1
|
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophic factors that can potentially increase cancer cell growth, survival, proliferation, anoikis, and migration by tyrosine kinase receptors TrkB and the p75NTR death receptor. The activation of BDNF/TrkB pathways leads to several downstream signaling pathways, including PI3K/Akt, Jak/STAT, PLCγ, Ras-Raf-MEK-ERK, NF-kB, and transactivation of EGFR. The current review aimed to provide an overview of the role of BDNF and its signaling in cancer. METHODS We searched a major medical database, PubMed, to identify eligible studies for a narrative synthesis. RESULTS Pathological examinations demonstrate BDNF overexpression in human cancer, notably involving the prostate, lung, breast, and underlying tissues, associated with a higher death rate and poor prognosis. Therefore, measurement of BDNF, either for identifying the disease or predicting response to therapy, can be helpful in cancer patients. Expression profiling studies have recognized the role of microRNAs (miR) in modulating BDNF/TrkB pathways, such as miR-101, miR-107, miR-134, miR-147, miR-191, miR-200a/c, miR-204, miR-206, miR-210, miR-214, miR-382, miR-496, miR-497, miR-744, and miR-10a-5p, providing a potential biological mechanism by which targeted therapies may correlate with decreased BDNF expression in cancers. Clinical studies investigating the use of agents targeting BDNF receptors and related signaling pathways and interfering with the related oncogenic effect, including Entrectinib, Larotrectinib, Cabozantinib, Repotrectinib, Lestaurtinib, and Selitrectinib, are in progress. CONCLUSION The aberrant signaling of BDNF is implicated in various cancers. Well-designed clinical trials are needed to clarify the BDNF role in cancer progression and target it as a therapeutic method.
Collapse
|
2
|
Marazioti A, Krontira AC, Behrend SJ, Giotopoulou GA, Ntaliarda G, Blanquart C, Bayram H, Iliopoulou M, Vreka M, Trassl L, Pepe MAA, Hackl CM, Klotz LV, Weiss SAI, Koch I, Lindner M, Hatz RA, Behr J, Wagner DE, Papadaki H, Antimisiaris SG, Jean D, Deshayes S, Grégoire M, Kayalar Ö, Mortazavi D, Dilege Ş, Tanju S, Erus S, Yavuz Ö, Bulutay P, Fırat P, Psallidas I, Spella M, Giopanou I, Lilis I, Lamort A, Stathopoulos GT. KRAS signaling in malignant pleural mesothelioma. EMBO Mol Med 2022; 14:e13631. [PMID: 34898002 PMCID: PMC8819314 DOI: 10.15252/emmm.202013631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) arises from mesothelial cells lining the pleural cavity of asbestos-exposed individuals and rapidly leads to death. MPM harbors loss-of-function mutations in BAP1, NF2, CDKN2A, and TP53, but isolated deletion of these genes alone in mice does not cause MPM and mouse models of the disease are sparse. Here, we show that a proportion of human MPM harbor point mutations, copy number alterations, and overexpression of KRAS with or without TP53 changes. These are likely pathogenic, since ectopic expression of mutant KRASG12D in the pleural mesothelium of conditional mice causes epithelioid MPM and cooperates with TP53 deletion to drive a more aggressive disease form with biphasic features and pleural effusions. Murine MPM cell lines derived from these tumors carry the initiating KRASG12D lesions, secondary Bap1 alterations, and human MPM-like gene expression profiles. Moreover, they are transplantable and actionable by KRAS inhibition. Our results indicate that KRAS alterations alone or in accomplice with TP53 alterations likely play an important and underestimated role in a proportion of patients with MPM, which warrants further exploration.
Collapse
|
3
|
Wu Y, Yang S, Zheng Z, Pan H, Jiang Y, Bai X, Liu T, Deng S, Li Y. MiR-191-5p Disturbed the Angiogenesis in a Mice Model of Cerebral Infarction by Targeting Inhibition of BDNF. Neurol India 2021; 69:1601-1607. [PMID: 34979649 DOI: 10.4103/0028-3886.333459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND miRNAs are crucial regulators of angiogenesis, but there have been no detailed studies on the role of miR-191-5p in cerebral infarct angiogenesis. Here, we investigated the role of miR-191-5p in regulating cerebral infarction angiogenesis. MATERIAL AND METHODS Mice were injected intracerebroventricularly with antagomir negative control (NC-antagomir), miR-191-5p antagomir, or pcDNA-BDNF 2 h before middle cerebral artery occlusion (MCAO), followed by neurobehavioral score and foot-fault test. The cerebral infarct volume was performed by TTC staining. The microvessel density was detected by FITC-dextran. RT-qPCR was used to detect the levels of miR-191-5p and its target gene BDNF. Western blotting was applied to detect the protein levels of BDNF. The luciferase reporter assay verified that miR-191-5p targeted BDNF. RESULTS We found an increased level of miR-191-5p in the brain tissue of mice to MCAO. Down-regulation of miR-191-5p reduced the infarct volume and ameliorated neurological deficits in MCAO mice. Further investigation showed that miR-191-5p directly targeted BDNF and that the protective effect of miR-191-5p inhibition in angiogenesis was achieved by regulating BDNF. CONCLUSIONS Our results indicated that miR-191-5p disturbed the angiogenesis in the mouse models of cerebral infarction by inhibiting BDNF.
Collapse
Affiliation(s)
- Ying Wu
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Sijin Yang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhi Zheng
- Department of Orthopedics, Luzhou People's Hospital, Luzhou, 646000, China
| | - Hong Pan
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yundong Jiang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xue Bai
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tianzhu Liu
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Shiyu Deng
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yaqin Li
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
4
|
Blondy T, d'Almeida SM, Briolay T, Tabiasco J, Meiller C, Chéné AL, Cellerin L, Deshayes S, Delneste Y, Fonteneau JF, Boisgerault N, Bennouna J, Grégoire M, Jean D, Blanquart C. Involvement of the M-CSF/IL-34/CSF-1R pathway in malignant pleural mesothelioma. J Immunother Cancer 2021; 8:jitc-2019-000182. [PMID: 32581053 PMCID: PMC7319783 DOI: 10.1136/jitc-2019-000182] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer related to asbestos exposure. The tumor microenvironment content, particularly the presence of macrophages, was described as crucial for the development of the disease. This work aimed at studying the involvement of the M-CSF (CSF-1)/IL-34/CSF-1R pathway in the formation of macrophages in MPM, using samples from patients. Methods Pleural effusions (PEs), frozen tumors, primary MPM cells and MPM cell lines used in this study belong to biocollections associated with clinical databases. Cytokine expressions were studied using real-time PCR and ELISA. The Cancer Genome Atlas database was used to confirm our results on an independent cohort. An original three-dimensional (3D) coculture model including MPM cells, monocytes from healthy donors and a tumor antigen-specific cytotoxic CD8 T cell clone was used. Results We observed that high interleukin (IL)-34 levels in PE were significantly associated with a shorter survival of patients. In tumors, expression of CSF1 was correlated with ‘M2-like macrophages’ markers, whereas this was not the case with IL34 expression, suggesting two distinct modes of action of these cytokines. Expression of IL34 was higher in MPM cells compared with primary mesothelial cells. Particularly, high expression of IL34 was observed in MPM cells with an alteration of CDKN2A. Finally, using 3D coculture model, we demonstrated the direct involvement of MPM cells in the formation of immunosuppressive macrophages, through activation of the colony stimulating factor-1 receptor (CSF1-R) pathway, causing the inhibition of cytotoxicity of tumor antigen-specific CD8+ T cells. Conclusions The M-CSF/IL-34/CSF-1R pathway seems strongly implicated in MPM and could constitute a therapeutic target to act on immunosuppression and to support immunotherapeutic strategies.
Collapse
Affiliation(s)
- Thibaut Blondy
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France
| | - Sènan Mickael d'Almeida
- Université d'Angers, INSERM, CRCINA, F-49000 Angers, France.,Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Flow Cytometry Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tina Briolay
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France
| | - Julie Tabiasco
- Université d'Angers, INSERM, CRCINA, F-49000 Angers, France
| | - Clément Meiller
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, F-75006, Paris, France
| | - Anne-Laure Chéné
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France.,Service d'Oncologie Médicale Thoracique et Digestive, Hopital Nord Laennec, Nantes, Pays de la Loire, France
| | - Laurent Cellerin
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France.,Service d'Oncologie Médicale Thoracique et Digestive, Hopital Nord Laennec, Nantes, Pays de la Loire, France
| | - Sophie Deshayes
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France
| | - Yves Delneste
- Université d'Angers, INSERM, CRCINA, F-49000 Angers, France.,CHU Angers, Laboratoire d'Immunologie et Allergologie, F-49000 Angers, France
| | | | | | - Jaafar Bennouna
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France.,CHU de Nantes, oncologie thoracique et oncologie digestive, 5, allée de l'Île Gloriette, 44093 Nantes, France
| | - Marc Grégoire
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, F-75006, Paris, France
| | | |
Collapse
|
5
|
Wessels JM, Agarwal RK, Somani A, Verschoor CP, Agarwal SK, Foster WG. Factors affecting stability of plasma brain-derived neurotrophic factor. Sci Rep 2020; 10:20232. [PMID: 33214644 PMCID: PMC7677545 DOI: 10.1038/s41598-020-77046-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
Circulating concentrations of brain-derived neurotrophic factor (BDNF) have been linked to cancer, neuropsychiatric, diabetes, and gynecological disorders. However, factors influencing plasma storage and subsequent BDNF quantification are incompletely understood. Therefore, the anticoagulant used in plasma separator tubes, storage-time, storage-temperature, and repeated freeze–thaw cycles on circulating BDNF concentrations was evaluated. Peripheral blood samples were collected from healthy women (n = 14) and men (n = 10) recruited prospectively from McMaster University (August 2014). Blood was collected from the cubital vein into plasma separator tubes containing five different anticoagulant systems [K2EDTA, Li-Hep, Li-Hep (gel), Na-Hep, Na-Hep (glass)], and placed on ice for transport to the lab for centrifugation. Plasma samples (n = 16) collected in K2EDTA tubes from women recruited to a previous study (April 2011 to December 2012) were used to determine the effect of multiple freeze–thaw cycles. Plasma BDNF was quantified using a commercially available ELISA kit. Plasma concentrations of BDNF were significantly affected by the type of plasma separator tube, storage-time, and number of freeze–thaw cycles. Storage temperature (− 20 vs. − 80 °C) did not significantly affect the quantity of BDNF measured as mean BDNF concentrations generally fell within our calculated acceptable change limit up to 6 months in the freezer. Our results suggest that for quantification of circulating BDNF blood collected in K2EDTA tubes and plasma stored up to 6 months at either − 20 or − 80 °C produces reproducible results that fall within an acceptable range. However, plasma samples stored beyond 6 months and repeated freeze–thaw cycles should be avoided.
Collapse
Affiliation(s)
- Jocelyn M Wessels
- Department of Obstetrics and Gynecology, HSC-3N52D, McMaster University, 1280 Main Street, West, Hamilton, ON, L8S 4K1, Canada
| | - Ravi K Agarwal
- Department of Obstetrics and Gynecology and Reproductive Sciences, Center for Endometriosis, Research and Treatment, University of California, San Diego, La Jolla, CA, USA
| | - Aamer Somani
- Department of Obstetrics and Gynecology, HSC-3N52D, McMaster University, 1280 Main Street, West, Hamilton, ON, L8S 4K1, Canada
| | | | - Sanjay K Agarwal
- Department of Obstetrics and Gynecology and Reproductive Sciences, Center for Endometriosis, Research and Treatment, University of California, San Diego, La Jolla, CA, USA
| | - Warren G Foster
- Department of Obstetrics and Gynecology, HSC-3N52D, McMaster University, 1280 Main Street, West, Hamilton, ON, L8S 4K1, Canada. .,Department of Obstetrics and Gynecology and Reproductive Sciences, Center for Endometriosis, Research and Treatment, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Abbott DM, Bortolotto C, Benvenuti S, Lancia A, Filippi AR, Stella GM. Malignant Pleural Mesothelioma: Genetic and Microenviromental Heterogeneity as an Unexpected Reading Frame and Therapeutic Challenge. Cancers (Basel) 2020; 12:cancers12051186. [PMID: 32392897 PMCID: PMC7281319 DOI: 10.3390/cancers12051186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Mesothelioma is a malignancy of serosal membranes including the peritoneum, pleura, pericardium and the tunica vaginalis of the testes. Malignant mesothelioma (MM) is a rare disease with a global incidence in countries like Italy of about 1.15 per 100,000 inhabitants. Malignant Pleural Mesothelioma (MPM) is the most common form of mesothelioma, accounting for approximately 80% of disease. Although rare in the global population, mesothelioma is linked to industrial pollutants and mineral fiber exposure, with approximately 80% of cases linked to asbestos. Due to the persistent asbestos exposure in many countries, a worldwide progressive increase in MPM incidence is expected for the current and coming years. The tumor grows in a loco-regional pattern, spreading from the parietal to the visceral pleura and invading the surrounding structures that induce the clinical picture of pleural effusion, pain and dyspnea. Distant spreading and metastasis are rarely observed, and most patients die from the burden of the primary tumor. Currently, there are no effective treatments for MPM, and the prognosis is invariably poor. Some studies average the prognosis to be roughly one-year after diagnosis. The uniquely poor mutational landscape which characterizes MPM appears to derive from a selective pressure operated by the environment; thus, inflammation and immune response emerge as key players in driving MPM progression and represent promising therapeutic targets. Here we recapitulate current knowledge on MPM with focus on the emerging network between genetic asset and inflammatory microenvironment which characterize the disease as amenable target for novel therapeutic approaches.
Collapse
Affiliation(s)
- David Michael Abbott
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Chandra Bortolotto
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Silvia Benvenuti
- Candiolo Cancer Institute, FPO—IRCCS—Str. Prov.le 142, km. 3,95—10060 Candiolo (TO), Italy;
| | - Andrea Lancia
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Andrea Riccardo Filippi
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
- Correspondence:
| |
Collapse
|
7
|
Blanquart C, Jaurand MC, Jean D. The Biology of Malignant Mesothelioma and the Relevance of Preclinical Models. Front Oncol 2020; 10:388. [PMID: 32269966 PMCID: PMC7109283 DOI: 10.3389/fonc.2020.00388] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Malignant mesothelioma (MM), especially its more frequent form, malignant pleural mesothelioma (MPM), is a devastating thoracic cancer with limited therapeutic options. Recently, clinical trials that used immunotherapy strategies have yielded promising results, but the benefits are restricted to a limited number of patients. To develop new therapeutic strategies and define predictors of treatment response to existing therapy, better knowledge of the cellular and molecular mechanisms of MM tumors and sound preclinical models are needed. This review aims to provide an overview of our present knowledge and issues on both subjects. MM shows a complex pattern of molecular changes, including genetic, chromosomic, and epigenetic alterations. MM is also a heterogeneous cancer. The recently described molecular classifications for MPM could better consider inter-tumor heterogeneity, while histo-molecular gradients are an interesting way to consider both intra- and inter-tumor heterogeneities. Classical preclinical models are based on use of MM cell lines in culture or implanted in rodents, i.e., xenografts in immunosuppressed mice or isografts in syngeneic rodents to assess the anti-tumor immune response. Recent developments are tumoroids, patient-derived xenografts (PDX), xenografts in humanized mice, and genetically modified mice (GEM) that carry mutations identified in human MM tumor cells. Multicellular tumor spheroids are an interesting in vitro model to reduce animal experimentation; they are more accessible than tumoroids. They could be relevant, especially if they are co-cultured with stromal and immune cells to partially reproduce the human microenvironment. Even if preclinical models have allowed for major advances, they show several limitations: (i) the anatomical and biological tumor microenvironments are incompletely reproduced; (ii) the intra-tumor heterogeneity and immunological contexts are not fully reconstructed; and (iii) the inter-tumor heterogeneity is insufficiently considered. Given that these limitations vary according to the models, preclinical models must be carefully selected depending on the objectives of the experiments. New approaches, such as organ-on-a-chip technologies or in silico biological systems, should be explored in MM research. More pertinent cell models, based on our knowledge on mesothelial carcinogenesis and considering MM heterogeneity, need to be developed. These endeavors are mandatory to implement efficient precision medicine for MM.
Collapse
Affiliation(s)
- Christophe Blanquart
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Marie-Claude Jaurand
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors Laboratory, Paris, France
| |
Collapse
|
8
|
Signorile PG, Baldi A. Looking for an effective and non-invasive diagnostic test for endometriosis: where are we? ANNALS OF TRANSLATIONAL MEDICINE 2019; 6:S106. [PMID: 30740427 DOI: 10.21037/atm.2018.11.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Alfonso Baldi
- Fondazione Italiana Endometriosi, Rome, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania University "L. Vanvitelli", Caserta, Italy
| |
Collapse
|