1
|
Li Z, Wang J, Wang W, Geng B, Zhang W, Liu W, Nan Y, You B, Zhao E, Li X. Integrated network pharmacology and RNA sequencing analysis to reveal the mechanisms of Qici Sanling decoction in the treatment of gemcitabine resistant bladder cancer. J Pharm Biomed Anal 2025; 262:116885. [PMID: 40233549 DOI: 10.1016/j.jpba.2025.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Bladder cancer (BCa) is the most prevalent cancer of the urinary system in adults; the prognosis is dismal for BCa treated with gemcitabine (GEM) owing to intrinsic or acquired chemoresistance. This study investigated the potential of Qici Sanling decoction (QCSL), an herbal Chinese medicine, to augment the efficacy of GEM in treating GEM-resistant BCa via network pharmacology and RNA sequencing. We screened 103 active components of QCSL and their 226 targets from the TCMSP database and identified 3985 targets of GEM-resistant BCa via transcriptome sequencing. On the basis of the 69 common targets, a proteinprotein interaction (PPI) network was constructed to identify the top 7 targets. Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were conducted to uncover key pathways. CCK-8 assays, Western blotting, flow cytometry, colony formation, and EdU assays were used to assess the apoptosis and proliferation of GEM-resistant T24 and J82 cells treated with QCSL. The BCa gene set was among the top enriched gene sets in the DO analysis; GO analysis revealed enrichment of 2020 terms linked to GEM resistance, and KEGG analysis revealed 161 enriched signalling pathways. Molecular docking indicated that PTGS2 has high affinity for targets of QCSL components. In vitro experiments demonstrated that cells treated with both QCSL and GEM had significantly reduced viability, increased levels of apoptosis, and decreased proliferative capacity. Thus, QCSL enhances the therapeutic effects of GEM in BCa by promoting cell apoptosis and inhibiting cell proliferation. These findings have significant clinical implications, highlighting a potential combined treatment strategy for GEM-resistant BCa to improve patient outcomes.
Collapse
Affiliation(s)
- Zhuolun Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Wanhui Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Bo Geng
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Weiyang Liu
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yunfeng Nan
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Bosen You
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Enyang Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Xuedong Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
2
|
Lei B, Zhan A, You G, Wu H, Chen S, Zhang D, Liu Z, Zheng N. A novel cuproptosis-associated LncRNA model predicting prognostic and immunotherapy response for glioma. Discov Oncol 2025; 16:1089. [PMID: 40512434 PMCID: PMC12165929 DOI: 10.1007/s12672-025-02912-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 06/04/2025] [Indexed: 06/16/2025] Open
Abstract
Recent studies have identified cuproptosis as a novel form of regulated cell death (RCD), and long non-coding RNAs (lncRNAs) have been implicated in glioma progression and prognosis. However, the role of cuproptosis-associated lncRNAs in gliomas has not been systematically assessed. In this study, data from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases were used, and cuproptosis-related genes were obtained from previous research. Cuproptosis-associated lncRNAs were identified through co-expression network analysis, Cox regression, and Least Absolute Shrinkage and Selection Operator (LASSO). A total of 10 cuproptosis-associated lncRNAs were selected to construct a prognostic prediction model. The high-risk group was associated with poor overall survival (OS) and progression-free survival (PFS). Multivariate Cox regression, Receiver Operating Characteristic (ROC) curve analysis, C-index, and nomogram demonstrated the accuracy of the 10-lncRNA signature in predicting outcomes in glioma patients. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation Analysis (GSVA) enrichment analyses revealed a strong association between the signature and immune response pathways. Immune cell infiltration and Single-Sample Gene Set Enrichment Analysis (ssGSEA) further confirmed that the signature is closely linked to immune responses in glioma patients. Further investigation revealed significant differences in tumor immune dysfunction and rejection (TIDE) scores and half-maximal inhibitory concentration (IC50) values for many drugs between low- and high-risk subgroups. This risk signature may serve as a prognostic tool and offer valuable insights into treatment strategies for glioma patients. Additionally, the expression levels of the 10 signature genes were validated by quantitative real-time polymerase chain reaction (qRT-PCR).
Collapse
Affiliation(s)
- Bo Lei
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan, 614000, PR China
| | - Ao Zhan
- Department of Neurosurgery, People's Hospital of Leshan, Leshan, 614000, PR China
| | - Guoliang You
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan, 614000, PR China
| | - Honggang Wu
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan, 614000, PR China
| | - Shu Chen
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan, 614000, PR China
| | - Daobao Zhang
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan, 614000, PR China
| | - Zhiye Liu
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan, 614000, PR China
| | - Niandong Zheng
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan, 614000, PR China.
| |
Collapse
|
3
|
Zhang J, Guo H, Gong C, Shen J, Jiang G, Liu J, Liang T, Guo L. Therapeutic targets in the Wnt signaling pathway: Treating cancer with specificity. Biochem Pharmacol 2025; 236:116848. [PMID: 40049295 DOI: 10.1016/j.bcp.2025.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 04/20/2025]
Abstract
The Wnt signaling pathway is a critical regulatory mechanism that governs cell cycle progression, apoptosis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, and the tumor immune microenvironment, while also maintaining tissue homeostasis. Dysregulated activation of this pathway is implicated in various cancers, closely linked to tumor initiation, progression, and metastasis. The Wnt/β-catenin axis plays a central role in the pathogenesis of common cancers, including colorectal cancer (CRC), breast cancer (BC), liver cancer, and lung cancer. Unlike traditional chemotherapy, targeted therapy offers a more precise approach to cancer treatment. As a key regulator of oncogenesis, the Wnt pathway represents a promising target for clinical interventions. This review provides a comprehensive analysis of the Wnt signaling pathway, exploring its roles in tumor biology and its implications in human malignancies. It further examines the molecular mechanisms and modes of action across different cancers, detailing how the Wnt pathway contributes to tumor progression through mechanisms such as metastasis promotion, immune modulation, drug resistance, and enhanced cellular proliferation. Finally, therapeutic strategies targeting Wnt pathway components are discussed, including inhibitors targeting extracellular members, as well as those within the cell membrane, cytoplasm, and nucleus. The potential of these targets in the development of novel therapeutic agents underscores the critical importance of intervening in the Wnt signaling pathway for effective cancer treatment.
Collapse
Affiliation(s)
- Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Chengxuan Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Guijie Jiang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiarui Liu
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China.
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
4
|
Fu Y, Chen L, Lv N, Wang J, Yu S, Fang Q, Xin W. miR-135b-5p/PDE3B Axis Regulates Gemcitabine Resistance in Pancreatic Cancer Through Epithelial-Mesenchymal Transition. Mol Carcinog 2025; 64:1119-1130. [PMID: 40170518 DOI: 10.1002/mc.23914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
Gemcitabine-based chemotherapy is an effective treatment for pancreatic cancer (PC), but gemcitabine resistance frequently compromises the therapeutic efficacy, resulting in clinical chemotherapeutic failure and a poor prognosis for patients. In this study, we investigated the mechanisms of gemcitabine chemoresistance in PC by examining the roles of microRNAs linked to gemcitabine resistance and their downstream signaling pathways. In vitro experiments were performed to alter miR-135b-5p levels in PC parental and drug-resistant cells to probe its function. miR-135b-5p targets PDE3B was confirmed by using RNA-seq technology to screen for gemcitabine-resistance-associated mRNAs in PC. A series of rescue experiments were performed after cotransfection, demonstrating that PDE3B could reverse miR-135b-5p-mediated chemoresistance and epithelial-mesenchymal transition (EMT). These findings indicate that the miR-135b-5p/PDE3B axis generates resistance by stimulating the EMT signaling pathway, which provides new insights into gemcitabine chemoresistance in PC.
Collapse
Affiliation(s)
- Yuxuan Fu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Liangsheng Chen
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Neng Lv
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jia Wang
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Shuwei Yu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Qilu Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wenxiu Xin
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Huang S, Liu K, Liu Q, Tao S, Wang H. Comprehensive analysis of ferroptosis-related long non-coding RNA and its association with tumor progression and ferroptosis in gastric cancer. BMC Gastroenterol 2025; 25:349. [PMID: 40340563 PMCID: PMC12063400 DOI: 10.1186/s12876-025-03951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors with a poor prognosis. Ferroptosis is an distinct type of non-apoptotic cell death that is closely associated with tumor prognosis. Thus, we aimed to develop an novel prognosis risk model based on ferroptosis-related lncRNAs and excavate novel diagnostic markers. In this study, eight ferroptosis-related lncRNAs were obtained for constructing the prognosis model in GC based on TCGA database. The patients in the high-risk group had worse survival than those in the low-risk group, and the risk-grouping could be used as an independent prognostic factor for OS. Receiver operating characteristic curve analysis demonstrated this risk model was superior to traditional clinicopathological features in predicting GC prognosis. GSEA revealed that these lncRNAs were mainly involved in cell adhesion, cancer pathways, and immune function regulation. The key gene HAGLR of this risk signature was up-regulated in GC tissues and cells. Function assays showed that knockdown of HAGLR could effectively inhibit the GC cells proliferation and migration, whereas silencing HAGLR accelerated apoptosis and ferroptosis cell death process. In conclusion, we established a novel ferroptosis-related prognostic risk signature including eight lncRNAs, which may improve prognostic predictive accuracy for patients with GC.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Kan Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Queling Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Si Tao
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Hua Wang
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi Province, 330006, P.R. China.
| |
Collapse
|
6
|
Wu S, Cheng Q, Shi Y, Wang K, Chen Z, Li X, Jiang P, Cheng Z, Yang Z, Liao B. LncRNA PVT1 activated by TGF-β1/Smad3 facilitates proliferation and metastasis of hepatocellular carcinoma via upregulating Smad6 and NRG1. J Transl Med 2025; 23:500. [PMID: 40312711 PMCID: PMC12046906 DOI: 10.1186/s12967-025-06229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/11/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) significantly affects the patient's physical and mental health. Long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1) has been associated with the progression of HCC. However, the current effectiveness of HCC treatment is considered insufficient, and the scope of its therapeutic targets is highly limited. The purpose of this investigation is to investigate the pathogenic mechanism of PVT1 in HCC and assess its potential for gene therapy in HCC. METHODS This study assessed cycle phases and proliferative capacity of HCC cells through flow cytometry, CCK-8 assay, EdU, and colony formation assays. Chromatin Immunoprecipitation (ChIP) and Dual-Luciferase Reporter Assays were conducted to investigate the interactions among the promoter and PVT1, PVT1 and its target miRNAs, as well as miRNAs and their target genes. BALB/c nude mice were employed to establish models for studying the proliferation and metastasis of HCC in vivo. RESULTS The data revealed that TGF-β1 upregulates PVT1, while Smad3 functions as a transcription factor to modulate PVT1. PVT1, in turn, upregulates Smad6 and NRG1 (Neuregulin 1). Moreover, PVT1 combines with miR-186-5p and miR-143-3p, while miR-186-5p inhibits Smad6 and miR-143-3p inhibits NRG1. Further, in vivo and in vitro analyses revealed that PVT1 stimulates the expression of Smad6, thereby promoting the proliferation of HCC. In addition, PVT1 also promotes the spread of HCC by upregulating NRG1. CONCLUSION This study validated that PVT1 activated by TGF-β1/Smad3 facilitates HCC progression and metastasis by upregulating the miR-186-5p/Smad6 and miR-143-3p/NRG1 axes, indicating its potential as a biological target for treating HCC.
Collapse
Affiliation(s)
- Shuaihui Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Shi
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhinan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinyin Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhixiang Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Bo Liao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Liu H, Wang X, Li B, Xiang Z, Zhao Y, Lu M, Lin Q, Zheng S, Guan T, Zhang Y, Hu Y. LncRNA HITT inhibits autophagy by attenuating ATG12-ATG5-ATG16L1 complex formation. Cancer Lett 2025; 616:217532. [PMID: 40021040 DOI: 10.1016/j.canlet.2025.217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Dysregulated autophagy has been implicated in the pathogenesis of numerous diseases, including cancer. Despite extensive research on the underlying mechanisms of autophagy, the involvement of long non-coding RNAs (lncRNAs) remains poorly understood. Here, we demonstrate that a previously identified lncRNA, HITT (HIF-1α inhibitor at the translation level), is closely associated with biological processes such as autophagy through unbiased bioinformatic analysis. Subsequent studies demonstrate that HITT is increased by several autophagic stimuli, including PI-103, a potent inhibitor of PI3K and mTOR. This is caused by a reduction in the binding between HITT and AGO2, resulting in a reduction in the activity of miR-205 towards HITT degradation. Increased HITT then binds to a key autophagy protein, Autophagy-related 5 (ATG5), and inhibits autophagosome formation by preventing the formation of the ATG12-ATG5-ATG16L1 complex. This results in HITT sensitizing PI-103-mediated cell death both in vitro and in vivo in nude mice by attenuating protective autophagy. The data presented herein demonstrate that HITT is a newly identified RNA regulator of autophagy and that it can be used to sensitize the colon cancer response to cell death by blocking the protective autophagy.
Collapse
Affiliation(s)
- Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Bolun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Zhiyuan Xiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Yanan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Qingyu Lin
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Tianqi Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Yihong Zhang
- Department of Endocrinology, Heilongjiang Province Hospital, Harbin, Heilongjiang Province, 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China.
| |
Collapse
|
8
|
WANG JIAHUI, GE HONGCHENG, YU ZHENGYUAN, WU LINGZHI. Non-coding RNAs as potential mediators of resistance to lung cancer immunotherapy and chemotherapy. Oncol Res 2025; 33:1033-1054. [PMID: 40296912 PMCID: PMC12034021 DOI: 10.32604/or.2024.058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/18/2024] [Indexed: 04/30/2025] Open
Abstract
Lung cancer is a common cause of cancer-related death globally. The majority of lung cancer patients initially benefit from chemotherapy and immunotherapy. However, as the treatment cycle progresses and the disease evolves, the emergence of acquired resistance leads to treatment failure. Many researches have shown that non-coding RNAs (ncRNAs) not only influence lung cancer progression but also act as potential mediators of immunotherapy and chemotherapy resistance in lung cancer, mediating drug resistance by regulating multiple targets and pathways. In addition, the regulation of immune response by ncRNAs is dualistic, forming a microenvironment for inhibits/promotes immune escape through changes in the expression of immune checkpoints. The aim of this review is to understand the effects of ncRNAs on the occurrence and development of lung cancer, focusing on the role of ncRNAs in regulating drug resistance of lung cancer.
Collapse
Affiliation(s)
- JIAHUI WANG
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - HONGCHENG GE
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310018, China
| | - ZHENGYUAN YU
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - LINGZHI WU
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
9
|
Chen P, Gong Q, Wang H, Wang C, Wang W, Wu J, Wu Z, Wang L. Analgesic Mechanism of Emodin in Neuropathic Pain Through Inhibiting P2X4 Purinoceptor Signaling. Mol Neurobiol 2025:10.1007/s12035-025-04906-5. [PMID: 40195215 DOI: 10.1007/s12035-025-04906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Neuropathic pain (NeP) is a most intractable health problem due to its unsatisfactory treatment effect. Emodin, a natural anthraquinone derivative extracted from Rheum palmatum and Polygonam cuspidatum, exhibits the analgesic effects in various NeP models. However, the underlying mechanisms remain elusive. This study employed whole transcriptome sequencing and metabolomics to elucidate emodin's analgesic mechanism in the spinal cord of chronic constriction injury (CCI) rats. Fifteen-day emodin treatment reversed hyperalgesia and deficit of sciatic nerve function induced by CCI and significantly decreased the concentrations of TNF-α, IL- 1β, IL- 6, IL- 18, and BDNF in the spinal cord of the CCI rats. Transcriptome sequencing revealed altered expression of 85 mRNAs in the spinal cord of emodin-treated and CCI rats, with 53 mRNAs upregulated and 32 mRNAs downregulated. Notably, seven genes (P2RX4, CXCL10, ALOX5, SCN4 A, AURKB, AQP9) overlapped with established NeP targets. Untargeted metabolomic analyses identified 67 significantly altered metabolites (46 upregulated, 32 downregulated) in the spinal cord upon emodin treatment. Integrative analysis highlighted shared pathways between differentially expressed genes and metabolites, including arachidonic acid metabolism, cAMP signaling pathway, and Fc epsilon RI signaling pathway. Western blot and immunofluorescent staining further proved the decreased expression of IBA1, P2X4R, p38 MAPK, p-p38 MAPK, NF-κB, p-NF-κB, and TNF-α, IL- 1β. In conclusion, this study demonstrated that emodin played the analgesic effect in the CCI rats, possibly through suppression of P2X4 purinoceptor signaling in spinal microglia, suggesting a potential therapeutic target for NeP.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hao Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou, China
| | - Wenjing Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jing Wu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhibing Wu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
10
|
Liu D, Wang H, Fang J, Luo J, Lu K, Liu G, Liu L. LncRNA PVT1 promotes proliferation and migration in gallbladder adenocarcinoma by modulating miR-2355-5p/AGO1 axis. In Vitro Cell Dev Biol Anim 2025; 61:403-415. [PMID: 40346419 DOI: 10.1007/s11626-025-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/22/2025] [Indexed: 05/11/2025]
Abstract
To investigate how lncRNA plasmacytoma variant translocation 1 (PVT1) contributed to the pathogenesis of gallbladder adenocarcinoma (GBA). Bioinformatics techniques were used to analyze differentially expressed lncRNA, and downstream miRNA and mRNA were identified using databases. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting were utilized to analyze the RNA and protein expressions in different cells. The binding relationships between different genes were confirmed utilizing luciferase assay and RNA Immunoprecipitation (RIP) assay. Cell growth and migration were examined through CCK-8, colony formation, and Transwell assays. Several in vivo experiments were utilized to determine how the PVT1/miR-2355-5p/AGO1 pathway on tumor growth. Elevated PVT1 was observed in GBA cells, which may further aggravate cell malignant properties. Based on bioinformatics analysis, an interaction between miR-2355-5p and either PVT1 or AGO1 was identified, which was confirmed utilizing dual luciferase reporter assays and RIP assays. Silencing PVT1 (si-PVT1) led to a reduction in AGO1 expression, while depletion of miR-2355-5p reversed this effect. In vivo, PVT1 knockdown significantly inhibited tumor growth, an effect that was reversed by miR-2355-5p downregulation. This study showed that PVT1 facilitated GBA progression via the modulation of the miR-2355-5p/AGO1 axis. These findings underscored the potential therapeutic significance of targeting the lncRNA PVT1 in the treatment of GBA.
Collapse
Affiliation(s)
- Dong Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - He Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jun Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jialin Luo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ke Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Guan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Luying Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
11
|
Wang S, Guo J, Xian X, Li M, Zhang A, Liu Y, Zhang Y, Chen S, Gu G, Zhang X, Yan D, An M, Pan L, Fu B. Distinct 5-methylcytosine profiles of LncRNA in breast cancer brain metastasis. BMC Cancer 2025; 25:557. [PMID: 40148799 PMCID: PMC11951547 DOI: 10.1186/s12885-025-13948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Recent studies have identified a complex relationship between methylation patterns and the development of various cancers. Breast cancer (BC) is the second leading cause of cancer mortality among women. Approximately 5-20% of BC patients are at risk of BC brain metastases (BCBM). Although 5-methylcytosine (m5C) has been identified as an important regulatory modifier, its distribution in BCBM is not well understood. This study aimed to investigate the distribution of m5C in BCBM. MATERIALS AND METHODS Samples from BCBM (231-BR cells) and BC (MDA-MB-231 cells) groups were subjected to a comprehensive analysis of the m5C methylation in long non-coding RNA (lncRNA) using methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq). The expression levels of methylated genes in BC and adjacent tissues were verified through quantitative real-time polymerase chain reaction (RT-qPCR). Enrichment pathway analyses were through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to predict the potential functions of m5C in BCBM. RESULTS The MeRIP-seq analysis identified 23,934 m5C peaks in BCBM and 21,236 m5C in BC. A total of 9,480 annotated genes (BCBM) and 8,481 annotated genes (BC) were mapped. Notably, 1,819 methylation sites in lncRNA were upregulated in BCBM, whereas 2,415 methylation sites were upregulated in BC. Significant m5C hypermethylated lncRNAs included ENST00000477316, ENST00000478098 and uc002gtt.1, whereas hypomethylated lncRNAs included ENST00000600912, ENST00000493668, ENST00000544651 and ENST00000464989. These results were verified by qPCR and MeRIP-qPCR in BC and BCBM. Considering the strong association between m5C RNA methylation regulators and lncRNA, we examined the expression levels of 13 m5C RNA methylation regulators and observed significant differences between BC tissues and adjacent normal tissues. In addition, the interaction between regulators of altered expression and the differentially expressed genes in vitro was analyzed. The GO and KEGG pathways analyses revealed that genes significantly associated with m5C sites in lncRNA were linked to the BCBM signaling pathways. CONCLUSION This uncovered significant variations in the levels and distribution of m5C in BCBM compared to BC. The findings provide a new theoretical understanding of the mechanisms of BCBM.
Collapse
Affiliation(s)
- Song Wang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Jianran Guo
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Xinmiao Xian
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Min Li
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Anqi Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, 67 Dongchang west Road, Liaocheng, 252000, Shandong, P. R. China
| | - Yujiao Liu
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, P. R. China
| | - Yifei Zhang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Shen Chen
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, P. R. China
| | - Guohao Gu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Xuehua Zhang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Dong Yan
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Meng An
- Department of Clinical Laboratory, Liaocheng People's Hospital, 67 Dongchang west Road, Liaocheng, Shandong, 252000, P. R. China.
| | - Li Pan
- Department of Central Laboratory, Liaocheng People's Hospital, 67 Dongchang west Road, Liaocheng, 252000, Shandong, P. R. China.
| | - Bo Fu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China.
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China.
| |
Collapse
|
12
|
Lu Y, Ma H, Xiong X, Du Y, Liu L, Wang J, Zhao W. Deletion of ENO1 sensitizes pancreatic cancer cells to gemcitabine via MYC/RRM1-mediated glycolysis. Sci Rep 2025; 15:9941. [PMID: 40121292 PMCID: PMC11929750 DOI: 10.1038/s41598-025-94319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Glycolysis is a critical metabolic pathway in cancer cells, fulfilling their energy requirements, supporting biosynthesis, maintaining redox balance, and enabling survival in hostile environments. Alpha-enolase (ENO1) has been identified as a key promoter of tumor progression through its involvement in glycolysis. This study aims to elucidate the relationship between ENO1, glycolysis, and gemcitabine sensitivity in pancreatic cancer (PC). The expression levels of ENO1 in PC were analyzed using the GEPIA2 database, Kaplan-Meier survival plots, and immunohistochemistry (IHC). To assess the impact of ENO1 on gemcitabine sensitivity, we manipulated ENO1 expression in PC cell lines through overexpression and silencing techniques. Subsequent analyses included flow cytometry assays, glucose uptake and lactate production measurements, and cytotoxicity assays. The underlying mechanisms by which ENO1 modulates gemcitabine sensitivity were explored using Western blotting (WB). ENO1 was found to be significantly overexpressed in PC tissues, and elevated ENO1 levels were associated with poorer prognosis in PC patients. Overexpression of ENO1 reduced the sensitivity of PC cells to gemcitabine, enhancing cell proliferation, migration, and invasion by altering the cell cycle and inhibiting apoptosis. Conversely, silencing ENO1 decreased glycolysis in PC cells and heightened their sensitivity to gemcitabine. Furthermore, glycolysis inhibition-achieved through ENO1 knockdown, glucose deprivation, or treatment with 2-Deoxy-D-glucose (2-DG)-further enhanced the susceptibility of PC cells to gemcitabine. Mechanistically, ENO1 was found to regulate the expression of gemcitabine resistance-related genes, particularly ribonucleotide reductase catalytic subunit M1 (RRM1), via MYC through the glycolytic pathway, thereby contributing to gemcitabine resistance. This study demonstrates that ENO1 plays a crucial role in PC progression and is closely linked to gemcitabine resistance through its regulation of the glycolytic pathway.
Collapse
Affiliation(s)
- Yingpeng Lu
- Department of General Surgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 77, Chang'an South Rd, Zhangjiagang, 215600, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Hongqin Ma
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Xiaoxiao Xiong
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, No 138, Huanghe South Rd, Suqian, 223800, Jiangsu, China
| | - Yusheng Du
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Li Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Ji Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China.
| | - Wenxing Zhao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
13
|
ZHANG HENG, YANG XIAO, GUO YUJIN, ZHAO HAIBO, JIANG PEI, YU QINGQING. The regulatory role of lncRNA in tumor drug resistance: refracting light through a narrow aperture. Oncol Res 2025; 33:837-849. [PMID: 40191723 PMCID: PMC11964869 DOI: 10.32604/or.2024.053882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/05/2024] [Indexed: 04/09/2025] Open
Abstract
As living conditions improve and diagnostic capabilities advance, the incidence of tumors has increased, with cancer becoming a leading cause of death worldwide. Surgery, chemotherapy, and radiotherapy are the most common treatments. Despite advances in treatment options, chemotherapy remains a routine first-line treatment for most tumors. Due to the continuous and extensive use of chemotherapy drugs, tumor resistance often develops, becoming a significant cause of treatment failure and poor prognosis. Recent research has increasingly focused on how long stranded non-coding RNAs (LncRNAs) influence the development of malignant tumors and drug resistance by regulating gene expression and other biological mechanisms during cell growth. Studies have demonstrated that variations in lncRNA expression levels, influenced by both interpatient variability and intratumoral genetic and epigenetic differences, are closely linked to tumor drug resistance. Therefore, this review advocates using lncRNA as a framework to investigate the regulation of genes associated with drug resistance, proposing lncRNA-targeted therapeutic strategies to potentially increase the efficacy of chemotherapy, improve patient outcomes, and guide future research directions.
Collapse
Affiliation(s)
- HENG ZHANG
- Department of Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| | - XIAO YANG
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - YUJIN GUO
- Department of Clinical Pharmacy, Jining No.1 People’s Hospital, Jining, 272002, China
| | - HAIBO ZHAO
- Department of Oncology, Jining No.1 People’s Hospital, Jining, 272002, China
| | - PEI JIANG
- Translational Pharmaceutical Laboratory, Jining No.1 People’s Hospital, Jining, 272002, China
| | - QING-QING YU
- Department of Clinical Pharmacy, Jining No.1 People’s Hospital, Jining, 272002, China
| |
Collapse
|
14
|
Dong X, Wang X, Zheng X, Jiang H, Liu L, Ma N, Wang S. Targeted nanoparticle delivery system for tumor-associated macrophage reprogramming to enhance TNBC therapy. Cell Biol Toxicol 2025; 41:58. [PMID: 40056273 PMCID: PMC11890257 DOI: 10.1007/s10565-025-10001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Triple-negative breast cancer (TNBC) poses as a daunting and intricate manifestation of breast cancer, highlighted by few treatment options and a poor outlook. The crucial element in fostering tumor growth and immune resistance is the polarization of tumor-associated macrophages (TAMs) into the M2 state within the tumor microenvironment (TME). To address this, we developed M2 targeting peptide-chitosan-curcumin nanoparticles (M2pep-Cs-Cur NPs), a targeted delivery system utilizing chitosan (Cs) as a carrier, curcumin (Cur) as a therapeutic agent, and targeting peptides for specificity. These NPs effectively inhibited TNBC cell proliferation (~ 70%) and invasion (~ 70%), while increasing the responsiveness of tumors to anti-PD-L1 treatment (~ 50% survival enhancement) in vitro and in vivo. Bioinformatics analysis suggested that Cur modulates TAM polarization by influencing key genes such as COX-2, offering insights into its underlying mechanisms. This study highlights the potential of M2pep-Cs-Cur NPs to reverse M2 polarization in TAMs, providing a promising targeted therapeutic strategy to overcome immunotherapy resistance and improve TNBC outcomes.
Collapse
Affiliation(s)
- Xiaoshen Dong
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China
| | - Xiaoou Wang
- Department of Geriatric Cardiovascular, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China
| | - Xinyu Zheng
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China
- Lab 1, Cancer Institute, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Jiang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China
| | - Lu Liu
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China
| | - Ningye Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China.
| | - Shuo Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China.
| |
Collapse
|
15
|
Kato H, Tsukahara T, Murata K, Nishikata H, Mizue Y, Sasaya T, Kubo T, Kanaseki T, Hirohashi Y, Oyagi A, Maeda T, Miyazaki A, Torigoe T. Development of a T cell engaging bispecific antibody targeting long non-coding RNA PVT1. Cancer Immunol Immunother 2025; 74:133. [PMID: 40035876 PMCID: PMC11880442 DOI: 10.1007/s00262-025-03976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025]
Abstract
The development of effective immunotherapies for solid tumors remains a significant challenge. In previous studies, we identified PVT1, a long non-coding RNA, with the peptide HF10 derived from PVT1, presented by HLA-A24. This study aims to develop a single-chain variable fragment (scFv) that specifically recognizes the HLA-A24/HF10 complex (HF10 scFv) and to evaluate its specificity, reactivity, and therapeutic potential as part of a T cell engaging bispecific antibody (HF10xCD3) in vitro and in vivo. Using a scFv phage display library, we screened for scFv clones targeting the HLA-A24/HF10 peptide complex. The selected HF10 scFv was engineered into an IgG1 format (HF10-hIgG1), which demonstrated high affinity (KD = 2.18 × 10⁻⁸ M) and specific detection of the HLA-A24/HF10 complex on HLA-A24( +)/PVT1( +) tumor cell lines. Furthermore, HF10 scFv was incorporated into a T cell engaging bispecific antibody (HF10xCD3), which induced cytotoxicity in these tumor cell lines. In a mouse xenograft model, HF10xCD3 administration exhibited significant anti-tumor activity. In conclusion, HF10xCD3 represents a promising candidate for immunotherapy targeting solid tumors.
Collapse
Affiliation(s)
- Hirotaka Kato
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
- Department of Oral Surgery, School of Medicine, Sapporo Medical University, South-1, West-16, Chuo-Ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomohide Tsukahara
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Kenji Murata
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Hiromu Nishikata
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
- MD/PhD Program, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yuka Mizue
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takashi Sasaya
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
- Department of Oral Surgery, School of Medicine, Sapporo Medical University, South-1, West-16, Chuo-Ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Terufumi Kubo
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Atsushi Oyagi
- Oncology Clinical Exploratory Research II, Ono Pharmaceutical, Co., Ltd., 1-8-2, Kyutaro-Machi, Chuo-Ku, Osaka, Osaka, 541-8564, Japan
| | - Tatsuo Maeda
- Research Center of Oncology Group VI, Ono Pharmaceutical, Co., Ltd., 1-8-2, Kyutaro-Machi, Chuo-Ku, Osaka, Osaka, 541-8564, Japan
| | - Akihiro Miyazaki
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
- Department of Oral Surgery, School of Medicine, Sapporo Medical University, South-1, West-16, Chuo-Ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
16
|
Wang Y, Pei W, Yang Y, Xia C, Zhang Q, Geng Z, Shi X, Wang F. Inhibition of XIST restrains paclitaxel resistance in breast cancer cells by targeting hsa-let-7d-5p/ATG16L1 through regulation of autophagy. Cell Signal 2025; 127:111534. [PMID: 39638138 DOI: 10.1016/j.cellsig.2024.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer is a fatal malignant tumor in women worldwide. The development of paclitaxel resistance remains a challenge. Autophagy is considered to have a significant part in the chemotherapeutic stress mechanism. This study aimed to investigate the function of long non-coding RNA (lncRNA) in breast cancer cell chemoresistance and autophagy. The paclitaxel (PTX)-resistant breast cancer cells were established. The function of X-inactive specific transcript (XIST) was demonstrated using in vitro and in vivo experiments. Transmission electron microscope (TEM) was used to observe autophagy vesicles. Protein and mRNA levels were determined using western blotting and quantitative real time polymerase chain reaction (qRT-PCR). We discovered that autophagic activity was correlated with chemoresistance in PTX-resistant breast cancer cells. In vitro and in vivo studies showed that XIST inhibition reduced cell resistance to paclitaxel, caused autophagy to be suppressed by regulating hsa-let-7d-5p and ATG16L1 expression. Mechanically, threonine protein kinase B (PKB; also known as AKT) - mammalian target of rapamycin (mTOR) pathway was activated when knockdown of XIST, while was reversed by inhibition of hsa-let-7d-5p. Our results verified that XIST played a significant role in developing chemoresistance via mediating autophagy in PTX-resistant breast cancer cells. It may be a potential target for breast cancer treatment strategies.
Collapse
Affiliation(s)
- Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu 233004, Anhui, China; The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, Anhui, China
| | - Wenhao Pei
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Yuping Yang
- Department of Clinical Laboratory, Second Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Chaoqun Xia
- Department of Clinical Laboratory, Second Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Qiang Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu 233004, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Xiuru Shi
- Department of Blood Transfusion, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Fengchao Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China.
| |
Collapse
|
17
|
Wang X, Zhang T, Yu R. EFNA4 deletion suppresses the migration, invasion, stemness, and angiogenesis of gastric cancer cells through the inactivation of Pygo2/Wnt signaling. Histol Histopathol 2025; 40:343-356. [PMID: 38953488 DOI: 10.14670/hh-18-779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Gastric cancer represents an aggressive malignancy and a leading contributor to cancer death. Ephrin-A4 (EFNA4) has been proposed to be related to the immune microenvironment and prognosis of gastric cancer. This study was undertaken to discuss the participation and mechanism of EFNA4 in the development of gastric cancer. RT-qPCR and western blot examined EFNA4 and Pygopus2 (Pygo2) expression in gastric cancer cells. After transfection of EFNA4 interference plasmids or co-transfection of EFNA4 interference plasmids and Pygo2 overexpression plasmids, cell proliferation was detected by the CCK-8 method and EDU staining. Wound healing, Transwell, TUNEL, and endothelial cell tube formation assays detected cell migration, invasion, apoptosis, and angiogenesis, respectively. Western blot examined the expression of metastasis-, apoptosis-, angiogenesis-, and Wnt signaling-associated proteins. Cell stemness was estimated by the sphere formation assay, RT-qPCR, and western blot. Through the experimental data, it was noticed that EFNA4 expression was increased in gastric cancer cells. Knockdown of EFNA4 suppressed the proliferation, migration, invasion, angiogenesis as well as stemness while aggravating the apoptosis of gastric cancer cells. Also, EFNA4 depletion reduced Pygo2 protein expression and then inactivated Wnt/β-catenin signaling. Further elevation of Pygo2 reversed the impacts of EFNA4 silencing on Wnt/β-catenin signaling, cell proliferation, apoptosis, migration, invasion, angiogenesis as well as stemness in gastric cancer. Accordingly, the knockdown of EFNA4 might downregulate Pygo2 and inactivate Wnt/β-catenin signaling to exert protective effects against gastric cancer.
Collapse
Affiliation(s)
- Xian Wang
- Image Center, Mudanjiang Cancer Hospital, Heilongjiang, PR China
| | - Tiran Zhang
- Department of Thyroid and Breast Surgery, Xinghua People's Hospital, Taizhou, Jiangsu, PR China
- Department of General Surgery, Quzhou Kecheng People's Hospital, Quzhou, Zhejiang, PR China
| | - Rong Yu
- Department of General Surgery, Quzhou Kecheng People's Hospital, Quzhou, Zhejiang, PR China.
| |
Collapse
|
18
|
Li L, Fan Z, Liu M, Dong H, Li J, Li Y, Song Z, Liu Y, Zhang Z, Gu X, Zhang T. USP1 promotes pancreatic cancer progression and autophagy by deubiquitinating ATG14. J Biol Chem 2025; 301:108190. [PMID: 39814232 PMCID: PMC11871461 DOI: 10.1016/j.jbc.2025.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis, high mortality, and limited therapeutic strategy. Autophagy is hyperactivated in PDAC, and targeting autophagy is emerging as a promising therapeutic strategy. The dysfunction of deubiquitinase ubiquitin-specific peptidase 1 (USP1) results in tumorigenesis and chemotherapy resistance. However, little is known about how USP1 regulates autophagy and its mechanism in tumor progression and drug sensitivity in PDAC. In this study, we found USP1 elevated in pancreatic cancer and USP1 expression inversely correlated with overall survival. USP1 depletion inhibited cell proliferation, epithelial-mesenchymal transition, and migration in PDAC cells. Interestingly, USP1 knockdown or inhibition reduced autophagy initiation and autophagy flux. By screening of interacting protein using coimmunoprecipitation, we identified that USP1 interacted with ATG14 (autophagy-related gene 14) protein, acting as a core component in autophagy initiation. Furthermore, USP1 overexpression deubiquitinated and enhanced ATG14 protein stability by reduced binding ubiquitin levels, whereas USP1 inhibition promoted its proteasome-dependent degradation. Notably, USP1 depletion or a novel USP1 inhibitor I-138 dramatically delayed tumor growth in xenograft model. USP1 inhibitor synergistically enhanced the anticancer efficiency of cisplatin in PDAC cells. Collectively, our study identifies USP1 as the first deubiquitinase in the modulation of ATG14 deubiquitination and unveils a regulatory role for USP1 in autophagy and PDAC progression. Targeting USP1 using a selective inhibitor I-138 may provide an effective strategy for chemotherapy treatment and combating drug resistance in autophagy-activated pancreatic cancer.
Collapse
Affiliation(s)
- Leilei Li
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhili Fan
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengfei Liu
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hao Dong
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Li
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Li
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zan Song
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Liu
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhicheng Zhang
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinyu Gu
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Zhang
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
19
|
Li Y, Chen K, Li Q, Liu Q, Han H, Liu H, Wang S. Exploring the therapeutic potential of "Zhi-Zhen" formula for oxaliplatin resistance in colorectal cancer: an integrated study combining UPLC-QTOF-MS/MS, bioinformatics, network pharmacology, and experimental validation. Front Med (Lausanne) 2025; 12:1516307. [PMID: 40078400 PMCID: PMC11897289 DOI: 10.3389/fmed.2025.1516307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Background Chemoresistance is a critical factor compromising the survival of patients with colorectal cancer (CRC). The "Zhi-Zhen" formula (ZZF), a traditional prescription developed by Chinese national medicine masters, has been extensively used in clinical practice to treat gastrointestinal cancer. Notably, ZZF has the potential to enhance tumor sensitivity to chemotherapy. Although previous in vitro studies have demonstrated the efficacy of ZZF in overcoming chemoresistance in colorectal cancer (CRC), its precise molecular mechanisms remain poorly understood. Materials and methods We used an integrated approach of bioinformatics and network pharmacology to predict the potential active ingredients and targets of ZZF in alleviating chemoresistance. The top five active ingredients identified by degree in the network analysis were validated using mass spectrometry. We then established an oxaliplatin-resistant CRC cell model to explore the potential targets and regulatory mechanisms through which ZZF overcomes chemoresistance at the cellular level. Results Network pharmacology and bioinformatics analyses jointly identified 29 active compounds and 13 potential key targets of ZZF, associated with chemoresistance. Among these targets, the differential expression of CASP7 significantly affected the progression-free survival of patients with CRC. We established two oxaliplatin-resistant CRC cell lines and observed an upregulation of CASP7 expression in these resistant cells. Furthermore, ZZF increases the expression and activation of CASP7 in resistant cells, promoting apoptosis, and thereby ameliorating chemoresistance. Additionally, β-catenin knockdown led to an upregulation of CASP7 expression, whereas activation of the Wnt/β-catenin signaling pathway reduced CASP7 protein levels. ZZF decreases the activity of the Wnt/β-catenin signaling pathway by decreasing β-catenin transcription and nuclear localization. Conclusion ZZF has potential clinical value in the treatment of chemoresistance in CRC by inhibiting the transcription and nuclear localization of β-catenin, thereby increasing the expression of CASP7 and enhancing the apoptotic response in chemoresistant CRC cells.
Collapse
Affiliation(s)
- Yongjing Li
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Chen
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoli Liu
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijie Han
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Liu
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songpo Wang
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Hu ZY, Ding D, Song Y, Deng YF, Zhang CM, Yu T. Molecular mechanism of pancreatic ductal adenocarcinoma: The heterogeneity of cancer-associated fibroblasts and key signaling pathways. World J Clin Oncol 2025; 16:97007. [PMID: 39995552 PMCID: PMC11686552 DOI: 10.5306/wjco.v16.i2.97007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma stands out as an exceptionally fatal cancer owing to the complexities associated with its treatment and diagnosis, leading to a notably low five-year survival rate. This study offers a detailed exploration of epidemiological trends in pancreatic cancer and key molecular drivers, such as mutations in CDKN2A, KRAS, SMAD4, and TP53, along with the influence of cancer-associated fibroblasts (CAFs) on disease progression. In particular, we focused on the pivotal roles of signaling pathways such as the transforming growth factor-β and Wnt/β-catenin pathways in the development of pancreatic cancer and investigated their application in emerging therapeutic strategies. This study provides new scientific perspectives on pancreatic cancer treatment, especially in the development of precision medicine and targeted therapeutic strategies, and demonstrates the importance of signaling pathway research in the development of effective therapeutic regimens. Future studies should explore the subtypes of CAFs and their specific roles in the tumor microenvironment to devise more effective therapeutic methods.
Collapse
Affiliation(s)
- Zhong-Yuan Hu
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Ding Ding
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Yu Song
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Ya-Feng Deng
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Cheng-Ming Zhang
- Digestive Department I, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 710000, Shaanxi Province, China
| | - Tao Yu
- Digestive Department I, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 710000, Shaanxi Province, China
| |
Collapse
|
21
|
Shi M, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. Long non-coding RNAs: Emerging regulators of invasion and metastasis in pancreatic cancer. J Adv Res 2025:S2090-1232(25)00073-6. [PMID: 39933650 DOI: 10.1016/j.jare.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The invasion and metastasis of pancreatic cancer (PC) are key factors contributing to disease progression and poor prognosis. This process is primarily driven by EMT, which has been the focus of recent studies highlighting the role of long non-coding RNAs (lncRNAs) as crucial regulators of EMT. However, the mechanisms by which lncRNAs influence invasive metastasis are multifaceted, extending beyond EMT regulation alone. AIM OF REVIEW This review primarily aims to characterize lncRNAs affecting invasion and metastasis in pancreatic cancer. We summarize the regulatory roles of lncRNAs across multiple molecular pathways and highlight their translational potential, considering the implications for clinical applications in diagnostics and therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal scientific themes. First, we primarily summarize lncRNAs orchestrate various signaling pathways, such as TGF-β/Smad, Wnt/β-catenin, and Notch, to regulate molecular changes associated with EMT, thereby enhancing cellular motility and invasivenes. Second, we summarize the effects of lncRNAs on autophagy and ferroptosis and discuss the role of exosomal lncRNAs in the tumor microenvironment to regulate the behavior of neighboring cells and promote cancer cell invasion. Third, we emphasize the effects of RNA modifications (such as m6A and m5C methylation) on stabilizing lncRNAs and enhancing their capacity to mediate invasive metastasis in PC. Lastly, we discuss the translational potential of these findings, emphasizing the inherent challenges in using lncRNAs as clinical biomarkers and therapeutic targets, while proposing prospective research strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
22
|
Bao Y, Ma Y, Huang W, Bai Y, Gao S, Xiu L, Xie Y, Wan X, Shan S, Chen C, Qu L. Regulation of autophagy and cellular signaling through non-histone protein methylation. Int J Biol Macromol 2025; 291:139057. [PMID: 39710032 DOI: 10.1016/j.ijbiomac.2024.139057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications (PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes. Multiple proteins undergo PTMs that influence autophagy regulation. Methylation modifications on non-histone lysine and arginine residues have been identified as common PTMs critical to various life processes. This paper focused on the regulatory effects of non-histone methylation modifications on autophagy, summarizing related research on signaling pathways involved in autophagy-related non-histone methylation, and discussing current challenges and clinical significance. Our review concludes that non-histone methylation plays a pivotal role in the regulation of autophagy and its associated signaling pathways. Targeting non-histone methylation offers a promising strategy for therapeutic interventions in diseases related to autophagy dysfunction, such as cancer and neurodegenerative disorders. These findings provide a theoretical basis for the development of non-histone-methylation-targeted drugs for clinical use.
Collapse
Affiliation(s)
- Yongfen Bao
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Wentao Huang
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Siying Gao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Xiu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuyang Xie
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinrong Wan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei 437000, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihua Qu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China.
| |
Collapse
|
23
|
de la Cruz-Ojeda P, Parras-Martínez E, Rey-Pérez R, Muntané J. In silico analysis of lncRNA-miRNA-mRNA signatures related to Sorafenib effectiveness in liver cancer cells. World J Gastroenterol 2025; 31:95207. [PMID: 39839902 PMCID: PMC11684161 DOI: 10.3748/wjg.v31.i3.95207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide. Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC. Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells. AIM To define the long non-codingRNA-microRNA-mRNA (lncRNA-miRNA-mRNA) predicted signatures related to selected hallmarks of cancer (apoptosis, autophagy, cell stress, cell dedifferentiation and invasiveness) in RNAseq studies using Sorafenib-treated HepG2 and SNU449 cells. Various available software analyses allowed us to establish the lncRNA-miRNA-mRNA regulatory axes following treatment in HepG2 and SNU449 cells. METHODS HepG2 and SNU449 cells were treated with Sorafenib (10 μmol/L) for 24 hours. Total RNA, including small and long RNA, was extracted with a commercial miRNeasy kit. RNAseq was carried out for the identification of changes in lncRNA-miRNA-mRNA regulatory axes. RESULTS MALAT, THAP9-AS1 and SNGH17 appeared to coordinately regulate miR-374b-3p and miR-769-5p that led to upregulation of SMAD7, TIRARP, TFAP4 and FAXDC2 in HepG2 cells. SNHG12, EPB41 L4A-AS1, LINC01578, SNHG12 and GAS5 interacted with let-7b-3p, miR-195-5p and VEGFA in SNU449 cells. The axes MALAT1/hsa-mir-374b-3p/SMAD7 and MALAT1/hsa-mir-769-5p/TFAP4 were of high relevance for Sorafenib response in HepG2 cells, whereas PVT1/hsa-miR-195-5p/VEGFA was responsible for the differential response of SNU449 cells to Sorafenib treatment. CONCLUSION Critical lncRNAs acting as sponges of miRNA were identified that regulated mRNA expression, whose proteins mainly increased the antitumor effectiveness of the treatment (SMAD7, TIRARP, TFAP4, FAXDC2 and ADRB2). However, the broad regulatory axis leading to increased VEGFA expression may be related to the side effect of Sorafenib in SNU449 cells.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Functional Genomics of Solid Tumors Laboratory, Centre de Recherche des Cordeliers, Paris 75006, France
- Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain
- Biomedical Research Center for Hepatic and Digestive Diseases, CIBERehd, Madrid 28029, Spain
| | - Ester Parras-Martínez
- Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain
| | - Raquel Rey-Pérez
- Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain
| | - Jordi Muntané
- Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain
- Biomedical Research Center for Hepatic and Digestive Diseases, CIBERehd, Madrid 28029, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville 41009, Spain
| |
Collapse
|
24
|
Ardalan Moghadam Al F, Forghanifard MM, Zarrinpour V. PYGO2 promotes resistance to chemotherapy via reducing apoptosis and G2/M cell cycle arrest in esophageal carcinoma cells. Med Oncol 2025; 42:45. [PMID: 39808374 DOI: 10.1007/s12032-024-02590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs. In this study, we aimed to investigate the impact of PYGO2 overexpression on the sensitivity of YM-1 and KYSE-30 esophageal carcinoma cells against 5-FU. To do this, we compared cell viability, cell cycle arrest, apoptosis rate, and mRNA expressions of various apoptosis-related genes between pcDNA3-PYGO2 transfected and untransfected KYSE-30 and YM-1 esophageal carcinoma cells following treatment with 5-FU. We showed that PYGO2 expression reduces 5-FU sensitivity in YM-1 and KYSE-30 cells. PYGO2-overexpressing cells treated with 5-FU have exhibited a noteworthy reduction in both early and late apoptotic cells compared to controls. Furthermore, a significant decrease in the Bax/Bcl2 ratio and P53 gene expression was observed. 5-FU induces G2/M cell cycle arrest in YM-1 and KYSE-30 cells. However, PYGO2 overexpression impeded G2/M cell cycle arrest in 5-FU-treated cells, thereby suppressing the toxicity of 5-FU. PYGO2 may mediate its apoptotic effect by regulating cell cycle regulatory proteins, specifically cyclin D1 and p21. These results highlight PYGO2's capacity to alter how esophageal cancer cells respond to 5-FU therapy, emphasizing its importance as a potential focal point for treatment strategies.
Collapse
Affiliation(s)
| | | | - Vajiheh Zarrinpour
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
25
|
Yao Z, Zhang H, Huang K, Huang G, Xi P, Jiang L, Qin D, Chen F, Li S, Wei R. Niraparib perturbs autophagosome-lysosome fusion in pancreatic ductal adenocarcinoma and exhibits anticancer potential against gemcitabine-resistant PDAC. Transl Oncol 2025; 51:102206. [PMID: 39603206 PMCID: PMC11635771 DOI: 10.1016/j.tranon.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
While poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) have achieved specific clinical benefits in a subset of pancreatic ductal adenocarcinoma (PDAC) patients, the potential role of the PARPi niraparib in PDAC necessitates further exploration. In this study, we demonstrated that Niraparib exhibited a pronounced inhibitory effect on autophagy in PDAC both in vitro and in vivo. Mechanistically, this inhibition was primarily attributed to niraparib's ability to disrupt the fusion process between autophagosomes and lysosomes, while potentially exerting a relatively minor impact on the initial stage of autophagy. The blockade effect observed may be mediated via modulation of the ERK signaling pathway, and this effect can be mitigated by the application of an ERK inhibitor (FR180204). Notably, the combined treatment regimen of niraparib and gemcitabine failed to elicit the anticipated synergistic effects in wild-type PANC-1 cells, instead exhibiting pronounced antagonistic interactions. However, in gemcitabine-resistant PANC-1 cells, the combination of niraparib and gemcitabine exhibited modest additive effects. Furthermore, niraparib demonstrated a heightened cytotoxic potency against gemcitabine-resistant PANC-1 cells compared to wild-type PANC-1 cells, both in vitro and in vivo. Our research established that niraparib inhibits late-stage autophagy in PDAC, potentially representing a valuable salvage therapy for gemcitabine-resistant PDAC. Further clinical studies are justified.
Collapse
Affiliation(s)
- Zehui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huihui Zhang
- Center for Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510060, China
| | - Kewei Huang
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Guizhong Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pu Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lingmin Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dailei Qin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Ran Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
26
|
Kolapalli SP, Nielsen TM, Frankel LB. Post-transcriptional dynamics and RNA homeostasis in autophagy and cancer. Cell Death Differ 2025; 32:27-36. [PMID: 37558732 PMCID: PMC11742036 DOI: 10.1038/s41418-023-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Autophagy is an essential recycling and quality control pathway which preserves cellular and organismal homeostasis. As a catabolic process, autophagy degrades damaged and aged intracellular components in response to conditions of stress, including nutrient deprivation, oxidative and genotoxic stress. Autophagy is a highly adaptive and dynamic process which requires an intricately coordinated molecular control. Here we provide an overview of how autophagy is regulated post-transcriptionally, through RNA processing events, epitranscriptomic modifications and non-coding RNAs. We further discuss newly revealed RNA-binding properties of core autophagy machinery proteins and review recent indications of autophagy's ability to impact cellular RNA homeostasis. From a physiological perspective, we examine the biological implications of these emerging regulatory layers of autophagy, particularly in the context of nutrient deprivation and tumorigenesis.
Collapse
Affiliation(s)
| | | | - Lisa B Frankel
- Danish Cancer Institute, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Kumar A, Yap KCH, BharathwajChetty B, Lyu J, Hegde M, Abbas M, Alqahtani MS, Khadlikar S, Zarrabi A, Khosravi A, Kumar AP, Kunnumakkara AB. Regulating the regulators: long non-coding RNAs as autophagic controllers in chronic disease management. J Biomed Sci 2024; 31:105. [PMID: 39716252 DOI: 10.1186/s12929-024-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/23/2024] [Indexed: 12/25/2024] Open
Abstract
The increasing prevalence of chronic diseases and their associated morbidities demands a deeper understanding of underlying mechanism and causative factors, with the hope of developing novel therapeutic strategies. Autophagy, a conserved biological process, involves the degradation of damaged organelles or protein aggregates to maintain cellular homeostasis. Disruption of this crucial process leads to increased genomic instability, accumulation of reactive oxygen species (ROS), decreased mitochondrial functions, and suppression of ubiquitination, leading to overall decline in quality of intracellular components. Such deregulation has been implicated in a wide range of pathological conditions such as cancer, cardiovascular, inflammatory, and neurological disorders. This review explores the role of long non-coding RNAs (lncRNAs) as modulators of transcriptional and post-transcriptional gene expression, regulating diverse physiological process like proliferation, development, immunity, and metabolism. Moreover, lncRNAs are known to sequester autophagy related microRNAs by functioning as competing endogenous RNAs (ceRNAs), thereby regulating this vital process. In the present review, we delineate the multitiered regulation of lncRNAs in the autophagic dysfunction of various pathological diseases. Moreover, by highlighting recent findings on the modulation of lncRNAs in different stages of autophagy, and the emerging clinical landscape that recognizes lncRNAs in disease diagnosis and therapy, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in clinical settings of different stages of autophagic process by regulating ATG and its target genes. This focus on lncRNAs could lead to breakthroughs in personalized medicine, offering new avenues for diagnosis and treatment of complex diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Soham Khadlikar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, 34959, Istanbul, Türkiye
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
28
|
Lyu H, Kong J, Chen J, Zhang R, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. The Emerging Scenario of Ferroptosis in Pancreatic Cancer Tumorigenesis and Treatment. Int J Mol Sci 2024; 25:13334. [PMID: 39769097 PMCID: PMC11727763 DOI: 10.3390/ijms252413334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/05/2025] Open
Abstract
Pancreatic cancer remains one of the most lethal forms of cancer. Currently, there is a lack of effective drug treatments for pancreatic cancer. However, as a newly discovered form of non-apoptotic cell death, ferroptosis has garnered increasing attention in relation to pancreatic cancer. Understanding the role of ferroptosis in the tumorigenesis and treatment of pancreatic cancer may enable more effective clinical trials and treatments for pancreatic cancer and may minimize side effects or restrict the emergence of drug resistance. In this review, we summarize the current knowledge regarding the process and underlying mechanisms of ferroptosis, as well as its dual role in both promoting tumorigenesis and facilitating treatment strategies for pancreatic cancer. Additionally, how ferroptosis is implicated in the development of pancreatitis and insulin resistance, indicating that ferroptosis may play an important role in the risk of pancreatitis- and insulin-resistance-related pancreatic cancers, is also addressed.
Collapse
Affiliation(s)
- Hao Lyu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jinghua Kong
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jiasi Chen
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Cefan Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
29
|
Alnefaie GO. A review of the complex interplay between chemoresistance and lncRNAs in lung cancer. J Transl Med 2024; 22:1109. [PMID: 39639388 PMCID: PMC11619437 DOI: 10.1186/s12967-024-05877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Lung Cancer (LC) is characterized by chemoresistance, which poses a significant clinical challenge and results in a poor prognosis for patients. Long non-coding RNAs (lncRNAs) have recently gained recognition as crucial mediators of chemoresistance in LC. Through the regulation of key cellular processes, these molecules play important roles in the progression of LC and response to therapy. The mechanisms by which lncRNAs affect chemoresistance include the modulation of gene expression, chromatin structure, microRNA interactions, and signaling pathways. Exosomes have emerged as key mediators of lncRNA-driven chemoresistance, facilitating the transfer of resistance-associated lncRNAs between cancer cells and contributing to tumor development. Consequently, exosomal lncRNAs may serve as biomarkers and therapeutic targets for the treatment of LC. Therapeutic strategies targeting lncRNAs offer novel approaches to circumvent chemoresistance. Different approaches, including RNA interference (RNAi) and antisense oligonucleotides (ASOs), are available to degrade lncRNAs or alter their function. ASO-based therapies are effective at reducing lncRNA expression levels, increasing chemotherapy sensitivity, and improving clinical outcomes. The use of these strategies can facilitate the development of targeted interventions designed to disrupt lncRNA-mediated mechanisms of chemoresistance. An important aspect of this review is the discussion of the complex relationship between lncRNAs and drug resistance in LC, particularly through exosomal pathways, and the development of innovative therapeutic strategies to enhance drug efficacy by targeting lncRNAs. The development of new pathways and interventions for treating LC holds promise in overcoming this resistance.
Collapse
Affiliation(s)
- Ghaliah Obaid Alnefaie
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
30
|
Cao J, Du L, Zhao X, Liu Z, Yuan J, Luo Y, Zhang S, Qin Z, Guo J. LncRNA sequencing reveals an essential role for the lncRNA-mediated ceRNA network in penile squamous cell carcinoma. Genes Immun 2024; 25:447-458. [PMID: 39242755 DOI: 10.1038/s41435-024-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Penile squamous cell carcinoma (PSCC) is becoming increasingly common and posing a severe threat to men's health, particularly in developing countries. The function of long non-coding RNAs (lncRNAs) in PSCC progression remains mysterious. Therefore, we explored the significance of lncRNAs in the competing endogenous RNA (ceRNA) network in PSCC tumor progression. The 5 healthy and 6 tumor tissue samples were subjected to lncRNA sequencing. Using miRcode, LncBase, miRTarBase, miRWalk, and TargetScan, we constructed a ceRNA network of differentially expressed lncRNAs, miRNAs, and mRNAs. Our analysis resulted in a ceRNA network consisting of 4 lncRNAs, 18 miRNAs, and 38 mRNAs, whose upstream regulators, the lncRNAs MIR205HG, MIAT, HCP5, and PVT1, were all elevated in PSCC. Immunohistochemical staining confirmed that cell proliferation-related genes TFAP2C, MKI67, and TP63, positively regulated by 4 lncRNAs, were considerably overexpressed in tumor tissues. Immune analysis revealed a significant upregulation in macrophage and exhausted T cell infiltration in PSCC. Our study identified a lncRNA-miRNA-mRNA ceRNA network for PSCC, revealing possible molecular mechanisms involved in the regulation of PSCC progression by key lncRNAs and their connections to the immunosuppressive tumor microenvironment. The ceRNA network provides a novel perspective for elucidating the pathogenesis of PSCC.
Collapse
Affiliation(s)
- Jian Cao
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Lin Du
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueheng Zhao
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhizhong Liu
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Junbin Yuan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zailong Qin
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
- Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China.
- Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China.
| | - Jie Guo
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China.
- China National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
31
|
Serala K, Bai J, Prince S. Pyrvinium Pamoate Alone and With Gemcitabine Exhibits Anti-Pancreatic Cancer Activity in 2D and 3D Cell Culture Models. J Cell Mol Med 2024; 28:e70222. [PMID: 39632282 PMCID: PMC11617115 DOI: 10.1111/jcmm.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Pancreatic cancer is an intractable disease with the worst prognosis of all common cancers. The treatment regimens currently used for pancreatic cancer do not significantly impact patient survival, and therefore, effective treatment strategies are urgently needed. Drug repurposing, which identifies new indications for existing and approved drugs, has proven to be a desirable approach to anti-cancer drug discovery. Indeed, the antihelminthic drug, pyrvinium pamoate, has shown promise as an anti-pancreatic cancer drug. However, the only mechanism of action ascribed to this has been its ability to inhibit mitochondrial function. This study showed, using pancreatic cancer 2D cell cultures and 3D spheroids, that pyrvinium pamoate exhibited short- and long-term cytotoxicity, inhibited epithelial-to-mesenchymal transition and cell invasion and migration. Mechanistically, pyrvinium pamoate induced DNA damage, inhibited stemness markers and the PI3K/AKT cell survival pathway, triggered an S-phase cell cycle arrest and induced apoptotic and autophagic cell death. Importantly, pyrvinium pamoate acted synergistically with the first-line drug, gemcitabine, in 2D and 3D pancreatic cancer cell culture models. This study provides evidence that pyrvinium pamoate is effective as a single agent and in combination with gemcitabine for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Karabo Serala
- Department of Human BiologyUniversity of Cape Town, ObservatoryCape TownSouth Africa
| | - Jinming Bai
- Department of Human BiologyUniversity of Cape Town, ObservatoryCape TownSouth Africa
| | - Sharon Prince
- Department of Human BiologyUniversity of Cape Town, ObservatoryCape TownSouth Africa
| |
Collapse
|
32
|
Baysoy A, Tian X, Zhang F, Renauer P, Bai Z, Shi H, Li H, Tao B, Yang M, Enninful A, Gao F, Wang G, Zhang W, Tran T, Patterson NH, Bao S, Dong C, Xin S, Zhong M, Rankin S, Guy C, Wang Y, Connelly JP, Pruett-Miller SM, Chi H, Chen S, Fan R. Spatially Resolved in vivo CRISPR Screen Sequencing via Perturb-DBiT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624106. [PMID: 39605490 PMCID: PMC11601513 DOI: 10.1101/2024.11.18.624106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Perturb-seq enabled the profiling of transcriptional effects of genetic perturbations in single cells but lacks the ability to examine the impact on tissue environments. We present Perturb-DBiT for simultaneous co-sequencing of spatial transcriptome and guide RNAs (gRNAs) on the same tissue section for in vivo CRISPR screen with genome-scale gRNA libraries, offering a comprehensive understanding of how genetic modifications affect cellular behavior and tissue architecture. This platform supports a variety of delivery vectors, gRNA library sizes, and tissue preparations, along with two distinct gRNA capture methods, making it adaptable to a wide range of experimental setups. In applying Perturb-DBiT, we conducted un-biased knockouts of tens of genes or at genome-wide scale across three cancer models. We mapped all gRNAs in individual colonies and corresponding transcriptomes in a human cancer metastatic colonization model, revealing clonal dynamics and cooperation. We also examined the effect of genetic perturbation on the tumor immune microenvironment in an immune-competent syngeneic model, uncovering differential and synergistic perturbations in promoting immune infiltration or suppression in tumors. Perturb-DBiT allows for simultaneously evaluating the impact of each knockout on tumor initiation, development, metastasis, histopathology, and immune landscape. Ultimately, it not only broadens the scope of genetic inquiry, but also lays the groundwork for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- These authors contributed equally
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally
| | - Feifei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally
| | - Paul Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Haikuo Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bo Tao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mingyu Yang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fu Gao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chuanpeng Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Sherri Rankin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yan Wang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jon P. Connelly
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
- Lead contact
| |
Collapse
|
33
|
Cheng L, Hu Z, Gu J, Li Q, Liu J, Liu M, Li J, Bi X. Exploring COX-Independent Pathways: A Novel Approach for Meloxicam and Other NSAIDs in Cancer and Cardiovascular Disease Treatment. Pharmaceuticals (Basel) 2024; 17:1488. [PMID: 39598398 PMCID: PMC11597362 DOI: 10.3390/ph17111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
As a fundamental process of innate immunity, inflammation is associated with the pathologic process of various diseases and constitutes a prevalent risk factor for both cancer and cardiovascular disease (CVD). Studies have indicated that several non-steroidal anti-inflammatory drugs (NSAIDs), including Meloxicam, may prevent tumorigenesis, reduce the risk of carcinogenesis, improve the efficacy of anticancer therapies, and reduce the risk of CVD, in addition to controlling the body's inflammatory imbalances. Traditionally, most NSAIDs work by inhibiting cyclooxygenase (COX) activity, thereby blocking the synthesis of prostaglandins (PGs), which play a role in inflammation, cancer, and various cardiovascular conditions. However, long-term COX inhibition and reduced PGs synthesis can result in serious side effects. Recent studies have increasingly shown that some selective COX-2 inhibitors and NSAIDs, such as Meloxicam, may exert effects beyond COX inhibition. This emerging understanding prompts a re-evaluation of the mechanisms by which NSAIDs operate, suggesting that their benefits in cancer and CVD treatment may not solely depend on COX targeting. In this review, we will explore the potential COX-independent mechanisms of Meloxicam and other NSAIDs in addressing oncology and cardiovascular health.
Collapse
Affiliation(s)
- Lixia Cheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Zhenghui Hu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jiawei Gu
- Department of Precision Genomics, Intermountain Healthcare, 5121 Cottonwood St., Murray, UT 84107, USA;
| | - Qian Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jiahao Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Meiling Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jie Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
34
|
Xu C, Lin W, Zhang Q, Ma Y, Wang X, Guo A, Zhu G, Zhou Z, Song W, Zhao Z, Jiao Y, Wang X, Du C. MGST1 facilitates novel KRAS G12D inhibitor resistance in KRAS G12D-mutated pancreatic ductal adenocarcinoma by inhibiting ferroptosis. Mol Med 2024; 30:199. [PMID: 39501138 PMCID: PMC11536589 DOI: 10.1186/s10020-024-00972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/22/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with a low 5-year survival rate. Treatment options for PDAC patients are limited. Recent studies have shown promising results with MRTX1133, a KRASG12D inhibitor that demonstrated potent antitumor activity in various types of tumors with KRASG12D mutation. Resistance to KRAS inhibitors is frequently occurred and one of the main reasons for treatment failure. Understanding resistance mechanisms to novel KRAS inhibitors is crucial to ensure sustained and durable remissions. METHODS Two KRASG12D inhibitor MRTX1133-resistant PDAC cell lines were established in vitro. The resistance mechanisms to KRASG12D inhibitor MRTX1133 against PDAC in vitro and in vivo were characterized by RNA sequencing, reverse transcript polymerase chain reaction, cytotoxicity test, plasmid transfection, lentivirus transfection, lipid peroxidation detection, malondialdehyde levels detection, glutathione levels detection, western blot, immunofluorescence, nude mice tumorigenesis experiment and immunohistochemistry. RESULTS The bioinformatics analysis and transcriptome sequencing showed that ferroptosis was involved in the resistant effect of the KRASG12D inhibitor treatment, and MGST1 was the key molecule against MRTX1133-induced ferroptosis. Increased expression of MGST1 weakened the cytotoxicity of MRTX1133 by inhibiting lipid peroxidation-induced ferroptosis in KRASG12D inhibitor-resistant PDAC cells. Knockdown or overexpression of MGST1 conferred sensitivity or resistance to KRASG12D inhibitor MRTX1133, respectively. Mechanismly, increased nuclear localization and higher levels of active β-catenin were observed in MRTX1133-resistant PDAC cells, which contributed to higher MGST1 expression. Knockdown of CTNNB1 or TCF4 can decreased MGST1 expression. Additionally, we found that PKF-118-310, an antagonist of β-catenin/Tcf4 complex, repressed MGST1 expression. In both in vitro and in vivo models, a synergistic effect was observed when combining MRTX1133 and PKF-118-310 in KRASG12D inhibitor MRTX1133-resistant PDAC cells and tumors. CONCLUSION Our data showed that KRASG12D inhibitor MRTX1133 combined with PKF-118-310 could enhance the effectiveness of MRTX1133 treatment response through induction of ferroptosis via inhibiting MGST1 expression in MRTX1133-resistant PDAC cells and tumors. This evidence may provide a promising strategy to overcome KRASG12D inhibitor MRTX1133 resistance in PDAC patients with KRASG12D mutations.
Collapse
Affiliation(s)
- Chungui Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Weihao Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Yarui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Xue Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Ai Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Guiling Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Zhendiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Weiwei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Ziyi Zhao
- Harrow international School Shenzhen Qianhai, Shenzhen, 518000, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China.
| | - Chunxia Du
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
35
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
36
|
Feng M, Jiao Q, Ren Y, Liu X, Gao Z, Li Z, Wang Y, Zhao M, Bi L. The interaction between UBR7 and PRMT5 drives PDAC resistance to gemcitabine by regulating glycolysis and immune microenvironment. Cell Death Dis 2024; 15:758. [PMID: 39424627 PMCID: PMC11489413 DOI: 10.1038/s41419-024-07145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common malignant tumor of the digestive tract. Although gemcitabine and other therapeutic agents are effective in patients with advanced and metastatic pancreatic cancer, drug resistance has severely limited their use. However, the mechanisms of gemcitabine resistance in pancreatic cancer are poorly understood. In this study, ATAC-seq, ChIP-seq, and RNA-seq were performed to compare chromatin accessibility and gene expression in a patient-derived tumor xenograft (PDX) model of pancreatic cancer with or without gemcitabine resistance. Analyzing these sequencing data, we found a dramatic change in chromatin accessibility in the PDX model of gemcitabine-resistant tissues and identified a key gene, UBR7, which plays an important role in mediating gemcitabine resistance. Further research found that depletion of UBR7 significantly increased pancreatic carcinogenesis and the immunosuppressive microenvironment. Mechanistically, depleted UBR7 increased the stability of PRMT5, thereby promoting glycolysis in pancreatic cancer cells. Finally, an inhibitor that blocks PRMT5 (DS-437) significantly reduced gemcitabine resistance in pancreatic cancer caused by UBR7 depletion. In conclusion, our results illustrate that the UBR7-PRMT5 axis is a key metabolic regulator of PDAC and a promising target for the clinical treatment of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
- Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zihan Gao
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhengjun Li
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Miaoqing Zhao
- Department of pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Lei Bi
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
37
|
Samant C, Kale R, Pai KSR, Nandakumar K, Bhonde M. Role of Wnt/β-catenin pathway in cancer drug resistance: Insights into molecular aspects of major solid tumors. Biochem Biophys Res Commun 2024; 729:150348. [PMID: 38986260 DOI: 10.1016/j.bbrc.2024.150348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/β-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/β-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/β-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/β-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/β-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
38
|
Ding T, Xu H, Zhang X, Yang F, Zhang J, Shi Y, Bai Y, Yang J, Chen C, Zhu C, Zhang H. Prohibitin 2 orchestrates long noncoding RNA and gene transcription to accelerate tumorigenesis. Nat Commun 2024; 15:8385. [PMID: 39333493 PMCID: PMC11436821 DOI: 10.1038/s41467-024-52425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
The spatial co-presence of aberrant long non-coding RNAs (lncRNAs) and abnormal coding genes contributes to malignancy development in various tumors. However, precise coordinated mechanisms underlying this phenomenon in tumorigenesis remains incompletely understood. Here, we show that Prohibitin 2 (PHB2) orchestrates the transcription of an oncogenic CASC15-New-Isoform 2 (CANT2) lncRNA and the coding tumor-suppressor gene CCBE1, thereby accelerating melanoma tumorigenesis. In melanoma cells, PHB2 initially accesses the open chromatin sites at the CANT2 promoter, recruiting MLL2 to augment H3K4 trimethylation and activate CANT2 transcription. Intriguingly, PHB2 further binds the activated CANT2 transcript, targeting the promoter of the tumor-suppressor gene CCBE1. This interaction recruits histone deacetylase HDAC1 to decrease H3K27 acetylation at the CCBE1 promoter and inhibit its transcription, significantly promoting tumor cell growth and metastasis both in vitro and in vivo. Our study elucidates a PHB2-mediated mechanism that orchestrates the aberrant transcription of lncRNAs and coding genes, providing an intriguing epigenetic regulatory model in tumorigenesis.
Collapse
Affiliation(s)
- Tianyi Ding
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Haowen Xu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Fan Yang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Jixing Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yibing Shi
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yiran Bai
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Jiaqi Yang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Chaoqun Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Chengbo Zhu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - He Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China.
- School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
39
|
Wei X, Li Z, Zheng H, Li X, Lin Y, Yang H, Shen Y. Long non-coding RNA MAGEA4-AS1 binding to p53 enhances MK2 signaling pathway and promotes the proliferation and metastasis of oral squamous cell carcinoma. Funct Integr Genomics 2024; 24:158. [PMID: 39249547 PMCID: PMC11384635 DOI: 10.1007/s10142-024-01436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) regulate the occurrence, development and progression of oral squamous cell carcinoma (OSCC). We elucidated the expression features of MAGEA4-AS1 in patients with OSCC and its activity as an OSCC biomarker. Furthermore, the impact of up-regulation of MAGEA4-AS1 on the cellular behaviors (proliferation, migration and invasion) of OSCC cells and intrinsic signal mechanisms were evaluated. Firstly, we analyzed MAGEA4-AS1 expression data in The Cancer Genome Atlas (TCGA) OSCC using a bioinformatics approach and in 45 pairs of OSCC tissues using qPCR. Then CCK-8, ethynyl deoxyuridine, colony formation, transwell and wound healing assays were conducted to assess changes in the cell proliferation, migration and invasion protential of shMAGEA4-AS1 HSC3 and CAL27 cells. The RNA sequence of MAGEA4-AS1 was identified using the rapid amplification of cDNA ends (RACE) assay. And whole-transcriptome sequencing was used to identify MAGEA4-AS1 affected genes. Additionally, dual-luciferase reporter system, RNA-binding protein immunoprecipitation (RIP), and rescue experiments were performed to clarify the role of the MAGEA4-AS1-p53-MK2 signaling pathway. As results, we found MAGEA4-AS1 was up-regulated in OSCC tissues. We identified a 418 nucleotides length of the MAGEA4-AS1 transcript and it primarily located in the cell nucleus. MAGEA4-AS1 stable knockdown weakened the proliferation, migration and invasion abilities of OSCC cells. Mechanistically, p53 protein was capable to activate MK2 gene transcription. RIP assay revealed an interaction between p53 and MAGEA4-AS1. MK2 up-regulation in MAGEA4-AS1 down-regulated OSCC cells restored MK2 and epithelial-to-mesenchymal transition related proteins' expression levels. In conclusion, MAGEA4-AS1-p53 complexes bind to MK2 promoter, enhancing the transcription of MK2 and activating the downstream signaling pathways, consequently promoting the proliferation and metastasis of OSCC cells. MAGEA4-AS1 may serve as a diagnostic marker and therapeutic target for OSCC patients.
Collapse
Affiliation(s)
- Xiaoxiao Wei
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Zhangfu Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Heng Zheng
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiaolian Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Hongyu Yang
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China.
| | - Yuehong Shen
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
40
|
Li P, Ma X, Huang D. Role of the lncRNA/Wnt signaling pathway in digestive system cancer: a literature review. Eur J Med Res 2024; 29:447. [PMID: 39218950 PMCID: PMC11367813 DOI: 10.1186/s40001-024-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The long noncoding RNA (lncRNA)/Wingless (Wnt) axis is often dysregulated in digestive system tumors impacting critical cellular processes. Abnormal expression of specific Wnt-related lncRNAs such as LINC01606 (promotes motility), SLCO4A1-AS1 (promotes motility), and SH3BP5-AS1 (induces chemoresistance), plays a crucial role in these malignancies. These lncRNAs are promising targets for cancer diagnosis and therapy, offering new treatment perspectives. The lncRNAs, NEF and GASL1, differentially expressed in plasma show diagnostic potential for esophageal squamous cell carcinoma and gastric cancer, respectively. Additionally, Wnt pathway inhibitors like XAV-939 have demonstrated preclinical efficacy, underscoring their therapeutic potential. This review comprehensively analyzes the lncRNA/Wnt axis, highlighting its impact on cell proliferation, motility, and chemoresistance. By elucidating the complex molecular mechanisms of the lncRNA/Wnt axis, we aim to identify potential therapeutic targets for digestive system tumors to pave the way for the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xiao Ma
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
41
|
Chen KL, Huang SW, Yao JJ, He SW, Gong S, Tan XR, Liang YL, Li JY, Huang SY, Li YQ, Zhao Y, Qiao H, Xu S, Zang S, Ma J, Liu N. LncRNA DYNLRB2-AS1 promotes gemcitabine resistance of nasopharyngeal carcinoma by inhibiting the ubiquitination degradation of DHX9 protein. Drug Resist Updat 2024; 76:101111. [PMID: 38908233 DOI: 10.1016/j.drup.2024.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Gemcitabine (GEM) based induction chemotherapy is a standard treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, approximately 15 % of patients are still resistant to GEM-containing chemotherapy, which leads to treatment failure. Nevertheless, the underlying mechanisms of GEM resistance remain poorly understood. Herein, based on a microarray analysis, we identified 221 dysregulated lncRNAs, of which, DYNLRB2-AS1 was one of the most upregulated lncRNAs in GEM-resistance NPC cell lines. DYNLRB2-AS1 was shown to function as contain an oncogenic lncRNA that promoted NPC GEM resistance, cell proliferation, but inhibited cell apoptosis. Mechanistically, DYNLRB2-AS1 could directly bind to the DHX9 protein and prevent its interaction with the E3 ubiquitin ligase PRPF19, and thus blocking PRPF19-mediated DHX9 degradation, which ultimately facilitated the repair of DNA damage in the presence of GEM. Clinically, higher DYNLRB2-AS1 expression indicated an unfavourable overall survival of NPC patients who received induction chemotherapy. Overall, this study identified the oncogenic lncRNA DYNLRB2-AS1 as an independent prognostic biomarker for patients with locally advanced NPC and as a potential therapeutic target for overcoming GEM chemoresistance in NPC.
Collapse
Affiliation(s)
- Kai-Lin Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Sai-Wei Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ji-Jin Yao
- Department of Head and Neck Oncology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengbing Zang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
42
|
Cen K, Zhou J, Yang X, Guo Y, Xiao Y. Lymphocyte antigen 6 family member E suppresses apoptosis and promotes pancreatic cancer growth and migration via Wnt/β-catenin pathway activation. Sci Rep 2024; 14:20196. [PMID: 39215036 PMCID: PMC11364638 DOI: 10.1038/s41598-024-70764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic cancer (PC) is the primary cause of cancer-related mortality. Due to the absence of reliable biomarkers for predicting prognosis or guiding treatment, there is an urgent need for molecular studies on PC. Lymphocyte antigen 6 family member E (LY6E) is implicated in uncontrolled cell growth across various cancers. However, the precise mechanism of LY6E in PC remains unclear. Here, we conducted comprehensive bioinformatic analyses using online tools and R- × 64-4.1.1, complemented by experimental validation through Western blotting, immunohistochemistry, immunosorbent assays, flow cytometry, cell assays, and animal models. Our findings reveal significantly elevated expression of LY6E in PC, correlating with poor prognosis. LY6E knockdown inhibited proliferation, invasion, and migration of PC cells, while enhancing apoptosis evidenced by increased cleaved caspase 3 levels and alterations in the Bcl-2/Bax ratio. Conversely, LY6E overexpression promoted PC cell proliferation and migration, and inhibited apoptosis. Mechanistically, LY6E downregulation suppressed the Wnt/β-catenin signaling pathway. In vivo studies demonstrated that LY6E suppression attenuated tumor growth in murine models. Additionally, LY6E suppression resulted in reduced tumor growth in mice. In conclusion, our study confirms the significant role of LY6E in the progression of PC. LY6E, serving as an independent prognostic indicator, has the potential to serve as a valuable biomarker for PC to inform treatment strategies.
Collapse
Affiliation(s)
- Kenan Cen
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jingyao Zhou
- Department of Pharmacy, Taizhou Central Hospital, Taizhou, China
| | - Xuejia Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yangyang Guo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yanyi Xiao
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Shanghai University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
43
|
Meng Z, Zhang R, Wu X, Piao Z, Zhang M, Jin T. LncRNA HAGLROS promotes breast cancer evolution through miR-135b-3p/COL10A1 axis and exosome-mediated macrophage M2 polarization. Cell Death Dis 2024; 15:633. [PMID: 39198393 PMCID: PMC11358487 DOI: 10.1038/s41419-024-07020-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in breast cancer progression, but the function of lncRNAs in regulating tumor-associated macrophages (TAMs) remains unclear. As carriers of lncRNAs, exosomes play an important role as mediators in the communication between cancer cells and the tumor microenvironment. In this study, we found that lncRNA HAGLROS was highly expressed in breast cancer tissues and plasma exosomes, and its high expression was related to the poor prognosis of breast cancer patients. Functionally, breast cancer cell-derived exosomal lncRNA HAGLROS promotes breast cancer cell proliferation, migration, epithelial-mesenchymal transition (EMT) process and angiogenesis by inducing TAM/M2 polarization. Mechanistically, lncRNA HAGLROS competitively binds to miR-135-3p to prevent the degradation of its target gene COL10A1. Collectively, these results indicated that the lncRNA HAGLROS/miR-135b-3p/COL10A1 axis promoted breast cancer progression, and revealed the interactive communication mechanism between breast cancer cells and TAMs, suggesting that lncRNA HAGLROS may be a potential biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Ziqi Meng
- Department of Central Laboratory, Yanbian University Hospital, Yanji, China
- Department of Pathology and Cancer Research Center, Yanbian University, Yanji, China
| | - Rui Zhang
- Department of Pathology and Cancer Research Center, Yanbian University, Yanji, China
| | - Xuwei Wu
- Department of Pathology, Chifeng Municipal Hospital, Chifeng, China
| | - Zhengri Piao
- Department of Radiology, Yanbian University Hospital, Yanji, Jilin, China
| | - Meihua Zhang
- Department of Health Examination Centre, Yanbian University Hospital, Yanji, China.
| | - Tiefeng Jin
- Department of Central Laboratory, Yanbian University Hospital, Yanji, China.
- Department of Pathology and Cancer Research Center, Yanbian University, Yanji, China.
| |
Collapse
|
44
|
Gao Z, Luan X, Wang X, Han T, Li X, Li Z, Li P, Zhou Z. DNA damage response-related ncRNAs as regulators of therapy resistance in cancer. Front Pharmacol 2024; 15:1390300. [PMID: 39253383 PMCID: PMC11381396 DOI: 10.3389/fphar.2024.1390300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The DNA damage repair (DDR) pathway is a complex signaling cascade that can sense DNA damage and trigger cellular responses to DNA damage to maintain genome stability and integrity. A typical hallmark of cancer is genomic instability or nonintegrity, which is closely related to the accumulation of DNA damage within cancer cells. The treatment principles of radiotherapy and chemotherapy for cancer are based on their cytotoxic effects on DNA damage, which are accompanied by severe and unnecessary side effects on normal tissues, including dysregulation of the DDR and induced therapeutic tolerance. As a driving factor for oncogenes or tumor suppressor genes, noncoding RNA (ncRNA) have been shown to play an important role in cancer cell resistance to radiotherapy and chemotherapy. Recently, it has been found that ncRNA can regulate tumor treatment tolerance by altering the DDR induced by radiotherapy or chemotherapy in cancer cells, indicating that ncRNA are potential regulatory factors targeting the DDR to reverse tumor treatment tolerance. This review provides an overview of the basic information and functions of the DDR and ncRNAs in the tolerance or sensitivity of tumors to chemotherapy and radiation therapy. We focused on the impact of ncRNA (mainly microRNA [miRNA], long noncoding RNA [lncRNA], and circular RNA [circRNA]) on cancer treatment by regulating the DDR and the underlying molecular mechanisms of their effects. These findings provide a theoretical basis and new insights for tumor-targeted therapy and the development of novel drugs targeting the DDR or ncRNAs.
Collapse
Affiliation(s)
- Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xuezhe Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Tianyue Han
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoyuan Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zeyang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Liang X, Liu B. Exploration of PVT1 as a biomarker in prostate cancer. Medicine (Baltimore) 2024; 103:e39406. [PMID: 39183420 PMCID: PMC11346897 DOI: 10.1097/md.0000000000039406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Prostate cancer is a malignant tumor originating from the prostate gland, significantly affecting patients' quality of life and survival rates. Public data was utilized to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis was constructed to classify gene modules. Functional enrichment analysis was performed through Kyoto Encyclopedia of Genes and Genomes and gene ontology annotations, with results visualized using the Metascape database. Additionally, gene set enrichment analysis evaluated gene expression profiles and related pathways, constructed a protein-protein interaction network to predict core genes, analyzed survival data, plotted heatmaps and radar charts, and predicted microRNAs for core genes through miRTarBase. Two prostate cancer datasets (GSE46602 and GSE55909) were analyzed, identifying 710 DEGs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that DEGs were primarily involved in organic acid metabolism and the P53 signaling pathway. Gene set enrichment analysis and Metascape analyses further confirmed the significance of these pathways. After constructing the weighted gene co-expression network analysis network, 3 core genes (DDX21, NOP56, plasmacytoma variant translocation 1 [PVT1]) were identified. Survival analysis indicated that core genes are closely related to patient prognosis. Through comparative toxicogenomics database and miRNA prediction analysis, PVT1 was considered to play a crucial role in the development of prostate cancer. The PVT1 gene is highly expressed in prostate cancer and has the potential to become a diagnostic biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Xiangdong Liang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
46
|
He Z, Li X, Chen S, Cai K, Li X, Liu H. CD105+CAF-derived exosomes CircAMPK1 promotes pancreatic cancer progression by activating autophagy. Exp Hematol Oncol 2024; 13:79. [PMID: 39103892 DOI: 10.1186/s40164-024-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/29/2024] [Indexed: 08/07/2024] Open
Abstract
Previous studies have shown that the heterogeneity of tumor-associated fibroblasts (CAFs) in the tumor microenvironment may play a critical role in tumorigenesis; however, the biological function of CAFs in pancreatic cancer is still controversial. In this study, we found that CD105-positive (CD105+) CAF-derived exosomes significantly promoted the proliferative and invasive metastatic abilities of pancreatic cancer cells. Furthermore, RNA-seq and qRT‒PCR experiments revealed circAMPK1 as a key molecule in exosomes from CD105+ CAFs that mediates the malignant progression of pancreatic cancer. Furthermore, we demonstrated that circAMPK1 encodes a novel protein (AMPK1-360aa) in pancreatic cancer cells. This protein competes with AMPK1 to bind to the ubiquitination ligase NEDD4, which inhibits AMPK1 protein degradation and ubiquitination and thereby increases AMPK1 levels. Finally, we demonstrated that AMPK1-360aa induces cellular autophagy via NEDD4/AMPK1 to promote the proliferation and invasion of pancreatic cancer cells. In summary, circAMPK1 in CD105+ CAF-derived exosomes may mediate pancreatic cancer cell proliferation and invasive metastasis by inducing autophagy in target cells. Moreover, circAMPK1 may competitively bind to ubiquitinating enzymes through the encoded protein AMPK1-360aa, which in turn inhibits the ubiquitination-mediated degradation of AMPK1 and contributes to the upregulation of AMPK1 expression, thus inducing cellular autophagy to mediate the malignant progression of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, People's Republic of China
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Xiushen Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, People's Republic of China
| | - Shiyu Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Kun Cai
- Department of Hepatic-Biliary-Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, 518000, Guangdong, People's Republic of China.
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, 518000, Guangdong, People's Republic of China.
| |
Collapse
|
47
|
Hong J, Du K, Zhang W, Chen J, Jin H, Chen Y, Jiang Y, Yu H, Weng X, Zheng S, Yu J, Cao L. 6:2 Cl-PFESA, a proposed safe alternative for PFOS, diminishes the gemcitabine effectiveness in the treatment of pancreatic cancer. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134790. [PMID: 38850938 DOI: 10.1016/j.jhazmat.2024.134790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC)/pancreatic cancer, is a highly aggressive malignancy with poor prognosis. Gemcitabine-based chemotherapy remains the cornerstone of PDAC treatment. Nonetheless, the development of resistance to gemcitabine among patients is a major factor contributing to unfavorable prognostic outcomes. The resistance exhibited by tumors is modulated by a constellation of factors such as genetic mutations, tumor microenvironment transforms, environmental contaminants exposure. Currently, comprehension of the relationship between environmental pollutants and tumor drug resistance remains inadequate. Our study found that PFOS/6:2 Cl-PFESA exposure increases resistance to gemcitabine in PDAC. Subsequent in vivo trials confirmed that exposure to PFOS/6:2 Cl-PFESA reduces gemcitabine's efficacy in suppressing PDAC, with the inhibition rate decreasing from 79.5 % to 56.7 %/38.7 %, respectively. Integrative multi-omics sequencing and molecular biology analyses have identified the upregulation of ribonucleotide reductase catalytic subunit M1 (RRM1) as a critical factor in gemcitabine resistance. Subsequent research has demonstrated that exposure to PFOS and 6:2 Cl-PFESA results in the upregulation of the RRM1 pathway, consequently enhancing chemotherapy resistance. Remarkably, the influence exerted by 6:2 Cl-PFESA exceeds that of PFOS. Despite 6:2 Cl-PFESA being regarded as a safer substitute for PFOS, its pronounced effect on chemotherapeutic resistance in PDAC necessitates a thorough evaluation of its potential risks related to gastrointestinal toxicity.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Junran Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hanxi Yu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoyu Weng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
48
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Zhong J. LINC00518: a key player in tumor progression and clinical outcomes. Front Immunol 2024; 15:1419576. [PMID: 39108268 PMCID: PMC11300200 DOI: 10.3389/fimmu.2024.1419576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), defined as RNA molecules exceeding 200 nucleotides in length, have been implicated in the regulation of various biological processes and the progression of tumors. Among them, LINC00518, a recently identified lncRNA encoded by a gene located on chromosome 6p24.3, consists of three exons and is predicted to positively regulate the expression of specific genes. LINC00518 has emerged as a key oncogenic lncRNA in multiple cancer types. It exerts its tumor-promoting effects by modulating the expression of several target genes, primarily through acting as a sponge for microRNAs (miRNAs). Additionally, LINC00518 influences critical signaling pathways, including the Wnt/β-catenin, JAK/STAT, and integrin β3/FAK pathways. Elevated levels of LINC00518 in tumor tissues are associated with increased tumor size, advanced clinical stage, metastasis, and poor survival prognosis. This review provides a comprehensive summary of the genetic characteristics, expression patterns, biological functions, and underlying mechanisms of LINC00518 in human diseases.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
49
|
Chen Q, Pan XH, Wang QH, Bai JJ, Jiang LQ, Li YH, Zhao Y, Xie XD, Qin Y, Hu TJ. Sophora subprostrate polysaccharide targets LncRNA MSTRG.5823.1 to suppress PCV2-mediated immunosuppression via TNF/NF-κB signaling. Int Immunopharmacol 2024; 139:112701. [PMID: 39024747 DOI: 10.1016/j.intimp.2024.112701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Current evidence suggests that porcine circovirus type 2 (PCV2) infection induces immunosuppression in piglets. Sophora subprostrate polysaccharide (SSP) exhibits various pharmacological activities, including immunoregulatory, anti-inflammatory, antiviral, and antioxidant properties. However, the acts of lncRNAs in regulating the therapeutic effects of SSP on PCV2-infected RAW264.7 cells remains poorly understood. This study aimed to investigate the molecular mechanisms by which lncRNAs regulate PCV2-induced immunosuppression during SSP treatment. Our findings revealed that 1699 mRNAs, 373 lncRNAs, and 129 miRNAs were differentially expressed in PCV2-infected RAW264.7 cells. Additionally, 359 mRNAs, 271 lncRNAs, and 79 miRNAs exhibited differential expression in SSP-treated PCV2-infected RAW264.7 cells. GO and KEGG analyses indicated that the candidate genes were enriched in the TNF/NF-κB signaling pathway. Furthermore, based on GO and KEGG pathway analysis, a ceRNA network involving chemokine (C-X-C motif) ligand 2 (CXCL2), miR-217-x, and MSTRG.5823.1 was constructed. We demonstrated that lncRNA MSTRG.5823.1 localized to the cytoplasm. Moreover, we found that silencing or overexpressing lncRNA MSTRG.5823.1 significantly modulated PCV2-induced immunosuppression by regulating the activation of the TNF/NF-κB signaling pathway. Specifically, lncRNA MSTRG.5823.1 overexpression increased the expression of TNF/NF-κB signaling pathway-related genes and proteins in PCV2-infected RAW264.7 cells. Conversely, silencing lncRNA MSTRG.5823.1 decreased their expression. Rescue assays further revealed that the suppressive effects of miR-217-x overexpression on TNF/NF-κB signaling pathway-related genes and proteins could be reversed by MSTRG.5823.1 overexpression. These findings highlight the critical role of lncRNA MSTRG.5823.1 in PCV2 infection progression and suggest a new strategy for the prevention and treatment of PCV2 infection.
Collapse
Affiliation(s)
- Qi Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Xian-Hui Pan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Academy of Fishery Sciences, Nanning 530021, PR China
| | - Qiu-Hua Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Jing-Jing Bai
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Li-Qun Jiang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yan-Hua Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Xiao-Dong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yang Qin
- Affiliated Hospital of Guizhou Medical University 550001, PR China.
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
50
|
Yang Y, Gong Y, Ding Y, Sun S, Bai R, Zhuo S, Zhang Z. LINC01133 promotes pancreatic ductal adenocarcinoma epithelial-mesenchymal transition mediated by SPP1 through binding to Arp3. Cell Death Dis 2024; 15:492. [PMID: 38987572 PMCID: PMC11237081 DOI: 10.1038/s41419-024-06876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited treatment methods. Long non-coding RNAs (lncRNAs) have been found involved in tumorigenic and progression. The present study revealed that LINC01133, a fewly reported lncRNA, was one of 16 hub genes that could predict PDAC patients' prognosis. LINC01133 was over-expressed in PDAC tumors compared to adjacent pancreas and could promote PDAC proliferation and metastasis in vitro and in vivo, as well as inhibit PDAC apoptosis. LINC01133 expression positively correlated to secreted phosphoprotein 1 (SPP1) expression, leading to an enhanced epithelial-mesenchymal transition (EMT) process. LINC01133 bound with actin-related protein 3 (Arp3), the complex reduced SPP1 mRNA degradation which increased SPP1 mRNA level, ultimately leading to PDAC proliferation. This research revealed a novel mechanism of PDAC development and provided a potential prognosis indicator that may benefit PDAC patients.
Collapse
Affiliation(s)
- Yefan Yang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuxi Gong
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ying Ding
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shuning Sun
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Rumeng Bai
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shuaishuai Zhuo
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|