1
|
Duan X, Hou R, Huang Y, Wang C, Liu L, Du H, Shi J. Comprehensive expression, prognostic and validation analysis of necroptosis-related lncRNAs in esophageal cancer. Transl Oncol 2024; 46:101983. [PMID: 38797018 PMCID: PMC11152745 DOI: 10.1016/j.tranon.2024.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Previous studies have shown that necroptosis-related long noncoding RNA (lncRNA) risk models can be used to predict prognosis and immune infiltration in patients with esophageal cancer. However, further analysis of the regulatory mechanisms of necroptosis-related lncRNAs used in risk models remains to be conducted. The purpose of the present study was to identify valuable necroptosis-related lncRNAs in esophageal cancer and to verify their molecular and cellular functions. METHODS Esophageal cancer data were downloaded from The Cancer Genome Atlas (TCGA). The expression of eight genes (LINC00299, AC090912.2, AC244197.2, AL158166.1, AC079684.1, AP003696.1, AC079684.1 and AP003696.1) in the necroptosis-related lncRNA risk model, their relationships with clinicopathological stage, and their diagnostic receiver operating characteristic (ROC) curves were analyzed. The prognostic value of these lncRNAs for overall survival (OS) and disease specific survival (DSS) was analyzed, and time-dependent ROC curves were generated. The AP003696.1 target gene (lncRNA ENSG00000253385.1) was further investigated through immune infiltration analysis, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment analyses, and gene coexpression analysis. Finally, in vitro functional assays based on lncRNA ENSG00000253385.1 were conducted to explore its regulatory role in esophageal cancer. RESULTS A bioinformatics approach was used to study the eight genes in the necroptosis-related lncRNA risk model. AP003696.1 (lncRNA ENSG00000253385.1) was highly expressed in esophageal cancer tissues, and its high expression was correlated with poor OS and DFdS. Both univariate and multivariate Cox regression analyses revealed that lncRNA ENSG00000253385.1 is an independent prognostic factor. The lncRNA ENSG00000253385.1 gene was demonstrated to play a definite role in the invasion of esophageal cancer immune cells and in signaling pathways in these cells. In vitro cell functional assays revealed that lncRNA ENSG00000253385.1 expression was elevated in the KYSE150 and KYSE410 esophageal cancer cell lines. Small interfering RNA (siRNA)-mediated silencing of lncRNA ENSG00000253385.1 significantly inhibited the proliferation, migration, and invasion of KYSE150 and KYSE410 cells, as well as promoted their apoptosis. CONCLUSIONS The ENSG00000253385.1 gene may be a key gene in the occurrence, development, and prognosis of esophageal cancer. These findings provide new ideas and references for the screening of therapeutic targets, as well as the development of targeted drugs, for esophageal cancer treatment.
Collapse
Affiliation(s)
| | - Ran Hou
- Departments of Medical Oncology, PR China
| | | | | | - Lie Liu
- Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Huazhen Du
- Emergency department The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China.
| | - Jian Shi
- Departments of Medical Oncology, PR China.
| |
Collapse
|
2
|
Cao SQ, Xue ST, Li WJ, Hu GS, Wu ZG, Zheng JC, Zhang SL, Lin X, Chen C, Liu W, Zheng B. CircHIPK3 regulates fatty acid metabolism through miR-637/FASN axis to promote esophageal squamous cell carcinoma. Cell Death Discov 2024; 10:110. [PMID: 38431720 PMCID: PMC10908791 DOI: 10.1038/s41420-024-01881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
The oncogenic role of circRNA in cancers including esophageal cancer (EC) has been well studied. However, whether and how circRNAs are involved in cancer cell metabolic processes remains largely unknown. Here, we reported that circRNA, circHIPK3, is highly expressed in ESCC cell lines and tissues. Knockdown of circHIPK3 significantly restrained cell proliferation, colony formation, migration, and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, circHIPK3 was found to act as a ceRNA by sponging miR-637 to regulate FASN expression and fatty acid metabolism in ESCC cells. Anti-sense oligonucleotide (ASO) targeting circHIPK3 substantially inhibited ESCC both in vitro and in vivo. Therefore, these results uncover a modulatory axis constituting of circHIPK3/miR-637/FASN may be a potential biomarker and therapeutic target for ESCC in the clinic.
Collapse
Affiliation(s)
- Shi-Qiang Cao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Song-Tao Xue
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Wen-Juan Li
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Zhi-Gang Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Jian-Cong Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Shu-Liang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Xiao Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
3
|
Li C, Sun C, Mahapatra KD, Riihilä P, Knuutila J, Nissinen L, Lapins J, Kähäri VM, Homey B, Sonkoly E, Pivarcsi A. Long noncoding RNA plasmacytoma variant translocation 1 is overexpressed in cutaneous squamous cell carcinoma and exon 2 is critical for its oncogenicity. Br J Dermatol 2024; 190:415-426. [PMID: 37930852 DOI: 10.1093/bjd/ljad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is one of the most common and fastest increasing forms of cancer worldwide with metastatic potential. Long noncoding RNAs (lncRNAs) are a group of RNA molecules with essential regulatory functions in both physiological and pathological processes. OBJECTIVES To investigate the function and mode of action of lncRNA plasmacytoma variant translocation 1 (PVT1) in cSCC. METHODS Quantitative reverse transcriptase polymerase chain reaction and single-molecule in situ hybridization were used to quantify the expression level of PVT1 in normal skin, premalignant skin lesions, actinic keratosis (AK) and primary and metastatic cSCCs. The function of PVT1 in cSCC was investigated both in vivo (tumour xenografts) and in vitro (competitive cell growth assay, 5-ethynyl-2'-deoxyuridine incorporation assay, colony formation assay and tumour spheroid formation assay) upon CRISPR-Cas9-mediated knockout of the entire PVT1 locus, the knockout of exon 2 of PVT1, and locked nucleic acid (LNA) gapmer-mediated PVT1 knockdown. RNA sequencing analysis was conducted to identify genes and processes regulated by PVT1. RESULTS We identified PVT1 as a lncRNA upregulated in cSCC in situ and cSCC, associated with the malignant phenotype of cSCC. We showed that the expression of PVT1 in cSCC was regulated by MYC. Both CRISPR-Cas9 deletion of the entire PVT1 locus and LNA gapmer-mediated knockdown of PVT1 transcript impaired the malignant behaviour of cSCC cells, suggesting that PVT1 is an oncogenic transcript in cSCC. Furthermore, knockout of PVT1 exon 2 inhibited cSCC tumour growth both in vivo and in vitro, demonstrating that exon 2 is a critical element for the oncogenic role of PVT1. Mechanistically, we showed that PVT1 was localized in the cell nucleus and its deletion resulted in cellular senescence, increased cyclin-dependent kinase inhibitor 1 (p21/CDKN1A) expression and cell cycle arrest. CONCLUSIONS Our study revealed a previously unrecognized role for exon 2 of PVT1 in its oncogenic role and that PVT1 suppresses cellular senescence in cSCC. PVT1 may be a potential biomarker and therapeutic target in cSCC.
Collapse
Affiliation(s)
- Chen Li
- Department of Medical Biochemistry and Microbiology (IMBIM)
| | - Chengxi Sun
- Department of Medical Biochemistry and Microbiology (IMBIM)
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | | | - Pilvi Riihilä
- Department of Dermatology
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaakko Knuutila
- Department of Dermatology
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Jan Lapins
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Veli-Matti Kähäri
- Department of Dermatology
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Bernhard Homey
- Department of Dermatology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Enikö Sonkoly
- Department of Medical Biochemistry and Microbiology (IMBIM)
- Dermatology and Venereology Division, Department of Medicine Solna
- Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andor Pivarcsi
- Department of Medical Biochemistry and Microbiology (IMBIM)
- Dermatology and Venereology Division, Department of Medicine Solna
- Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Saikia S, Postwala H, Athilingam VP, Anandan A, Padma VV, Kalita PP, Chorawala M, Prajapati B. Single Nucleotide Polymorphisms (SNPs) in the Shadows: Uncovering their Function in Non-Coding Region of Esophageal Cancer. Curr Pharm Biotechnol 2024; 25:1915-1938. [PMID: 38310451 DOI: 10.2174/0113892010265004231116092802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 02/05/2024]
Abstract
Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma (ESCC). These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci (eQTL) have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.
Collapse
Affiliation(s)
- Surovi Saikia
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Vishnu Prabhu Athilingam
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Aparna Anandan
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - V Vijaya Padma
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Partha P Kalita
- Program of Biotechnology, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| |
Collapse
|
5
|
Ravillah D, Kieber-Emmons AL, Singh S, Keerthy K, Blum AE, Guda K. Discovery and Initial Characterization of Long Intergenic Noncoding RNAs Associated With Esophageal Adenocarcinoma. Gastroenterology 2023; 165:505-508.e7. [PMID: 37182784 PMCID: PMC10524377 DOI: 10.1053/j.gastro.2023.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Affiliation(s)
- Durgadevi Ravillah
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Salendra Singh
- Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Komal Keerthy
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew E Blum
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Division of Gastroenterology, Northeast Ohio Veteran Affairs Healthcare System, Cleveland, Ohio
| | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
6
|
Duan X, Du H, Yuan M, Liu L, Liu R, Shi J. Bioinformatics analysis of necroptosis‑related lncRNAs and immune infiltration, and prediction of the prognosis of patients with esophageal carcinoma. Exp Ther Med 2023; 26:331. [PMID: 37346407 PMCID: PMC10280318 DOI: 10.3892/etm.2023.12030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Esophageal carcinoma (ESCA) is one of the most common malignancies in the world, and has high morbidity and mortality rates. Necrosis and long noncoding RNAs (lncRNAs) are involved in the progression of ESCA; however, the specific mechanism has not been clarified. The aim of the present study was to investigate the role of necrosis-related lncRNAs (nrlncRNAs) in patients with ESCA by bioinformatics analysis, and to establish a nrlncRNA model to predict ESCA immune infiltration and prognosis. To form synthetic matrices, ESCA transcriptome data and related information were obtained from The Cancer Genome Atlas. A nrlncRNA model was established by coexpression, univariate Cox (Uni-Cox), and least absolute shrinkage and selection operator analyses. The predictive ability of this model was evaluated by Kaplan-Meier, receiver operating characteristic (ROC) curve, Uni-Cox, multivariate Cox regression, nomogram and calibration curve analyses. A model containing eight nrlncRNAs was generated. The areas under the ROC curves for 1-, 3- and 5-year overall survival were 0.746, 0.671 and 0.812, respectively. A high-risk score according to this model could be used as an indicator for systemic therapy use, since the half-maximum inhibitory concentration values varied significantly between the high-risk and low-risk groups. Based on the expression of eight prognosis-related nrlncRNAs, the patients with ESCA were regrouped using the 'ConsensusClusterPlus' package to explore potential molecular subgroups responding to immunotherapy. The patients with ESCA were divided into three clusters based on the eight nrlncRNAs that constituted the risk model: The most low-risk group patients were classified into cluster 1, and the high-risk group patients were mainly concentrated in clusters 2 and 3. Survival analysis showed that Cluster 1 had a better survival than the other groups (P=0.016). This classification system could contribute to precision treatment. Furthermore, two nrlncRNAs (LINC02811 and LINC00299) were assessed in the esophageal epithelial cell line HET-1A, and in the human esophageal cancer cell lines KYSE150 and TE1. There were significant differences in the expression levels of these lncRNAs between tumor and normal cells. In conclusion, the present study suggested that nrlncRNA models may predict the prognosis of patients with ESCA, and provide guidance for immunotherapy and chemotherapy decision making. Furthermore, the present study provided strategies to promote the development of individualized and precise treatment for patients with ESCA.
Collapse
Affiliation(s)
- Xiaoyang Duan
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Huazhen Du
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Meng Yuan
- Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 804-8550, Japan
| | - Lie Liu
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Rongfeng Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jian Shi
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
7
|
Luo Z, Ding E, Yu L, Wang W, Guo Q, Li X, Wang Y, Li T, Zhang Y, Zhang X. Identification of hub necroptosis-related lncRNAs for prognosis prediction of esophageal carcinoma. Aging (Albany NY) 2023; 15:204763. [PMID: 37263709 DOI: 10.18632/aging.204763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Necroptosis is a newly identified programmed cell death associated with the biological process of various cancers, including esophageal carcinoma (ESCA). Meanwhile, the dysregulation of long non-coding RNAs (lncRNAs) is greatly implicated in ESCA progression and necroptosis regulation. However, the lncRNAs involved in regulating necroptosis in ESCA are still unclear. In this study, we aim to explore the expression profile of necroptosis-related lncRNAs (NRLs), and evaluate their roles in ESCA prognosis and treatment. In the present study, 198 differentially expressed NRLs were identified between the ESCA and adjacent normal tissues through screening the data extracted from the Cancer Genome Atlas (TCGA) database. And, a prognostic panel consisting of 6 NRLs was constructed using the LASSO algorithm and multivariate Cox regression analysis. The ESCA patients with high risks had a markedly reduced survival time and higher mortality prevalence. Moreover, C-index of 6 NRLs-panel was superior to 48 published prognostic models based on lncRNAs or mRNAs for ESCA. There were significant differences between the high-risk and low-risk groups in tumor-related pathways, genetic mutations, and drug sensitivity responses. In vitro analysis revealed that inhibition of PVT1 impeded the proliferation, migration, and colony formation of ESCA cells, increased the expressions of p-RIP1 and p-MLKL and promoted necroptosis. By contrast, PVT1 overexpression resulted in a decrease in necroptotic cell death events, thus promoting tumor progression. Collectively, the established 6-NRLs panel was a promising biomarker for the prognostic prediction of ESCA. Moreover, our current findings provided potential targets for individualized therapy for ESCA patients.
Collapse
Affiliation(s)
- Zhengdong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - E Ding
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Wenwu Wang
- Hangzhou Lin’an District Fourth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Qining Guo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xinyang Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yifeng Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Tingting Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
8
|
PVT1 inhibition stimulates anti-tumor immunity, prevents metastasis, and depletes cancer stem cells in squamous cell carcinoma. Cell Death Dis 2023; 14:187. [PMID: 36894542 PMCID: PMC9998619 DOI: 10.1038/s41419-023-05710-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Cancer stem cells (CSCs) cause tumor metastasis and immune evasion by as-yet-unknown molecular mechanisms. In the present study, we identify a long noncoding RNA (lncRNA), termed PVT1, which is highly expressed in CSCs and correlated closely with lymph node metastasis of head and neck squamous cell carcinoma (HNSCC). PVT1 inhibition eliminates CSCs, prevents metastasis, and stimulates anti-tumor immunity, while inhibiting HNSCC growth. Moreover, PVT1 inhibition promotes the infiltration of CD8+ T cells into the tumor microenvironment, thereby enhancing immunotherapy by PD1 blockade. Mechanistically, PVT1 inhibition stimulates the DNA damage response, which induces CD8+ T cell-recruiting chemokines, while preventing CSCs and metastasis via regulating the miR-375/YAP1 axis. In conclusion, targeting PVT1 might potentiate the elimination of CSCs via immune checkpoint blockade, prevent metastasis, and inhibit HNSCC growth.
Collapse
|
9
|
Lv H, Zhou D, Liu G. PVT1/miR-16/CCND1 axis regulates gastric cancer progression. Open Med (Wars) 2023; 18:20220550. [PMID: 36760720 PMCID: PMC9896163 DOI: 10.1515/med-2022-0550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 02/03/2023] Open
Abstract
Long non-coding RNA plasmacytoma variant translocation 1 (PVT1) has been reported to be a vital modulator in tumorigenesis of gastric cancer (GC). However, the detailed regulatory mechanism of PVT1 in GC remains largely unclear. In this work, the expressions of PVT1 and microRNA-16 (miR-16) were detected by quantitative real-time PCR (qRT-PCR) in GC tissues and cell lines. GC cell lines NCI-N87 and MKN45 cell lines were chosen for the following assays. After PVT1 was overexpressed or depleted, CCK-8 and Transwell assays were performed to examine the cell viability and invasive capacity. Cell cycle was analyzed by flow cytometry. The expression of cyclin D1 (CCND1) at mRNA and protein levels was measured by qRT-PCR and western blot. The competitive endogenous RNA molecular mechanism among PVT1, miR-16 and CCND1 was verified by bioinformatics analysis, luciferase-reporter gene assay and RNA immunoprecipitation assay. In the present study, it was revealed that PVT1 expression was remarkably evaluated in GC tissues and cell lines than that in the corresponding control group. PVT1 positively regulated the proliferation, migration and cell cycle progression of GC cells. Besides, miR-16 was identified as a target of PVT1, and CCND1 was identified as a target of miR-16. The depletion of PVT1 promoted the expression of miR-16 and suppressed CCND1 expression. Moreover, either miR-16 inhibitor or CCND1 overexpression plasmid could reverse the promoting effects of PVT1 on the malignant biological behaviors of GC cells. In conclusion, PVT1 promoted CCND1 expression by negatively regulating miR-16 expression to enhance the viability, invasion and cell cycle progression of GC cells.
Collapse
Affiliation(s)
- Haidong Lv
- Department of Tumor Surgery, Qinghai People’s Hospital, Xining810007, Qinghai, China
| | - Dixia Zhou
- Department of Tumor Surgery, Qinghai People’s Hospital, Xining810007, Qinghai, China
| | - Guoqing Liu
- Department of Tumor Surgery, Qinghai People’s Hospital, Republic Road No. 2, Xining810007, Qinghai, China
| |
Collapse
|
10
|
Xu G, Wang H, Zhuang Y, Lin Q, Li Y, Cai Z, Lin G, Liu W. Identification of a ceRNA Network Driven by Copy Number Variations in Esophageal Cancer. J NIPPON MED SCH 2023; 90:426-438. [PMID: 38246614 DOI: 10.1272/jnms.jnms.2023_90-611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Copy number variation (CNV) is associated with progression of esophageal cancer (EC), a common gastrointestinal neoplasm. METHODS Using sequencing data, CNV data, and clinical data of EC transcriptome samples obtained from public databases, we performed differential expression analysis on sequencing data. Differentially expressed CNV-driven lncRNAs were screened using the chi-square test, and CNV-driven lncRNA-associated miRNAs and mRNAs were predicted. Cytoscape software was then used to construct ceRNA networks. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to investigate biological functions of mRNAs in the ceRNA network. Survival curves were plotted to explore correlations between lncRNAs in the ceRNA network and overall survival of CNV patients. Multiple databases were used to predict lncRNAs-related drugs. RESULTS A dysregulated lncRNA-associated ceRNA network driven by CNV in EC, including 11 lncRNAs, 11 miRNAs and 159 mRNAs, was constructed. Downstream enrichment of mRNAs was related to biological processes such as extracellular matrix organization, indicating that these mRNAs mainly participate in intercellular exchange between tumor cells. Additionally, expression of all lncRNAs in the ceRNA network, except LINC00950, LINC01270 and MIR181A1HG, was correlated with patients' CNV. In addition, none of the 11 lncRNAs was significantly correlated with overall survival of CNV patients. CH5424802 and PD-033299CNV mainly affected the RTK signaling pathway and the cell cycle of tumor cells via RP11-180N14.1 and RP11-273 G15.2 in the ceRNA network. CONCLUSIONS This study identified 11 CNV-driven lncRNAs that might affect EC development, 2 of which have promising effects if applied to drug treatment. These findings might assist in identifying novel treatments for EC.
Collapse
Affiliation(s)
- Guoxi Xu
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Huaishuai Wang
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Yixiang Zhuang
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Qiyi Lin
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Yinlin Li
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Zhicong Cai
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Gaofeng Lin
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Weibo Liu
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| |
Collapse
|
11
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
12
|
Li Y, Li S, Li R, Xu H. LncRNA PVT1 upregulates FBN1 by sponging miR-30b-5p to aggravate pulpitis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ding L, Feng Y, Li L. Circ_0001955 promotes the progression of non-small cell lung cancer via miR-769-5p/EGFR axis. Cell Cycle 2022; 21:2433-2443. [PMID: 35920610 PMCID: PMC9645262 DOI: 10.1080/15384101.2022.2100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To elaborate on the role of circular RNA 0001955 (circ_0001955) on the proliferation and apoptosis of non-small cell lung cancer (NSCLC) cells and its underlying mechanism. Circ_0001955 expression in NSCLC was screened out through bioinformatics analysis based on GEO database. Circ_0001955, microRNA-769-5p (miR-769-5p), and epidermal growth factor receptor (EGFR) expression in NSCLC tissues and cell lines was examined using quantitative real-time PCR (qRT-PCR) and Western blot. Cell proliferation and apoptosis were examined using the CCK-8 method, BrdU experiment and flow cytometry analysis, respectively. Bioinformatics prediction, dual-luciferase reporter gene experiment and RNA immunoprecipitation (RIP) experiments were applied to validate the targeting relationship between miR-769-5p and circ_0001955 and the 3' UTR of EGFR. Pearson's correlation analysis was employed to validate the correlations among them. Circ_0001955 expression was up-regulated in NSCLC tissues and cell lines, and its overexpression was strongly associated with increased tumor TNM stage and lymph node metastasis. Circ_0001955 overexpression enhanced the proliferation and restrained the apoptosis in NSCLC cells, whereas knocking down circ_0001955 exerted the opposite effects. Circ_0001955 directly targeted miR-769-5p and negatively regulated its expression. EGFR, a target gene of miR-769-5p, could be indirectly and positively regulated by circ_0001955. Correlation analysis indicated that circ_0001955 was negatively correlated with miR-769-5p expression, while circ_0001955 was positively correlated with EGFR expression. Circ_0001955 facilitates the proliferation and represses the apoptosis of NSCLC cells by modulating miR-769-5p/EGFR axis.
Collapse
Affiliation(s)
- Li Ding
- Department of Respiratory, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yinan Feng
- Department of Endocrine and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Longguang Li
- Rehabilitation Medicine, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
14
|
Zafari N, Khosravi F, Rezaee Z, Esfandyari S, Bahiraei M, Bahramy A, Ferns GA, Avan A. The role of the tumor microenvironment in colorectal cancer and the potential therapeutic approaches. J Clin Lab Anal 2022; 36:e24585. [PMID: 35808903 PMCID: PMC9396196 DOI: 10.1002/jcla.24585] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) with a high prevalence is recognized as the fourth most common cause of cancer-related death globally. Over the past decade, there has been growing interest in the network of tumor cells, stromal cells, immune cells, blood vessel cells, and fibroblasts that comprise the tumor microenvironment (TME) to identify new therapeutic interventions. METHODS Databases, such as Google Scholar, PubMed, and Scopus, were searched to provide an overview of the recent research progress related to targeting the TME as a novel therapeutic approach. RESULTS Tumor microenvironment as a result of the cross talk between these cells may result in either advantages or disadvantages in tumor development and metastasis, affecting the signals and responses from the surrounding cells. Whilst chemotherapy has led to an improvement in CRC patients' survival, the metastatic aspect of the disease remains difficult to avoid. CONCLUSIONS The present review emphasizes the structure and function of the TME, alterations in the TME, its role in the incidence and progression of CRC, the effects on tumor development and metastasis, and also the potential of its alterations as therapeutic targets. It should be noted that providing novel studies in this field of research might help us to achieve practical therapeutic strategies based on their interaction.
Collapse
Affiliation(s)
- Narges Zafari
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Fatemeh Khosravi
- Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Zahra Rezaee
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sahar Esfandyari
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| | - Mohamad Bahiraei
- Department of Radiology, Besat HospitalHamedan University of Medical SciencesHamedanIran
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Gordon A. Ferns
- Brighton & Sussex Medical SchoolDivision of Medical EducationSussexUK
| | - Amir Avan
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Basic Medical Sciences InstituteMashhad University of Medical SciencesMashhadIran
- Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
15
|
Zhang Y, Qiao X, Liu L, Han W, Liu Q, Wang Y, Xie T, Tang Y, Wang T, Meng J, Ye A, He S, Chen R, Chen C. Long noncoding RNA MAGI2-AS3 regulates the H2O2 level and cell senescence via HSPA8. Redox Biol 2022; 54:102383. [PMID: 35797800 PMCID: PMC9287730 DOI: 10.1016/j.redox.2022.102383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yingmin Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lihui Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wensheng Han
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiheng Tang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tiepeng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunmin He
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runsheng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Prognostic, Diagnostic and Predictive Biomarkers in the Barrett’s Oesophagus-Adenocarcinoma Disease Sequence. Cancers (Basel) 2022; 14:cancers14143427. [PMID: 35884487 PMCID: PMC9315596 DOI: 10.3390/cancers14143427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Oesophageal adenocarcinoma (OAC) is a type of cancer of the oesophagus (food pipe) which is associated with poor patient outcomes. Barrett’s oesophagus (BO) is a precancerous condition of the oesophagus associated with chronic heartburn. Currently, surveillance programs exist which monitor patients with BO to prevent it from developing into OAC. However, these surveillance programs are expensive and unpleasant for patients. Prognostic biomarkers are signs which could be measured to determine the chance of someone with BO developing OAC, allowing more targeted surveillance. Similarly, diagnostic biomarkers are indicators which could be measured to see if someone has OAC. Developing new diagnostic biomarkers could allow wider population testing. Only a small proportion of patients with OAC respond to treatment before surgery. Predictive biomarkers could be measured to predict whether someone would respond to the treatments, allowing more individualized therapy. This review focuses on potential biomarkers which could improve patient outcomes in BO/OAC. Abstract Oesophageal adenocarcinoma (OAC) incidence has increased dramatically in the developed world, yet outcomes remain poor. Extensive endoscopic surveillance programs among patients with Barrett’s oesophagus (BO), the precursor lesion to OAC, have aimed to both prevent the development of OAC via radiofrequency ablation (RFA) and allow earlier detection of disease. However, given the low annual progression rate and the costs of endoscopy/RFA, improvement is needed. Prognostic biomarkers to stratify BO patients based on their likelihood to progress would enable a more targeted approach to surveillance and RFA of high-risk precursor lesions, improving the cost–risk–benefit ratio. Similarly, diagnostic biomarkers for OAC could enable earlier diagnosis of disease by allowing broader population screening. Current standard treatment for locally advanced OAC includes neoadjuvant chemotherapy (+/− radiotherapy) despite only a minority of patients benefiting from neoadjuvant treatment. Accordingly, biomarkers predictive of response to neoadjuvant therapy could improve patient outcomes by reducing time to surgery and unnecessary toxicity for the patients who would have received no benefit from the therapy. In this mini-review, we will discuss the emerging biomarkers which promise to dramatically improve patient outcomes along the BO-OAC disease sequence.
Collapse
|
17
|
Liu Y, Hu C, Qu X, Chen H, Liu L, Zhou L, Liu S, Li G, Zhou Y. Novel Role of Long Non-Coding RNA ASAP1-IT1 in Progression of Hepatocellular Carcinoma. Front Oncol 2022; 12:746896. [PMID: 35712508 PMCID: PMC9192332 DOI: 10.3389/fonc.2022.746896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
The long non-coding RNA (lncRNA) ASAP1-IT1 has been recently shown to aberrantly increase in ovarian and bladder cancer, while its role in other malignancies remains unexplored. This study was to characterize the expression and assess the potential role of ASAP1-IT1 in hepatocellular carcinoma (HCC). Fifty-four paired HCC and histologically normal tissues were obtained from HCC patients. Human HCC cell lines (HepG2, Huh7, SMMC-7721, and BEL-7402) and a normal liver cell line (LO2) were used for in vitro studies. ASAP1-IT1-specific siRNAs were used to silence ASAP1-IT1 expression, while the pcDNA-ASAP1-IT1 vector was constructed to up-regulate its expression. In situ hybridization and qRT-PCR were performed to characterize subcellular localization and expression of ASAP1-IT1. Cell proliferation and migration assays were conducted to examine the role of ASAP1-IT1 in the progression of HCC. In silico analysis was conducted to predict putative miRNA binding sites, which were validated by luciferase reporter assays. ASAP1-IT1 levels were significantly increased in HCC tissues and cells compared with controls. Notably, higher ASAP1-IT1 levels were significantly associated with poorer prognosis of HCC patients. In situ hybridization analysis revealed that ASAP1-IT1 was mainly localized in the nucleus of hepatoma cells and differentially expressed in trabecular, compact, and pseudoglandular forms of liver cancer. Furthermore, knockdown of ASAP1-IT1 significantly suppressed cell proliferation and migration, while its overexpression significantly promoted cell proliferation and migration of HCC cells. Mechanistically, ASAP1-IT1 might exert its role in HCC progression, at least in part, by directly interacting with miR-221-3p. In conclusion, ASAP1-IT1 is abnormally elevated in HCC, and higher levels are correlated with poorer prognosis. An underlying mechanism has been proposed for ASAP1-IT1-associated promotion of proliferation and migration in HCC cells. These findings have provided evidence supporting the oncogenic role of ASAP1-IT1 in HCC.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Second Affiliated Hospital, University of South China, Hengyang, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengguang Hu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Qu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, University of South China, Hengyang, China
| | - Honghui Chen
- Department of Gastroenterology, Second Affiliated Hospital, University of South China, Hengyang, China
| | - Logen Liu
- Clinical Research Center, The Second Affiliated Hospital, University of South China, Hengyang, China
- Key Laboratory for Molecular Diagnosis and Precision Medicine in Hengyang, The Second Affiliated Hospital, University of South China, Henyang, China
| | - Linlin Zhou
- Clinical Research Center, The Second Affiliated Hospital, University of South China, Hengyang, China
- Key Laboratory for Molecular Diagnosis and Precision Medicine in Hengyang, The Second Affiliated Hospital, University of South China, Henyang, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yuanping Zhou, ; ; Guoqing Li, ; Side Liu,
| | - Guoqing Li
- Department of Gastroenterology, Second Affiliated Hospital, University of South China, Hengyang, China
- Key Laboratory for Molecular Diagnosis and Precision Medicine in Hengyang, The Second Affiliated Hospital, University of South China, Henyang, China
- *Correspondence: Yuanping Zhou, ; ; Guoqing Li, ; Side Liu,
| | - Yuanping Zhou
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yuanping Zhou, ; ; Guoqing Li, ; Side Liu,
| |
Collapse
|
18
|
LncRNA PVT1 Promotes Cell Proliferation, Invasion, and Migration and Inhibits Cell Apoptosis by Phosphorylating YAP. Can J Gastroenterol Hepatol 2022; 2022:5332129. [PMID: 35664988 PMCID: PMC9162823 DOI: 10.1155/2022/5332129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) as a serious global health problem is a threat to human longevity. Plasmacytoma variant translocation 1 (PVT1) participates in the formation and progression of various cancers, including GC. The aim of this study is to investigate the mechanism underlying the functions of PVT1 and explore a novel target for the diagnosis and treatment of GC. Analysis of the TCGA dataset using the R software identified that the lncRNA PVT1 was greatly upregulated in GC tissues. Twenty pairs of GC and adjacent normal tissues were acquired from patients with GC, and the expression of PVT1 was evaluated using RT-qPCR. Furthermore, PVT1 expression was knocked down in GC cells using siRNA, and the GC cells were divided into control, negative control (NC), and siRNA groups. Cell proliferation ability was analyzed using Cell Counting Kit-8 (CCK8) and colony formation assays, whereas cell migration and invasion ability were investigated through wound healing and Transwell assays. Moreover, Western blotting was used to analyze the expression of Yes-associated protein (YAP) and epithelial-to-mesenchymal transition (EMT) proteins. We also found that PVT1 and YAP expressions were upregulated in the GC tissues compared with those in the adjacent nontumor tissues. Knockdown of PVT1 was found to inhibit the proliferation, invasion, and migration and promote apoptosis of GC cells. Furthermore, knockdown of PVT1 downregulated YAP and promoted phosphorylation of YAP, suggesting that PVT1 exerts actions on GC cells by targeting YAP and inhibits cell apoptosis in vitro. The EMT process was also inhibited by the knockdown of PVT1. In summary, lncRNA PVT1 facilitated cell proliferation, invasion, and migration and suppressed cell apoptosis by targeting YAP. This study suggests that the expressions of PVT1 and YAP could be used for the early detection of GC and the occurrence and development of GC could be inhibited by interfering the interaction of PVT1 and YAP, which will provide new insights for the diagnosis, treatment, and prognosis of GC.
Collapse
|
19
|
Non-coding RNAs in ferroptotic cancer cell death pathway: meet the new masters. Hum Cell 2022; 35:972-994. [PMID: 35415781 DOI: 10.1007/s13577-022-00699-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/01/2022] [Indexed: 02/08/2023]
Abstract
Despite the recent advances in cancer therapy, cancer chemoresistance looms large along with radioresistance, a major challenge in dire need of thorough and minute investigation. Not long ago, cancer cells were reported to have proven refractory to the ferroptotic cell death, a newly discovered form of regulated cell death (RCD), conspicuous enough to draw attention from scholars in terms of targeting ferroptosis as a prospective therapeutic strategy. However, our knowledge concerning the underlying molecular mechanisms through which cancer cells gain immunity against ferroptosis is still in its infancy. Of late, the implication of non-coding RNAs (ncRNAs), including circular RNAs (circRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) in ferroptosis has been disclosed. Nevertheless, precisely explaining the molecular mechanisms behind the contribution of ncRNAs to cancer radio/chemotherapy resistance remains a challenge, requiring further clarification. In this review, we have presented the latest available information on the ways and means of regulating ferroptosis by ncRNAs. Moreover, we have provided important insights about targeting ncRNAs implicated in ferroptosis with the hope of opening up new horizons for overcoming cancer treatment modalities. Though a long path awaits until we make this ambitious dream come true, recent progress in gene therapy, including gene-editing technology will aid us to be optimistic that ncRNAs-based ferroptosis targeting would soon be on stream as a novel therapeutic strategy for treating cancer.
Collapse
|
20
|
Wang W, Pei Q, Wang L, Mu T, Feng H. Construction of a Prognostic Signature of 10 Autophagy-Related lncRNAs in Gastric Cancer. Int J Gen Med 2022; 15:3699-3710. [PMID: 35411177 PMCID: PMC8994655 DOI: 10.2147/ijgm.s348943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background Autophagy plays a double-edged sword role in cancers. LncRNAs could regulate cancer initiation and development at various levels. However, the role of autophagy-related lncRNAs (ARlncs) in gastric cancer (GC) remains indistinct. Methods GC gene expression profile and clinical data were acquired from the Cancer Genome Atlas (TCGA). The prognostic signature composed of ARlncs was established via cox regression analysis. Kaplan–Meier (K-M) survival curve was adopted to show overall survival (OS). Independence and reliability of risk signature were visualized by cox regression analysis and ROC curve. A nomogram was constructed and the reliability was analyzed by ROC curve. Immune infiltrating cells and check points were also analyzed. Results A prognostic signature was constructed which stratified GC patients into high- and low-risk groups according to risk score calculated via the 10 ARlncs including LINC01094, AC068790.7, AC090772.1, AC005165.1, PVT1, LINC00106, AC026368.1, AC090912.3, AC013652.1, UICLM. Patients in high-risk group showed a poor prognosis (p<0.001). Cox regression analysis showed signature was an independent prognostic factor (p<0.001). Areas under curves (AUC) of ROC for risk signature for predicting OS outweighed age, gender, grade, T, M and N, which suggested the reliability of the signature. A nomogram was constructed with risk signature, T, M, N and age and its AUC of ROC for 1-, 3-, and 5-year was 0.700, 0.730, 0.757 respectively, which showed good reliability. Macrophage M2, T cell CD8+ and T cell CD4+ memory resting had greatest difference between the two risk groups according to CIBERSORE-ABS algorithm (p<0.001). CD274 (PD-L1), PDCD1 (PD-1) and PDCD1LG2 (PD-L2) were expressed higher in the high-risk group (p<0.05), which implied that immunotherapy may be a good choice for these patients. Conclusion The risk signature based on 10 ARlncs can serve as an efficacious prognostic predictor and guide the immunotherapies and precise treatment for GC patients.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Qingshan Pei
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Lifen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Tong Mu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Hua Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Hua Feng, Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing 5 Road, Jinan, Shandong, 250021, People’s Republic of China, Tel +86 531-68773293, Fax +86 531-87906348, Email
| |
Collapse
|
21
|
Yang C, Chen K. Long Non-Coding RNA in Esophageal Cancer: A Review of Research Progress. Pathol Oncol Res 2022; 28:1610140. [PMID: 35241975 PMCID: PMC8885534 DOI: 10.3389/pore.2022.1610140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022]
Abstract
In recent years, there has been significant progress in the diagnosis and treatment of esophageal cancer. However, owing to the lack of early diagnosis strategies and treatment targets, the prognosis of patients with esophageal cancer remains unsatisfactory. There is an urgent need to identify novel biomarkers and treatment targets for esophageal cancer. With the development of genomics, long-chain non-coding RNAs (LncRNAs), which were once considered transcriptional “noise,” are being identified and characterized rapidly in large numbers. Recent research shows that LncRNAs are closely related to a series of steps in tumor development and play an important regulatory role in DNA replication, transcription, and post-transcriptional regulation. The abnormal expression of LncRNAs leads to tumor cell proliferation, migration, invasion, and treatment resistance. This review focuses on the latest progress in research on the abnormal expression and functional mechanisms of LncRNAs in esophageal cancer. Further, it discusses the potential applications of these findings towards achieving an early diagnosis, improving treatment efficacy, and evaluating the prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Nukala SB, Jousma J, Cho Y, Lee WH, Ong SG. Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell Biosci 2022; 12:24. [PMID: 35246252 PMCID: PMC8895873 DOI: 10.1186/s13578-022-00757-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, ABC-1 Building, 425 North 5th Street, Phoenix, AZ, 85004, USA.
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
| |
Collapse
|
23
|
Zhuo Y, Hu W, Liao M, Chen J, Zhang J, Wang J, Zhang Y, Zhang F, Shi Y, Qian H, Li S, Sun C. Targeting TFAP2C/PDCD6 Pathway by lncRNA PP7080 Expedites Tumorigenesis and Contributes to an Immunosuppressive Tumor Microenvironment in Non‐Small Cell Lung Cancer. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Zhuo
- Department of Occupational and Environmental Health School of Public Health Wuhan University Wuhan Hubei 430071 P. R. China
| | - Wei Hu
- Precision Research Center for Refractory Diseases Institute for Clinical Research Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai 201620 P. R. China
| | - Mei‐Juan Liao
- Department of Occupational and Environmental Health School of Public Health Wuhan University Wuhan Hubei 430071 P. R. China
| | - Jia‐Hao Chen
- Department of Occupational and Environmental Health School of Public Health Wuhan University Wuhan Hubei 430071 P. R. China
| | - Jian Zhang
- Department of Occupational and Environmental Health School of Public Health Wuhan University Wuhan Hubei 430071 P. R. China
| | - Juan Wang
- Department of Occupational and Environmental Health School of Public Health Wuhan University Wuhan Hubei 430071 P. R. China
| | - Yu Zhang
- Department of Occupational and Environmental Health School of Public Health Wuhan University Wuhan Hubei 430071 P. R. China
| | - Fa‐Xue Zhang
- Department of Occupational and Environmental Health School of Public Health Wuhan University Wuhan Hubei 430071 P. R. China
| | - Yu‐Fan Shi
- Department of Occupational and Environmental Health School of Public Health Wuhan University Wuhan Hubei 430071 P. R. China
| | - Hui‐Ling Qian
- Department of Occupational and Environmental Health School of Public Health Wuhan University Wuhan Hubei 430071 P. R. China
| | - Shu‐Jun Li
- Department of Physical Examination Wuhan Hospital for the Prevention and Treatment of Occupational Diseases Wuhan Hubei 430022 P. R. China
| | - Cheng‐Cao Sun
- Department of Occupational and Environmental Health School of Public Health Wuhan University Wuhan Hubei 430071 P. R. China
- Department of Molecular and Cellular Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| |
Collapse
|
24
|
Wang G, Sun L, Wang S, Guo J, Xiao R, Li W, Qi W, Qiu W. Ferroptosis‑related long non‑coding RNAs and the roles of LASTR in stomach adenocarcinoma. Mol Med Rep 2022; 25:118. [PMID: 35137922 PMCID: PMC8855154 DOI: 10.3892/mmr.2022.12634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Ferroptosis is a form of programmed cell death that participates in diverse physiological processes. Increasing evidence suggests that long noncoding RNAs (lncRNAs) regulate ferroptosis in tumors, including stomach adenocarcinoma (STAD). In the present study, RNA-sequencing data from The Cancer Genome Atlas database and ferroptosis-related markers from the FerrDb data resource were analyzed to select differentially expressed lncRNAs. Univariate and multivariate Cox regression analyses were performed on these differentially expressed lncRNAs to screen 12 lncRNAs linked with overall survival (OS) and 13 associated with progression-free survival (PFS). Subsequently, two signatures for predicting OS and PFS were established based on these lncRNAs. Kaplan-Meier analyses indicated that the high-risk group of patients with STAD had relatively poor prognosis. The areas under the receiver operating characteristic curves of the two signatures indicated their excellent efficacy in predicting STAD prognosis. In addition, the effect of the lncRNA LASTR on proliferation and migration in gastric cancer was confirmed and the relationship between LASTR and ferroptosis was initially explored through experiments. These results provide potential novel targets for tumor treatment and promote personalized medicine.
Collapse
Affiliation(s)
- Gongjun Wang
- Department of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Libin Sun
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shasha Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jing Guo
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ruoxi Xiao
- Department of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wenqian Li
- Department of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Weiwei Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
25
|
Xia A, Yuan W, Wang Q, Xu J, Gu Y, Zhang L, Chen C, Wang Z, Wu D, He Q, Yu W, Wang F, Xue C, Zhang Y, Bao G, Tao X, Liu S, Wang S, Hu Z, Sun B. The cancer-testis lncRNA lnc-CTHCC promotes hepatocellular carcinogenesis by binding hnRNP K and activating YAP1 transcription. NATURE CANCER 2022; 3:203-218. [PMID: 35122073 DOI: 10.1038/s43018-021-00315-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/23/2021] [Indexed: 12/24/2022]
Abstract
Cancer-testis (CT) genes participate in the initiation and progression of cancer, but the role of CT-associated long non-coding RNAs (CT-lncRNAs) in hepatocellular carcinoma (HCC) is still elusive. Here, we discovered a conserved CT-lncRNA, named lnc-CTHCC, which was highly expressed in the testes and HCC. A lnc-CTHCC-knockout (KO) mouse model further confirmed that the global loss of lnc-CTHCC inhibited the occurrence and development of HCC. In vitro and in vivo assays also showed that lnc-CTHCC promoted HCC growth and metastasis. Mechanistically, lnc-CTHCC bound to heterogeneous nuclear ribonucleoprotein K (hnRNP K), which was recruited to the YAP1 promoter for its activation. Additionally, the N6-methyladenosine (m6A) modification was mediated by N6-adenosine-methyltransferase 70-kDa subunit (METTL3) and recognized by insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1)/IGF2BP3, which maintained lnc-CTHCC stability and increased its expression in HCC. Together, our results show that lnc-CTHCC directly binds to hnRNP K and promotes hepatocellular carcinogenesis and progression by activating YAP1 transcription, suggesting that lnc-CTHCC is a potential biomarker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Anliang Xia
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenwen Yuan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianbo Xu
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Liansheng Zhang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Chen Chen
- Medical School of Nanjing University, Nanjing, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Di Wu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qifeng He
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiwei Yu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fei Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cailin Xue
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Zhang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guojian Bao
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xuewen Tao
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Siyuan Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
26
|
CircPVT1: a pivotal circular node intersecting Long Non-Coding-PVT1 and c-MYC oncogenic signals. Mol Cancer 2022; 21:33. [PMID: 35090471 PMCID: PMC8796571 DOI: 10.1186/s12943-022-01514-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The role of circular RNAs in oncogenesis has begun to be widely studied in recent years, due to the significant impact that these molecules have in disease pathogenesis, as well as their potential for the future of innovative therapies. Moreover, due to their characteristically circular shape, circular RNAs are very resistant molecules to RNA degradation whose levels are easily assessed in body fluids. Accordingly, they represent an opportunity for the discovery of new diagnostic and prognostic markers in a wide range of diseases. Among circular RNAs, circPVT1 is a rather peculiar one that originates from the circularization of the exon 2 of the PVT1 gene that encodes a pro-tumorigenic long non-coding RNA named lncPVT1. There are a few examples of circular RNAs that derive from a locus producing another non-coding RNA. Despite their apparent transcriptional independence, which occurs using two different promoters, a possible synergistic effect in tumorigenesis cannot be excluded considering that both have been reported to correlate with the oncogenic phenotype. This complex mechanism of regulation appears to also be controlled by c-MYC. Indeed, the PVT1 locus is located only 53 Kb downstream c-MYC gene, a well-known oncogene that regulates the expression levels of about 15% of all genes. Here, we review circPVT1 origin and biogenesis highlighting the most important mechanisms through which it plays a fundamental role in oncogenesis, such as the well-known sponge activity on microRNAs, as well as its paradigmatic interactome link with lncPVT1 and c-MYC expression.
Collapse
|
27
|
Tan J, Liu B, Zhou L, Gao J, Wang XK, Liu Y, Wang JR. LncRNA TUG1 promotes bladder cancer malignant behaviors by regulating the miR-320a/FOXQ1 axis. Cell Signal 2021; 91:110216. [PMID: 34920123 DOI: 10.1016/j.cellsig.2021.110216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Growing evidence has showed long noncoding RNAs (lncRNAs) play critical roles in bladder cancer (BC) progression. LncRNA taurine upregulated gene 1 (TUG1) was involved in the development of human malignancies. However, the intrinsic and concrete molecular mechanisms of TUG1 in BC remain largely unknown. METHODS Expression patterns of TUG1, miR-320a and FOXQ1 in BC tissues and cell lines were measured using qRT-PCR and western blot, respectively. Cell proliferation was detected by CCK-8 and colony formation assays. The capacity of cell migration and invasion was evaluated using wound healing and transwell assay. Tumor xenograft assay was performed to further validate the role of TUG1 in BC progression. Dual luciferase reporter assay and FISH analysis were employed to verify the TUG1/miR-320a/FOXQ1 regulatory network. RESULTS TUG1 was significantly higher expression in BC specimens and cell lines. TUG1 knockdown suppressed BC cells malignant behaviors in vitro and inhibited tumor growth and metastasis in vivo, while TUG1 overexpression promoted BC cells malignant behaviors in vitro. However, the function of miR-320a was opposite to that of TUG1, and miR-320a inhibitor partially eliminated the inhibitory effect of TUG1 knockdown on the malignant behavior of BC cells. As a microRNA sponge, TUG1 actively elevated FOXQ1 expression to sponge miR-320a and subsequently promoted BC cells malignant phenotypes. CONCLUSION TUG1 may have great potential as therapeutic target for BC, since TUG1 silencing inhibited cell proliferation, migration and invasion in BC, while promoted cell apoptosis, by regulating the miR-320a/FOXQ1 axis.
Collapse
Affiliation(s)
- Jing Tan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jun Gao
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xin-Kun Wang
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Yuan Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jin-Rong Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
28
|
Wei L, Sun J, Zhang N, Shen Y, Wang T, Li Z, Yang M. Novel Implications of MicroRNAs, Long Non-coding RNAs and Circular RNAs in Drug Resistance of Esophageal Cancer. Front Cell Dev Biol 2021; 9:764313. [PMID: 34881242 PMCID: PMC8645845 DOI: 10.3389/fcell.2021.764313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is the eighth most common malignancy and the sixth leading cause of cancer-related deaths worldwide. Chemotherapy based on platinum drugs, 5-fluorouracil, adriamycin, paclitaxel, gemcitabine, and vinorelbine, as well as targeted treatment and immunotherapy with immune checkpoint inhibitors improved the prognosis in a portion of patients with advanced esophageal cancer. Unfortunately, a number of esophageal cancer patients develop drug resistance, resulting in poor outcomes. Multiple mechanisms contributing to drug resistance of esophageal cancer have been reported. Notably, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), have been identified to play crucial roles in modulating esophageal cancer drug resistance. In the present review, we highlight the underlying mechanisms how miRNAs, lncRNAs, and circRNAs impact the drug resistance of esophageal cancer. Several miRNAs, lncRNAs, and circRNAs may have potential clinical implications as novel biomarkers and therapeutic targets for esophageal cancer.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Teng Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zengjun Li
- Department of Endoscopy, Shandong Cancer Hospital and Institute, Jinan, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
29
|
Ma L, Yan W, Sun X, Chen P. Long noncoding RNA VPS9D1-AS1 promotes esophageal squamous cell carcinoma progression via the Wnt/β-catenin signaling pathway. J Cancer 2021; 12:6894-6904. [PMID: 34659577 PMCID: PMC8517997 DOI: 10.7150/jca.54556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/29/2021] [Indexed: 01/22/2023] Open
Abstract
The VPS9D1 antisense RNA1 (VPS9D1-AS1, lncRNA MYU) can act as an oncogene or an antioncogene in different malignancies. In the present study, we demonstrated that VPS9D1-AS1 is significantly upregulated in esophageal squamous cell carcinoma (ESCC) and assessed its biological function and clinical prognosis. RNA-sequencing was conducted in four pairs of ESCC tissues and normal adjacent tissues (NATs). Compared with controls, lncRNA VPS9D1-AS1 was highly expressed in ESCC tissues, cell lines and plasma. VPS9D1-AS1 upregulation significantly correlated with the histopathological grade and clinical stage of ESCC. Analyses revealed poor prognosis in ESCC patients with high VPS9D1-AS1 expression. VPS9D1-AS1 knockdown led to the inhibition of tumor proliferation, migration, and invasion in vivo and vitro. VPS9D1-AS1 silencing downregulated the Wnt/β-catenin signaling pathways by acting on key proteins such as β-catenin and c-Myc. However, the expressions of these proteins increased after the addition of pathway agonist CT99021. Therefore, taken together VPS9D1-AS1 is highly expressed in ESCC and its expression can lead to poor prognosis. In conclusion, this study suggested that VPS9D1-AS1 acts as a vital part in facilitating ESCC progression and can be a potential biomarker for the diagnosis of patients with ESCC.
Collapse
Affiliation(s)
- Liang Ma
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu , China
| | - Wenyue Yan
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu , China
| | - Xingwei Sun
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ping Chen
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu , China
| |
Collapse
|
30
|
Zhang HJ, Chen G, Chen SW, Fu ZW, Zhou HF, Feng ZB, Mo JX, Li CB, Liu J. Overexpression of cyclin-dependent kinase 1 in esophageal squamous cell carcinoma and its clinical significance. FEBS Open Bio 2021; 11:3126-3141. [PMID: 34586751 PMCID: PMC8564100 DOI: 10.1002/2211-5463.13306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin‐dependent kinase 1 (CDK1) plays a significant role in certain malignancies. However, it remains unclear whether CDK1 plays a role in esophageal squamous cell carcinoma (ESCC). The aim of this study was to analyze the expression and clinical value of CDK1 in ESCC. CDK1 protein in 151 ESCC tissues and 138 normal esophageal tissues was detected by immunohistochemistry. RNA‐seq of eight pairs of ESCC and adjacent esophageal specimens was performed to evaluate the levels of CDK1 mRNA. Microarray and external RNA‐seq data from 664 cases of ESCC and 1733 cases of control tissues were used to verify the difference in CDK1 expression between the two groups. A comprehensive analysis of all data was performed to evaluate the difference in CDK1 between ESCC tissues and control tissues. Further, functional enrichment analyses were performed based on differentially expressed genes (DEGs) of ESCC and co‐expressed genes (CEGs) of CDK1. In addition, a lncRNA‐miRNA‐CDK1 network was constructed. The expression of CDK1 protein was obviously increased in ESCC tissues (3.540 ± 2.923 vs. 1.040 ± 1.632, P < 0.001). RNA‐seq indicated that the mRNA level of CDK1 was also highly expressed in ESCC tissues (5.261 ± 0.703 vs. 2.229 ± 1.161, P < 0.0001). Comprehensive analysis revealed consistent up‐regulation of CDK1 (SMD = 1.41; 95% CI 1.00–1.83). Further, functional enrichment analyses revealed that the functions of these genes were mainly concentrated in the cell cycle. A triple regulatory network of PVT1‐hsa‐miR‐145‐5p/hsa‐miR‐30c‐5p‐CDK1 was constructed using in silico analysis. In summary, overexpression of CDK1 is closely related to ESCC tumorigenesis.
Collapse
Affiliation(s)
- Han-Jie Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shang-Wei Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zong-Wang Fu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Xian Mo
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China.,Wuzhou Gongren Hospital, Wuzhou, China
| | - Chang-Bo Li
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China.,Wuzhou Gongren Hospital, Wuzhou, China
| | - Jun Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
31
|
Long non-coding RNAs and circular RNAs in tumor angiogenesis: From mechanisms to clinical significance. Mol Ther Oncolytics 2021; 22:336-354. [PMID: 34553023 PMCID: PMC8426176 DOI: 10.1016/j.omto.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) execute a wide array of functions in physiological and pathological processes, including tumor progression. Angiogenesis, an elaborate multistep process driving new blood vessel formation, accelerates cancer progression by supplying nutrients and energy. Dysregulated lncRNAs and circRNAs can reportedly impact cancer progression by influencing angiogenesis. However, the expanding landscape of lncRNAs and circRNAs in tumor progression-dependent angiogenesis remains largely unknown. This review summarizes the major functions of angiogenic lncRNAs (Angio-LncRs) and angiogenic circRNAs (termed Angio-CircRs) and their cancer mechanisms. Moreover, we highlight the commonalities of lncRNAs and circRNAs in epigenetic, transcriptional, and post-transcriptional regulation as well as illustrate how Angio-LncRs and Angio-CircRs induce cancer onset and progression. We also discuss their potential clinical applications in diagnosis, prognosis, and anti-angiogenic therapies.
Collapse
|
32
|
Chen Y, Zhang X, Li J, Zhou M. Immune-related eight-lncRNA signature for improving prognosis prediction of lung adenocarcinoma. J Clin Lab Anal 2021; 35:e24018. [PMID: 34550610 PMCID: PMC8605161 DOI: 10.1002/jcla.24018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the leading cause of cancer‐related deaths worldwide. Therefore, the identification of a novel prediction signature for predicting the prognosis risk and survival outcomes is urgently demanded. Methods We integrated a machine‐learning frame by combing the Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression model to identify the LUAD‐related long non‐coding RNA (lncRNA) survival biomarkers. Subsequently, the Spearman correlation test was employed to interrogate the relationships between lncRNA signature and tumor immunity and constructed the competing endogenous RNA (ceRNA) network. Results Herein, we identified an eight‐lncRNA signature (PR‐lncRNA signature, NPSR1‐AS1, SATB2‐AS1, LINC01090, FGF12‐AS2, AC005256.1, MAFA‐AS1, BFSP2‐AS1, and CPC5‐AS1), which contributes to predicting LUAD patient's prognosis risk and survival outcomes. The PR‐lncRNA signature has also been confirmed as the robust signature in independent datasets. Further parsing of the LUAD tumor immune infiltration showed the PR‐lncRNAs were closely associated with the abundance of multiple immune cells infiltration and the expression of MHC molecules. Furthermore, by constructing the PR‐lncRNA–related ceRNA network, we interrogated more potential anti‐cancer therapy targets. Conclusion lncRNAs, as emerging cancer biomarkers, play an important role in a variety of cancer processes. Identification of PR‐lncRNA signatures allows us to better predict patient's survival outcomes and disease risk. Finally, the PR‐lncRNA signatures could help us to develop novel LUAD anti‐cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yan Chen
- School of Medicine, Department of Oncology, Southeast University, Zhongda Hospital, Nanjing, China
| | - Xiuxiu Zhang
- School of Medicine, Department of Oncology, Southeast University, Zhongda Hospital, Nanjing, China
| | - Jinze Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Min Zhou
- School of Medicine, Department of Oncology, Southeast University, Zhongda Hospital, Nanjing, China
| |
Collapse
|
33
|
Xie G, Zheng X, Zheng Z, Wu R, Yao Z, Huang W, Sun F, Mu X, Wu K, Zheng J. The ceRNA PVT1 inhibits proliferation of ccRCC cells by sponging miR-328-3p to elevate FAM193B expression. Aging (Albany NY) 2021; 13:21712-21728. [PMID: 34518442 PMCID: PMC8457591 DOI: 10.18632/aging.203514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common and fatal malignancy. Long noncoding RNAs (lncRNAs) have emerged as crucial biomarkers and regulators in many cancers, warranting the detailed investigation of their biological functions and molecular mechanisms. In this study, we explored the role and mechanism of plasmacytoma variant translocation 1 (PVT1), a competitive endogenous RNA (ceRNA) in ccRCC tissues in vitro and in vivo. We found that PVT1 is upregulated in ccRCC cells and promoted cell proliferation. Bioinformatic analysis, dual-luciferase reporter assays, argonaute 2-RNA immunoprecipitation (AGO2-RIP), quantitative PCR arrays, western blot assay, and rescue experiments were conducted to explore the underlying mechanisms of PVT1. Our analyses revealed that miR-328-3p was a direct target of PVT1 and that FAM193B was a direct target of miR-328-3p. FAM193B is upregulated in ccRCC tissues and promotes cell proliferation by activating the MAPK/ERK and PI3K/AKT pathways. Our results indicated that PVT1 promotes ccRCC cells proliferation by sponging miR-328-3p to upregulate FAM193B and activate the MAPK/ERK and PI3K/AKT pathways. Collectively, these results suggest that PVT1- miR-328-3p-FAM193B loop could serve as a potential biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Guohai Xie
- Department of Urology, Ningbo First Hospital, Ningbo 315000, Zhejiang, China.,Tongji University School of Medicine, Shanghai 20092, Shanghai, China.,Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo 315010, Zhejiang, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Shanghai 200040, Shanghai, China
| | - Zhong Zheng
- Department of Urology, Shanghai General Hospital, Shanghai 200080, Shanghai, China
| | - Ruoyu Wu
- Department of Urology, Shanghai General Hospital, Shanghai 200080, Shanghai, China
| | - Zhixian Yao
- Department of Urology, Shanghai General Hospital, Shanghai 200080, Shanghai, China
| | - Wenjie Huang
- Department of Urology, Shanghai General Hospital, Shanghai 200080, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai 200080, Shanghai, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai 200080, Shanghai, China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, Shanghai 200080, Shanghai, China
| | - Junhua Zheng
- Tongji University School of Medicine, Shanghai 20092, Shanghai, China.,Department of Urology, Shanghai General Hospital, Shanghai 200080, Shanghai, China
| |
Collapse
|
34
|
Zhang MX, Zhang LZ, Fu LM, Yao HH, Tan L, Feng ZH, Li JY, Lu J, Pan YH, Shu GN, Li PJ, Tang YM, Liao ZY, Wei JH, Chen W, Guo JP, Luo JH, Chen ZH. Positive feedback regulation of lncRNA PVT1 and HIF2α contributes to clear cell renal cell carcinoma tumorigenesis and metastasis. Oncogene 2021; 40:5639-5650. [PMID: 34321604 PMCID: PMC8445819 DOI: 10.1038/s41388-021-01971-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to exert important roles in tumors, including clear cell renal cell carcinoma (ccRCC). PVT1 is an important oncogenic lncRNA which has critical effects on onset and development of various cancers, however, the underlying mechanism of PVT1 functioning in ccRCC remains largely unknown. VHL deficiency-induced HIF2α accumulation is one of the major factors for ccRCC. Here, we identified the potential molecular mechanism of PVT1 in promoting ccRCC development by stabilizing HIF2α. PVT1 was significantly upregulated in ccRCC tissues and high PVT1 expression was associated with poor prognosis of ccRCC patients. Both gain-of-function and loss-of function experiments revealed that PVT1 enhanced ccRCC cells proliferation, migration, and invasion and induced tumor angiogenesis in vitro and in vivo. Mechanistically, PVT1 interacted with HIF2α protein and enhanced its stability by protecting it from ubiquitination-dependent degradation, thereby exerting its biological significance. Meanwhile, HIF2α bound to the enhancer of PVT1 to transactivate its expression. Furthermore, HIF2α specific inhibitor could repress PVT1 expression and its oncogenic functions. Therefore, our study demonstrates that the PVT1/ HIF2α positive feedback loop involves in tumorigenesis and progression of ccRCC, which may be exploited for anticancer therapy.
Collapse
Affiliation(s)
- Ming-Xiao Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Zhen Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liang-Min Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hao-Hua Yao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lei Tan
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zi-Hao Feng
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jia-Ying Li
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jun Lu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi-Hui Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guan-Nan Shu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Peng-Ju Li
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi-Ming Tang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhuang-Yao Liao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jin-Huan Wei
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian-Ping Guo
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Jun-Hang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| | - Zhen-Hua Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
35
|
Xu J, Chen Z, Fang Z, Chen S, Guo Y, Liu X, Chen K, Chen S. Long non-coding RNA OIP5-AS1 promotes the progression of esophageal cancer by regulating miR-30a/VOPP1 expression. Oncol Lett 2021; 22:651. [PMID: 34386073 PMCID: PMC8299025 DOI: 10.3892/ol.2021.12912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve an important role in the development of esophageal cancer (EC), which is the eighth most common type of cancer worldwide. lncRNA opa-interacting protein 5 antisense transcript 1 (OIP5-AS1) is associated with human malignancy. However, the biological roles of OIP5-AS1 in the development of EC remain unclear. In the present study, transfection was conducted, and reverse transcription-quantitative PCR and western blot analysis were used for the detection of mRNA and protein expression, respectively. Furthermore, dual-luciferase reporter and RNA immunoprecipitation assays were used to study the interaction between miRNA and lncRNA or genes. The results revealed that OIP5-AS1 expression in EC tissues and cultured EC cells was upregulated, microRNA-30a (miR-30a) expression was downregulated. OIP5-AS1-knockdown suppressed the proliferation, migration and invasion of EC9706 and EC109 cells. miR-30a was confirmed to interact with OIP5-AS1, and miR-30a-mimics transfection ameliorated the effects of OIP5-AS1 in EC cells. Vesicular overexpressed in cancer prosurvival protein 1 (VOPP1) was verified as the direct target of miR-30a. VOPP1 expression was positively correlated with OIP5-AS1 expression in EC cells. Overexpression of VOPP1 ameliorated the negative effects of OIP5-AS1-knockdown on EC9706 and EC109 cells. In conclusion, OIP5-AS1 promoted the proliferation, migration and invasion of EC cells by increasing VOPP1 expression by sponging miR-30a.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, Jianxi 341000, P.R. China
| | - Zheng Fang
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Shixiong Chen
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Ying Guo
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Xianfeng Liu
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Kai Chen
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| | - Shengjia Chen
- Department of Cardiothoracic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jianxi 332000, P.R. China
| |
Collapse
|
36
|
Comprehensive Characterization of Common and Cancer-Specific Differently Expressed lncRNAs in Urologic Cancers. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5515218. [PMID: 34335862 PMCID: PMC8286197 DOI: 10.1155/2021/5515218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023]
Abstract
Urologic cancers, comprising prostate carcinoma (PCa), renal cell carcinoma (RCC), and bladder carcinoma (BCa), were the commonly occurred carcinoma amid males. Long noncoding RNAs (lncRNAs) with the length of more than 200 nt functioned importantly in physiological and pathological advancement. Nevertheless, further investigation regarding lncRNA expression feature and function in urologic cancers should be essential. This study is aimed at uncovering the roles of the differently expressed lncRNAs in urologic cancers. The data of gene expression levels was downloaded from lncRNAtor datasets. The lncRNA expression pattern existing in different urologic cancers was assessed by hierarchical clustering analysis. Gene Ontology (GO) analysis and KEGG pathway analysis were separately applied to evaluate the biological function and process and the biological pathways involving differently expressed lncRNAs. Our results indicated that 18 lncRNA expressions were increased, and 16 lncRNA expressions were reduced in urologic cancers after comparison with that in normal tissues. Moreover, our results demonstrated 61, 422, 137, and 281 lncRNAs were specifically dysregulated in bladder cancer (BLCA), kidney renal clear cell cancer (KIRC), kidney renal papillary cell cancer (KIRP), and prostate adenocarcinoma (PRAD), respectively. Bioinformatics analysis showed that differently expressed lncRNAs displayed crucially in urologic cancers. The prognostic value of common and cancer-specific differently expressed lncRNAs, such as PVT1, in cancer outcomes, was emphasized here. Our research has deeply unearthed the mechanism of differently expressed lncRNAs in urologic cancers development.
Collapse
|
37
|
Long noncoding RNA PVT1 promotes tumour progression via the miR-128/ZEB1 axis and predicts poor prognosis in esophageal cancer. Clin Res Hepatol Gastroenterol 2021; 45:101701. [PMID: 33848670 DOI: 10.1016/j.clinre.2021.101701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE To confirm the value of PVT1 as a prognostic marker both in tumour tissue and serum of patients with esophageal cancer and clarify the mechanism. METHODS This study analyzed data obtained from 76 patients who were surgically treated from January 1, 2015, to December 31, 2016, and received a pathological diagnosis of ESCC. PVT1 levels in tumour tissue and serum were detected by qRT-PCR. Patient data were extracted from medical records, and follow-up evaluations were performed. The roles of PVT1 in proliferation, migration and invasion were by CCK-8 and Transwell in stable knockdown PVT1 cell lines. Signal pathways PVT1 promotes esophageal cancer were detected by qRT-PCR and western blot. RESULTS PVT1 was overexpression in esophageal cancer tissues and high levels of PVT1 were correlated with lymphatic metastasis, high TNM stage and postoperative metastasis. High levels of PVT1 in tissues were correlated with worse metastasis-free survival (MFS) (HR: 2.578, 95% CI: 1.369-4.853). High level of PVT1 in serum was correlated with postoperative metastasis. High levels of PVT1 in serum were correlated with worse overall survival (OS) (HR: 2.124, 95% CI: 1.078-4.186) and worse MFS (HR: 2.786, 95% CI: 1.557-4.985). Knockdown of PVT1 decreased the cell proliferation, migration and invasion abilities of esophageal cancer cell lines. The expression of ZEB1 was significantly downregulated, and the expression of E-cadherin was increased by the knockdown of PVT1. Knockdown of miR-128 restored the altered proliferation, migration and invasion and the expression of ZEB1 and E-cadherin caused by knockdown of PVT1. CONCLUSIONS High levels of PVT1 in serum were correlated with postoperative metastasis and a poor prognosis. PVT1 promoted ESCC progression via the miR-128/ZEB1/E-cadherin axis.
Collapse
|
38
|
Zhang P, Sun H, Ji Z. Downregulating lncRNA PVT1 Relieves Astrocyte Overactivation Induced Neuropathic Pain Through Targeting miR-186-5p/CXCL13/CXCR5 Axis. Neurochem Res 2021; 46:1457-1469. [PMID: 33742328 DOI: 10.1007/s11064-021-03287-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) is one of the main causes leading to neuropathic pain. Here, we aim to explore the molecular mechanism and function of lncRNA PVT1 in neuropathic pain induced by SCI. The expression of lncRNA PVT1, microRNA (miR) - 186-5p was measured via quantitative reverse transcription PCR (qRT-PCR), and the activation of astrocytes (labeled by GFAP) was detected by immunohistochemistry. Western blot was conducted to detect the expression of chemokine ligand 13 (CXCL13), chemokine receptor 5 (CXCR5), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) in spinal cord injury lesions. The levels of inflammatory cytokines (including IL-1β and IL-6) and MDA in tissues were examined via Enzyme-linked immunosorbent assay (ELISA). In vitro experiments were also conducted in primary cultured astrocyte to explore the response of astrocyte to lipopolysaccharide (LPS). What's more, the PVT1-miR-186-5p interaction was verified via the dual luciferase activity assay and RNA immunoprecipitation (RIP) assay. The results demonstrated that the levels of PVT1, CXCL13 and CXCR5 were upregulated, while miR-186-5p were decreased in SCI rats' spinal cord and LPS-mediated astrocytes. In the SCI model, PVT1 depletion significantly alleviated neuropathic pain, astrocytic activation and reduced the expression of neuroinflammatory factors and proteins. The relevant mechanism studies confirmed that PVT1 is a competitive endogenous RNA (ceRNA) of miR-186-5p, targets and inhibits its expression and promotes the expression of CXCL13/CXCR5, while miR-186-5p targets CXCL13. In conclusion, inhibition of lncRNA PVT1 alleviates neuropathic pain in SCI rats by upregulating miR-186-5p and down-regulating CXCL13/CXCR5. The PVT1/miR-186-5p/CXCL13/CXCR5 axis can be used as a new therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Peisong Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang Road, Liaocheng, 252000, Shandong, China
| | - Hanyu Sun
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang Road, Liaocheng, 252000, Shandong, China
| | - Zhengang Ji
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang Road, Liaocheng, 252000, Shandong, China.
| |
Collapse
|
39
|
Cong R, Kong F, Ma J, Li Q, Yang H, Ma X. The PVT1/miR-612/CENP-H/CDK1 axis promotes malignant progression of advanced endometrial cancer. Am J Cancer Res 2021; 11:1480-1502. [PMID: 33948369 PMCID: PMC8085881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023] Open
Abstract
Our previous study introduced the oncogenic role of the long non-coding RNA plasmacytoma variant translocation 1 (PVT1) in endometrial cancer (EC). In this study, we aimed to construct a PVT1-centered competing endogenous RNA (ceRNA) network to outline a regulatory axis that might promote the malignant progression of advanced EC. Raw Uterine Corpus Endometrial Carcinoma (UCEC) datasets were collected from The Cancer Genome Atlas (TCGA) database and used for construction of the PVT1-centered ceRNA network. The ceRNA binding sites were established using dual-luciferase assays. FISH assays displayed the co-location of PVT1 and miR-612 in EC cells. Immunohistochemistry, in situ hybridization, qRT-PCR, and western blots were used to assess the expression of miR-612 and CENP-H in EC tissues, and their functions on biological behaviours were examined by a series of in vitro and in vivo assays. Molecule interactions were illustrated by co-transfection assays. The bioinformatics analysis showed that PVT1/miR-612/CENP-H/CDK1 axis played a vital role in the malignant progression of advanced EC. MiR-612 was downregulated in EC tissues and acted as a tumour suppressor to inhibit cell proliferation, migration, invasion, and promote cell apoptosis. CENP-H was found overexpressed in EC tissues, and the expression level was correlated to diagnosis and prognosis of EC. Hyperactivated CENP-H promoted cell proliferation, migration, invasion, and inhibited cell apoptosis. Overexpressed CENP-H prevented the anti-tumour effects observed with upregulated miR-612; knockdown of miR-612 also suppressed the anti-tumour effects of downregulated PVT1. Knockdown of PVT1 together with upregulated miR-612 exerted the strongest anti-tumour effects in nude mice. These effects were mediated by CDK1 through modulation of the Akt/mTOR signaling pathway. In conclusion, the PVT1/miR-612/CENP-H/CDK1 axis promoted the malignant progression of advanced EC and could serve as a promising target for potential treatments.
Collapse
Affiliation(s)
- Rong Cong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Qing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| |
Collapse
|
40
|
Xu Y, Li Y, Jin J, Han G, Sun C, Pizzi MP, Huo L, Scott A, Wang Y, Ma L, Lee JH, Bhutani MS, Weston B, Vellano C, Yang L, Lin C, Kim Y, MacLeod AR, Wang L, Wang Z, Song S, Ajani JA. Correction to: LncRNA PVT1 up-regulation is a poor prognosticator and serves as a therapeutic target in esophageal adenocarcinoma. Mol Cancer 2021; 20:56. [PMID: 33766033 PMCID: PMC7992986 DOI: 10.1186/s12943-021-01351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yan Xu
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuan Li
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jiankang Jin
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Guangchun Han
- Departments of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chengcao Sun
- Departments of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melissa Pool Pizzi
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Longfei Huo
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ailing Scott
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ying Wang
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Lang Ma
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jeffrey H Lee
- Departments of Gastroenterology&Hepatology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Manoop S Bhutani
- Departments of Gastroenterology&Hepatology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Brian Weston
- Departments of Gastroenterology&Hepatology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher Vellano
- Center for Co-Clinical Trial, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liuqing Yang
- Departments of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chunru Lin
- Departments of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youngsoo Kim
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - A Robert MacLeod
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Linghua Wang
- Departments of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| | - Shumei Song
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Jaffer A Ajani
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
LncRNA PVT1 promotes the malignant progression of acute myeloid leukaemia via sponging miR-29 family to increase WAVE1 expression. Pathology 2021; 53:613-622. [PMID: 33558065 DOI: 10.1016/j.pathol.2020.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/23/2022]
Abstract
LncRNA PVT1 has been demonstrated to be upregulated in acute myeloid leukaemia (AML) patients and indicates a poor prognosis. Nevertheless, its role in AML remains obscure. This study investigated the regulatory role and potential mechanisms of PVT1 in the progression of AML. Expression of PVT1, miR-29 family and WAVE1 was detected by quantitative real-time polymerase chain reaction. CCK8 and EdU assays were performed to assess the proliferation of AML cells. Cell cycle and apoptosis were determined by propidium iodide (PI) staining and Annexin V/PI staining on a flow cytometer. Transwell assay was carried out to evaluate the migration and invasion abilities. The interaction between miR-29 family and PVT1/WAVE1 was confirmed by dual luciferase reporter assay and RNA immunoprecipitation assay. The protein levels of WAVE1, Bcl-2, Bax, cleaved Caspase 3, cyclin D1, and p21 were detected by western blotting. Xenograft transplantation was performed to determine the tumourigenicity of AML cell in vivo. PVT1 expression was significantly increased in AML patient samples and cells, which positively correlated with WAVE1 expression. Silencing of PVT1 restrained growth, migration and invasion, while inducing apoptosis of AML cells. Moreover, PVT1 acted as a sponge for miR-29 family to increase WAVE1 expression in AML cells. Overexpression of WAVE1 partly counteracted PVT1 knockdown-induced anti-tumour effects on AML cells in vitro and xenograft tumour in vivo. PVT1 facilitated the progression of AML via regulating miR-29 family/WAVE1 axis, which supported the conclusion that PVT1 may be a promising therapeutic target for AML.
Collapse
|
42
|
Du W, Lei C, Wang Y, Ding Y, Tian P. LINC01232 Sponges Multiple miRNAs and Its Clinical Significance in Pancreatic Adenocarcinoma Diagnosis and Prognosis. Technol Cancer Res Treat 2021; 20:1533033820988525. [PMID: 33506742 PMCID: PMC7871353 DOI: 10.1177/1533033820988525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Long noncoding RNAs have been demonstrated to play important roles in
different kinds of human malignancy. The purpose of this study was to
evaluate the diagnostic and prognostic value of long intergenic non-protein
coding RNA 1232 (LINC01232) in patients with pancreatic adenocarcinoma
(PAAD) and further explore the clinical significance of the potential miRNAs
that might be sponged by LINC01232. Methods: The potential target miRNAs that might be sponged by LINC01232 were analyzed
using bioinformatics analysis. The Real-Time quantitative PCR was adopted to
measure the relative expression of LINC01232 and target miRNAs in PAAD serum
and tissue samples. The diagnostic and prognostic value of LINC01232 was
evaluated using the receiver operating characteristic analysis and
Kaplan-Meier survival analysis, respectively. Results: LINC01232 expression was upregulated in PAAD serum and tissues and associated
with patients’ TNM stage. Serum LINC01232 expression had diagnostic value,
and the high levels of LINC01232 could predict unfavorable prognosis in PAAD
patients. miR-204-5p, miR-370-5p and miR-654-3p were proposed as 3 targets
of LINC01232 in PAAD, and their decreased expression levels in PAAD patients
showed certain clinical significance in diagnosis and prognosis. Conclusion: The data of this study revealed that LINC01232 expression is upregulated in
PAAD serum and tissue samples with considerable diagnostic and prognostic
significance. In addition, miR-204-5p, miR-370-5p and miR-654-3p may be
sponged by LINC01232 in PAAD, which also show potencies in PAAD diagnosis
and prognosis.
Collapse
Affiliation(s)
- Wenyan Du
- Department of Science and Education, 117906Zibo Central Hospital, Zibo, Shandong, China
| | - Chengbin Lei
- Department of Clinical Laboratory, 42259Zibo Central Hospital, Zibo, Shandong, China
| | - Yanzhen Wang
- Department of Ultrasonic, 42259Zibo Central Hospital, Zibo, Shandong, China
| | - Yiwen Ding
- Department of Ultrasonic, 42259Zibo Central Hospital, Zibo, Shandong, China
| | - Peng Tian
- Department of Ultrasonic, 42259Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
43
|
Wilson C, Kanhere A. 8q24.21 Locus: A Paradigm to Link Non-Coding RNAs, Genome Polymorphisms and Cancer. Int J Mol Sci 2021; 22:1094. [PMID: 33499210 PMCID: PMC7865353 DOI: 10.3390/ijms22031094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
The majority of the human genome is comprised of non-protein-coding genes, but the relevance of non-coding RNAs in complex diseases has yet to be fully elucidated. One class of non-coding RNAs is long non-coding RNAs or lncRNAs, many of which have been identified to play a range of roles in transcription and translation. While the clinical importance of the majority of lncRNAs have yet to be identified, it is puzzling that a large number of disease-associated genetic variations are seen in lncRNA genes. The 8q24.21 locus is rich in lncRNAs and very few protein-coding genes are located in this region. Interestingly, the 8q24.21 region is also a hot spot for genetic variants associated with an increased risk of cancer. Research focusing on the lncRNAs in this area of the genome has indicated clinical relevance of lncRNAs in different cancers. In this review, we summarise the lncRNAs in the 8q24.21 region with respect to their role in cancer and discuss the potential impact of cancer-associated genetic polymorphisms on the function of lncRNAs in initiation and progression of cancer.
Collapse
Affiliation(s)
| | - Aditi Kanhere
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| |
Collapse
|
44
|
Xu H, Miao J, Liu S, Liu H, Zhang L, Zhang Q. Long non-coding RNA KCNQ1 overlapping transcript 1 promotes the progression of esophageal squamous cell carcinoma by adsorbing microRNA-133b. Clinics (Sao Paulo) 2021; 76:e2175. [PMID: 33909822 PMCID: PMC8050598 DOI: 10.6061/clinics/2021/e2175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The long non-coding RNA (lncRNA) KCNQ1 overlapping transcript 1 (KCNQ1OT1) exerts vital regulatory functions in diverse tumors. However, the biological function of KCNQ1OT1 in esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS KCNQ1OT1 expression was detected in ESCC tissues using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration, and invasion were detected by the CCK-8 assay, EdU assay, flow cytometry analysis, and Transwell experiments, respectively. Bioinformatics analysis, luciferase reporter experiments, and RNA immunoprecipitation assays were used to predict and validate the regulatory relationships between KCNQ1OT1, microRNA-133b (miR-133b) and epidermal growth factor receptor (EGFR). RESULTS KCNQ1OT1 expression was remarkably upregulated in ESCC tissues and cell lines. Overexpression of KCNQ1OT1 markedly promoted ESCC cell proliferation, migration, and invasion and enhanced the expression of N-cadherin, MMP-2, and MMP-9, but inhibited apoptosis and E-cadherin expression in ESCC cell lines; KCNQ1OT1 knockdown exerted the opposite effects. KCNQ1OT1 could directly bind to miR-133b and suppress its expression, and miR-133b reversed the effects of KCNQ1OT1 overexpression in ESCC cells. MiR-133b reduced the expression of epidermal growth factor receptor (EGFR); further, KCNQ1OT1 activated the phosphatidylinositol 3-kinase/AKT serine/threonine kinase 1 (PI3K/AKT) signaling pathway by repressing miR-133b repression and indirectly upregulating EGFR. KCNQ1OT1 expression was positively correlated with EGFR mRNA expression and negatively correlated with miR-133b expression. CONCLUSION KCNQ1OT1 facilitates ESCC progression by sponging miR-133b and activating the EGFR/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Jing Miao
- Department of Pediatrics, Binzhou People’s Hospital, Binzhou, Shandong 256603, China
| | - Shuai Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Hongjian Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Lianguo Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Qingguang Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
- *Corresponding author. E-mail:
| |
Collapse
|
45
|
Sun JR, Kong CF, Xiao KM, Yang JL, Qu XK, Sun JH. Integrated Analysis of lncRNA-Mediated ceRNA Network Reveals a Prognostic Signature for Hepatocellular Carcinoma. Front Genet 2021; 11:602542. [PMID: 33381151 PMCID: PMC7767998 DOI: 10.3389/fgene.2020.602542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of malignancy and is associated with high mortality. Prior research suggests that long non-coding RNAs (lncRNAs) play a crucial role in the development of HCC. Therefore, it is necessary to identify lncRNA-associated therapeutic biomarkers to improve the accuracy of HCC prognosis. Transcriptomic data of HCC obtained from The Cancer Genome Atlas (TCGA) database were used in the present study. Differentially expressed RNAs (DERNAs), including 74 lncRNAs, 16 miRNAs, and 35 mRNAs, were identified using bioinformatics analysis. The DERNAs were subsequently used to reconstruct a competing endogenous RNA (ceRNA) network. A lncRNA signature was revealed using Cox regression analysis, including LINC00200, MIR137HG, LINC00462, AP002478.1, and HTR2A-AS1. Kaplan-Meier plot demonstrated that the lncRNA signature is highly accurate in discriminating high- and low-risk patients (P < 0.05). The area under curve (AUC) value exceeded 0.7 in both training and validation cohort, suggesting a high prognostic potential of the signature. Furthermore, multivariate Cox regression analysis indicated that both the TNM stage and the lncRNA signature could serve as independent prognostic factors for HCC (P < 0.05). Then, a nomogram comprising the TNM stage and the lncRNA signature was determined to raise the accuracy in predicting the survival of HCC patients. In the present study, we have introduced a ceRNA network that could contribute to provide a new insight into the identification of potential regulation mechanisms for the development of HCC. The five-lncRNA signature could serve as a reliable biosignature for HCC prognosis, while the nomogram possesses strong potential in clinical applications.
Collapse
Affiliation(s)
- Jian-Rong Sun
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen-Fan Kong
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kun-Min Xiao
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lu Yang
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Ke Qu
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Hui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
46
|
Zhao W, Huang Z, Liu H, Wang C. LncRNA GIHCG Promotes the Development of Esophageal Cancer by Modulating miR-29b-3p/ANO1 Axis. Onco Targets Ther 2020; 13:13387-13400. [PMID: 33408485 PMCID: PMC7781470 DOI: 10.2147/ott.s282348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Esophageal cancer is one of the most frequent cancers with a higher mortality worldwide. Although many long non-coding RNAs (LncRNAs) are reported to play important roles in the progression of esophageal cancer, the function of lncRNA GIHCG in esophageal cancer remains unclear. Methods The expression of GIHCG in esophageal cancer tissues and cancer cell lines was detected by qRT-PCR. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay, EdU staining assay and colony formation assay. Cell invasion and migration were measured by transwell assay. Cell apoptosis was detected by a flow cytometer. Luciferase reporter assay and RIP assay were used to determine the interaction between GIHCG and miR-29b-3p, and their subsequent regulation of anoctamin 1 (ANO1). The expression of ANO1 in esophageal cancer tissues and cell lines was detected by Western blot. The effect of GIHCG/miR-29b-3p in tumor formation was assessed by the xenograft nude mice model in vivo. Results GIHCG was significantly upregulated in esophageal cancer tissues and relevant cancer cell lines. Downregulation of GIHCG significantly inhibited the growth, colony formation, invasion, migration and induced apoptosis of esophageal cancer cells in vitro. Bioinformatic analysis and RIP assay determined that GIHCG was a sponge of miR-29b-3p, and ANO1 was a direct target of miR-29b-3p. Moreover, functional experiments showed that GIHCG upregulated ANO1 expression by directly sponging miR-29b-3p. Furthermore, in vivo experiment revealed that knockdown of GIHCG significantly inhibited tumor growth in nude mice. Conclusion Our study revealed that lncRNA GIHCG promoted the progression of esophageal cancer by targeting the miR-29b-3p/ANO1 axis, suggesting that GIHCG might be a novel therapeutic target for esophageal cancer.
Collapse
Affiliation(s)
- Weifeng Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, Henan Province 450003, People's Republic of China
| | - Zhoufeng Huang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, Henan Province 450003, People's Republic of China.,Institute of Hematology, Henan Provincial People's Hospital, Zhengzhou City, Henan Province 450003, People's Republic of China
| | - Huimin Liu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, Henan Province 450003, People's Republic of China
| | - Chaojie Wang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, Henan Province 450003, People's Republic of China
| |
Collapse
|
47
|
Tian S, Tang M, Li J, Wang C, Liu W. Identification of long non-coding RNA signatures for squamous cell carcinomas and adenocarcinomas. Aging (Albany NY) 2020; 13:2459-2479. [PMID: 33318305 PMCID: PMC7880362 DOI: 10.18632/aging.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
Studies have demonstrated that both squamous cell carcinomas (SCCs) and adenocarcinomas (ACs) possess some common molecular characteristics. Evidence has accumulated to support the theory that long non-coding RNAs (lncRNAs) serve as novel biomarkers and therapeutic targets in complex diseases such as cancer. In this study, we aimed to identify pan lncRNA signatures that are common to squamous cell carcinomas or adenocarcinomas with different tissues of origin. With the aid of elastic-net regularized regression models, a 35-lncRNA pan discriminative signature and an 11-lncRNA pan prognostic signature were identified for squamous cell carcinomas, whereas a 6-lncRNA pan discriminative signature and a 5-lncRNA pan prognostic signature were identified for adenocarcinomas. Among them, many well-known cancer relevant genes such as MALAT1 and PVT1 were included. The identified pan lncRNA lists can help experimental biologists generate research hypotheses and adopt existing treatments for less prevalent cancers. Therefore, these signatures warrant further investigation.
Collapse
Affiliation(s)
- Suyan Tian
- Division of Clinical Research, First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Mingbo Tang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jialin Li
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Chi Wang
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
48
|
Chen M, Zhang R, Lu L, Du J, Chen C, Ding K, Wei X, Zhang G, Huang Y, Hou J. LncRNA PVT1 accelerates malignant phenotypes of bladder cancer cells by modulating miR-194-5p/BCLAF1 axis as a ceRNA. Aging (Albany NY) 2020; 12:22291-22312. [PMID: 33188158 PMCID: PMC7695393 DOI: 10.18632/aging.202203] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous studies proved that long non-coding RNA (lncRNA) is involved in the progression of multifarious diseases, especially in some carcinomas. As a potential tumor biomarker, plasmacytoma variant translocation 1 gene (PVT1) is involved in the development and progression of multifarious cancers. Nevertheless, the intrinsic and concrete molecular mechanism of PVT1 in bladder cancer still remained unclear, which is also the dilemma faced in many non-coding RNA studies. RESULTS Our research revealed that PVT1 was significantly higher expression in bladder carcinoma specimens and cell lines. Further experiments indicated that knockdown or overexpression of PVT1 restrained or promoted the malignant phenotype and WNT/β-catenin signaling in bladder cancer cells. Meanwhile miR-194-5p was in contrast and miR-194-5p could partially reverse the function of PVT1 in malignant bladder tumor cells. As a microRNA sponge, PVT1 actively promotes the expression of b-cells lymphoma-2-associated transcription factor 1 (BCLAF1) to sponge miR-194-5p and subsequently increases malignant phenotypes of bladder cancer cells. Therefore, it performs a carcinogenic effect and miR-194-5p as the opposite function, and serves as an antioncogene in the bladder carcinomas pathogenesis. CONCLUSION PVT1-miR-194-5p-BCLAF1 axis is involved in the malignant progression and development of bladder carcinomas. Experiments revealed that PVT1 has a significant regulatory effect on bladder cancer (BC) and can be used as a clinical diagnostic marker and a therapeutic molecular marker for patients suffering from BC. METHODS In urothelial bladder carcinoma specimens and cell lines, the relative expression levels of PVT1 and miR-194-5p were detected by quantitative reverse transcription PCR (RT-qPCR). Through experiments such as loss-function and over-expression, the biological effects of PVT1 and miR-194-5p on the proliferation, migration, apoptosis and tumorigenicity were explored in bladder cancer cells. Co-immunoprecipitation, proteomics experiments, dual luciferase reporter gene analysis, western blot and other methods were adopted to investigate the PVT1 potential mechanism in bladder carcinomas.
Collapse
Affiliation(s)
- Mingwei Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Urology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Rongyuan Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Le Lu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Jian Du
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Chunyang Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Guangbo Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Suzhou 215006, Jiangsu Province, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
49
|
Yang Y, Zhang Y, Miao L, Liao W, Liao W. LncRNA PPP1R14B-AS1 Promotes Tumor Cell Proliferation and Migration via the Enhancement of Mitochondrial Respiration. Front Genet 2020; 11:557614. [PMID: 33262783 PMCID: PMC7686783 DOI: 10.3389/fgene.2020.557614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
PPP1R14B-AS1 is an antisense long non-coding RNA with unknown functions. Herein, gene differential analyses were performed using the data of patients with liver cancer and lung adenocarcinoma (LUAD) from The Cancer Genome Atlas database. PPP1R14B-AS1 was found to be upregulated and also overexpressed in 10 other types of cancers. In addition, PPP1R14B-AS1 overexpression was associated with poor overall prognosis in eight cancers. Furthermore, PPPAR14B-AS1 upregulation was positively associated with worsening development of liver and LUAD cancers and related to poor disease-free survival. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that PPP1R14B-AS1 strongly participated in regulating cell aerobic respiration processes, such as mitochondrial electron respiration chain and NADH dehydrogenation processes. Cell cytoplasmic and nuclear RNA purification assessment results revealed that PPP1R14B-AS existed in the cell nucleus and cytoplasm. The knockdown of PPP1R14B-AS1 in HepG2 and A549 cells using PPP1R14B-AS1-specific siRNAs decreased mitochondrial respiration as demonstrated by the reduction in basal respiration and ATP production. Moreover, PPP1R14B-AS1 downregulation did not obviously affect cell glycolysis ability. Finally, PPP1R14B-AS1 inhibition inhibited HepG2 and A549 cell migration and proliferation. In summary, our study found for the first time that PPP1R14B-AS1 could be a potential biomarker for cancer diagnosis and that PPP1R14B-AS1 inhibition could be a potentially effective therapy.
Collapse
Affiliation(s)
- Yibin Yang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuan Zhang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lihong Miao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Weijie Liao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Weifang Liao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
50
|
Li Y, Song S, Pizzi MP, Han G, Scott AW, Jin J, Xu Y, Wang Y, Huo L, Ma L, Vellano C, Luo X, MacLeod R, Wang L, Wang Z, Ajani JA. LncRNA PVT1 Is a Poor Prognosticator and Can Be Targeted by PVT1 Antisense Oligos in Gastric Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12102995. [PMID: 33076512 PMCID: PMC7602573 DOI: 10.3390/cancers12102995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric adenocarcinoma (GAC) is inherently resistant or becomes resistant to therapy, leading to a poor prognosis. Mounting evidence suggests that lncRNAs can be used as predictive markers and therapeutic targets in the right context. In this study, we determined the role of lncRNA-PVT1 in GAC along with the value of inhibition of PVT1 using antisense oligos (ASOs). RNA scope in situ hybridization was used to analyze PVT1 expression in tumor tissue microarrays (TMAs) of GAC and paired normal tissues from 792 patients. Functional experiments, including colony formation and invasion assays, were performed to evaluate the effects of PVT1 ASO inhibition of PVT1 in vitro; patient-derived xenograft models were used to evaluate the anti-tumor effects of PVT1 ASOs in vivo. LncRNA-PVT1 was upregulated in GACs compared to the matched adjacent normal tissues in the TMA. LncRNA PVT1 expression was positively correlated with larger tumor size, deeper wall invasion, lymph node metastases, and short survival duration. Inhibition of PVT1 using PVT1 ASOs significantly suppressed tumor cell growth and invasion in vitro and in vivo. PVT1 expression was highly associated with poor prognosis in GAC patients and targeting PVT1 using PVT1 ASOs was effective at curtailing tumor cell growth in vitro and in vivo. Thus, PVT1 is a poor prognosticator as well as therapeutic target. Targeting PVT1 using PVT1 ASOs provides a novel therapeutic strategy for GAC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (L.W.)
| | - Ailing W. Scott
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Yan Xu
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Ying Wang
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Lang Ma
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
| | - Christopher Vellano
- Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Xiaolin Luo
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA; (X.L.); (R.M.)
| | - Robert MacLeod
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA; (X.L.); (R.M.)
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (L.W.)
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (Z.W.); (J.A.A.); Tel.: +1-713-792-3685 (Z.W.)
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Y.L.); (S.S.); (M.P.P.); (A.W.S.); (J.J.); (Y.X.); (Y.W.); (L.H.); (L.M.)
- Correspondence: (Z.W.); (J.A.A.); Tel.: +1-713-792-3685 (Z.W.)
| |
Collapse
|