a transwell assay, we found that miR-526b suppressed OS cells metastasis by targeting of FOXC2. We also showed that miR-526b targeted circPVT1 via similar mircoRNA response elements (MREs) as it did for FOXC2. Finally, we proved that circPVT1 decoyed miR-526b to promote FOXC2-mediated metastasis in OS cells. In brief, our current study demonstrated that circPVT1, functioning as an oncogene, promotes OS cells metastasis via regulation of FOXC2 by acting as a ceRNA of miR-526b. CircPVT1/miR-526b/FOXC2 axis might be a novel target in molecular treatment of OS.
Collapse
Affiliation(s)
- Ming Yan
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Hang Gao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Zhenshan Lv
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Ying Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Song Zhao
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Weiquan Gong
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Wei Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| |
Collapse
|
46
|
Huo X, Wang H, Huo B, Wang L, Yang K, Wang J, Wang L, Wang H. FTX contributes to cell proliferation and migration in lung adenocarcinoma via targeting miR-335-5p/NUCB2 axis. Cancer Cell Int 2020; 20:89. [PMID: 32226311 PMCID: PMC7092578 DOI: 10.1186/s12935-020-1130-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/29/2020] [Indexed: 01/29/2023] Open
Abstract
Background Extensive studies revealed that long non-coding RNAs (lncRNAs) could act as a regulator in tumors, including lung adenocarcinoma (LUAD). LncRNA FTX transcript, XIST regulator (FTX) has been reported to regulate the biological behaviors of some cancers. Nevertheless, its functional role and molecular mechanism remain obscure in LUAD. Our current study concentrates on exploring the biological function of FTX in LUAD. Methods RT-qPCR was used to test the expression of FTX, miR-335-5p or NUCB2 in LUAD cells. The effect of FTX on LUAD progression was investigated by colony formation, EdU, flow cytometry, TUNEL, transwell and western blot assays. The interaction between microRNA-335-5p (miR-335-5p) and FTX or nucleobindin 2 (NUCB2) was confirmed by luciferase reporter assay. Results RT-qPCR showed that FTX expression was up-regulated in LUAD cell lines. Loss-of-function assay indicated that FTX accelerated cell proliferation, migration and invasion, while inhibited cell apoptosis in LUAD. Besides, miR-335-5p, lowly expressed in LUAD cells, was discovered to be sponged by FTX. Subsequently, NUCB2 was identified as a target gene of miR-335-5p. Additionally, it was confirmed that NUCB2 functioned as an oncogene in LUAD. Rescue assays indicated that LUAD progression inhibited by FTX knockdown could be restored by NUCB2 up-regulation. Conclusion FTX played an oncogenic role in LUAD and contributed to cancer development via targeting miR-335-5p/NUCB2 axis.
Collapse
Affiliation(s)
- Xiaodong Huo
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| | - Huixing Wang
- 2Pain Management Center, The Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Bin Huo
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| | - Lei Wang
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| | - Kuo Yang
- 3Central Laboratory/Tianjin Research Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Jinhuan Wang
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| | - Lili Wang
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| | - Haitao Wang
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| |
Collapse
|
47
|
Li Z, Zheng J, Xia Q, He X, Bao J, Chen Z, Katayama H, Yu D, Zhang X, Xu J, Zhu T, Wang J. Identification of Specific Long Non-Coding Ribonucleic Acid Signatures and Regulatory Networks in Prostate Cancer in Fine-Needle Aspiration Biopsies. Front Genet 2020; 11:62. [PMID: 32117463 PMCID: PMC7034103 DOI: 10.3389/fgene.2020.00062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common tumors in men and can be lethal, especially if left untreated. A substantial majority of PCa patients not only are diagnosed based on fine needle aspiration (FNA) biopsies, but their treatment choices are also largely driven by the pathological findings obtained with these FNA specimens. It is widely believed that lncRNAs have strong biological significance, but their specific functions and regulatory networks have not been elucidated. LncRNAs may serve as key players and regulators of PCa carcinogenesis and could be novel biomarkers of this cancer. To identify potential markers for early detection of PCa, in this study, we employed a competing endogenous RNA (ceRNA) microarray to identify differentially expressed lncRNAs (DelncRNAs) in PCa tissue and quantitative real-time PCR (qRT-PCR) analysis to validate these DelncRNAs in FNA biopsies. We demonstrated that a total of 451 lncRNAs were differentially expressed in four pairs of PCa/adjacent tissues, and upregulation of the lncRNAs RP11-33A14.1, RP11-423H2.3, and LAMTOR5-AS1 was confirmed in FNA biopsies of PCa by qRT-PCR and was consistent with the ceRNA array data. The association between the expression of the lncRNA LAMTOR5-AS1 and aggressive cancer was also investigated. Regulatory network analysis of DelncRNAs showed that the lncRNAs RP11-33A14.1 and RP11-423H2.3 targeted miR-7, miR-24-3p, and miR-30 and interacted with the RNA binding protein FUS. Knockdown of these DelncRNAs in PCa cells also demonstrated the effects of RP11-423H2.3 on miR-7/miR-24/miR-30 or LAMTOR5-AS1 on miR-942-5p/miR-542-3p via direct interaction. The results of these studies indicate that these three specific lncRNA signatures and regulatory networks might serve as risk prediction and diagnostic biomarkers for prostate cancer, even in biopsies obtained by FNA.
Collapse
Affiliation(s)
- Zehuan Li
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianghua Zheng
- Department of Laboratory Medicine, Zhoupu Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qianlin Xia
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaomeng He
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Juan Bao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhanghan Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hiroshi Katayama
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Die Yu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Urology, Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Wang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Tang GH, Chen X, Ding JC, Du J, Lin XT, Xia L, Lian JB, Ye F, He XS, Liu W. LncRNA LUCRC Regulates Colorectal Cancer Cell Growth and Tumorigenesis by Targeting Endoplasmic Reticulum Stress Response. Front Genet 2020; 10:1409. [PMID: 32082365 PMCID: PMC7005251 DOI: 10.3389/fgene.2019.01409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/24/2019] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide, and is well known for its strong invasiveness, rapid recurrence, and poor prognosis. Long non-coding RNAs (lncRNAs) have been shown to be involved in the development of various types of cancers, including colorectal cancer. Here, through transcriptomic analysis and functional screening, we reported that lncRNA LUCRC (LncRNA Upregulated in Colorectal Cancer) is highly expressed in colorectal tumor samples and is required for colorectal cancer cell proliferation, migration, and invasion in cultured cells and tumorigenesis in xenografts. LUCRC was found to regulate target gene expression of unfolded protein response (UPR) in endoplasmic reticulum (ER), such as BIP. The clinical significance of LUCRC is underscored by the specific presence of LUCRC in blood plasma of patients with colorectal cancers. These findings revealed a critical regulator of colorectal cancer development, which might serve as a therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Guo-Hui Tang
- Hunan Provincial Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, China.,Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, China.,Department of Anus and Bowels, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jian-Cheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jun Du
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiao-Ting Lin
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lu Xia
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jia-Bian Lian
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiu-Sheng He
- Hunan Provincial Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, China.,Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
49
|
Wang M, Liao Q, Zou P. PRKCZ-AS1 promotes the tumorigenesis of lung adenocarcinoma via sponging miR-766-5p to modulate MAPK1. Cancer Biol Ther 2020; 21:364-371. [PMID: 31939714 DOI: 10.1080/15384047.2019.1702402] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent histological subclass of non-small cell lung cancer. Long non-coding RNAs (lncRNAs) have been recognized as the crucial regulatory factors in tumor development and progression. Nevertheless, limited research has been carried on the function of PRKCZ-AS1 in LUAD. In this study, the expression of PRKCZ-AS1 in LUAD tissues and cell lines was notably upregulated. Moreover, knockdown of PRKCZ-AS1 inhibited the proliferation and migration, but promoted apoptosis in LUAD cells. Furthermore, miR-766-5p could bind with PRKCZ-AS1. Besides, the expression miR-766-5p was negatively regulated by PRKCZ-AS1 expression in LUAD cells. Furtherly, PRKCZ-AS1 expression positively regulated the expression of MAPK1. Similarly, the expression of MAPK1 was negatively regulated by miR-766-5p expression. Moreover, the binding ability between miR-766-5p and MAPK1 was confirmed. Furthermore, knockdown of MAPK1 partly rescued the miR-766-5p inhibition-mediated promoting effect on proliferation and migration in LUAD cells transfected with PRKCZ-AS1#1. Overall, above results suggested that PRKCZ-AS1 promotes the occurrence of LUAD by sponging miR-766-5p to upregulate MAPK1 expression, which may provide new insights into LUAD treatment.
Collapse
Affiliation(s)
- Ming Wang
- Department of Thoracic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang Province, China
| | - Qin Liao
- Department of Oncology, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang Province, China
| | - Pengfei Zou
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
50
|
Yang D, Liu K, Fan L, Liang W, Xu T, Jiang W, Lu H, Jiang J, Wang C, Li G, Zhang X. LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-Like polarization of tumor-associated macrophages of CPEB4. Cancer Lett 2020; 473:33-49. [PMID: 31904478 DOI: 10.1016/j.canlet.2019.12.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulates the initiation and progression of osteosarcoma (OS), specifically lncRNA RP11-361F15.2 has been shown to play prominent roles in tumorigenesis. Previously, M2-Like polarization of tumor-associated macrophages (TAMs) has been identified to play a key role in cancer migration/invasion. Hence, it is essential to understand the role of RP11-361F15.2 in tumorigenesis and its association with M2-Like polarization of TAMs. The results indicate that RP11-361F15.2 is significantly increased in OS tissues, and its expression is positively correlated with cytoplasmic polyadenylation element binding protein 4 (CPEB4) expression and negatively associated with miR-30c-5p expression. Further, overexpression of RP11-361F15.2 increased OS cell migration/invasion and M2-Like polarization of TAMs in vitro, as well as promoted xenograft tumor growth in vivo. Mechanistically, luciferase reporter assays indicated that RP11-361F15.2 upregulated CPEB4 expression by competitively binding to miR-30c-5p. Further, we have identified that RP11-361F15.2 promotes CPEB4-mediated tumorigenesis and M2-Like polarization of TAMs through miR-30c-5p in OS. We also identified that RP11-361F15.2 acts as competitive endogenous RNA (ceRNA) against miR-30c-5p thereby binding and activating CPEB4. This RP11-361F15.2/miR-30c-5p/CPEB4 loop could be used as a potential therapeutic strategy for the treatment of OS.
Collapse
Affiliation(s)
- Dong Yang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Kaiyuan Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Lin Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Wenqing Liang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, PR China.
| | - Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Wenwei Jiang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Hengli Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Junjie Jiang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Chi Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Xiaoping Zhang
- The Institute of Intervention Vessel, Shanghai Tenth People's Hospital, Shanghai, PR China.
| |
Collapse
|