1
|
Zhang L, Xu J, Jiang D, Zhang J, Li H, Zhao Z, Mei Z. Hsa_circ_0057104, by competitive adsorption of miR-627-5p, mediates CCND2 expression to promote malignant proliferation and Warburg effect of colorectal cancer. Biotechnol Genet Eng Rev 2024; 40:3839-3855. [PMID: 37130193 DOI: 10.1080/02648725.2023.2199243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/30/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVE hsa_circ_0057104 (circPDK1) has been elucidated to regulate malignant behavior in pancreatic and renal cell carcinoma. The study functionally aimed at how circPDK1 modifies colorectal cancer (CRC) progression, along with its potential molecular mechanism. METHODS circPDK1 expression patterns in CRC tissues and cell lines were analyzed by RT-qPCR. circPDK1/miR-627-5p/CCND2 expression levels were changed by transient transfection. CCK-8 assay, flow cytometry, Transwell, immunoblotting, and commercial kits were utilized to measure CRC cell proliferation, apoptosis, invasion/migration, and glycolysis processes. Dual luciferase reporting assay and RIP assay were employed to evaluate the targeting relationship between circPDK1/miR-627-5p/CCND2. RESULTS circPDK1 was highly expressed in CRC. circPDK1 knockdown inhibited CRC cell proliferation, invasion/migration, and warburg effect and forced apoptosis. Overexpressing circPDK1 had the opposite effect. The effects of circPDK1 knockdown or circPDK1 overexpression on CRC cells were mitigated by downregulating miR-627-5p or CCND2, respectively. CircPDK1, by competitive adsorption of miR-627-5p, mediated CCND2 expression. CONCLUSION CircPDK1 induces the malignant behavior of CRC by competitive adsorption of miR-627-5p mediating CCND2 expression, offering new insights into the future development of CRC-targeted drugs.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastroenterology, The Second College of Clinical Medicine Chongqing Medical University, Chongqing, China
| | - Jian Xu
- Department of Gastroenterology, Chongqing Jiangjin Central Hospital, Chongqing, China
| | - Dequan Jiang
- Department of Gastroenterology, The Second College of Clinical Medicine Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Gastroenterology, The Second College of Clinical Medicine Chongqing Medical University, Chongqing, China
| | - Hongyuan Li
- Department of Gastroenterology, The Second College of Clinical Medicine Chongqing Medical University, Chongqing, China
| | - Zhengzhong Zhao
- Department of Gastroenterology, The Second College of Clinical Medicine Chongqing Medical University, Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second College of Clinical Medicine Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Luo X, Shi J, Wang S, Jin X. The role of circular RNA targeting IGF2BPs in cancer-a potential target for cancer therapy. J Mol Med (Berl) 2024; 102:1297-1314. [PMID: 39287635 DOI: 10.1007/s00109-024-02488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are an interesting class of conserved single-stranded RNA molecules derived from exon or intron sequences produced by the reverse splicing of precursor mRNA. CircRNAs play important roles as microRNA sponges, gene splicing and transcriptional regulators, RNA-binding protein sponges, and protein/peptide translation factors. Abnormal functions of circRNAs and RBPs in tumor progression have been widely reported. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) are a highly conserved family of RBPs identified in humans that function as post-transcriptional fine-tuners of target transcripts. Emerging evidence suggests that IGF2BPs regulate the processing and metabolism of RNA, including its stability, translation, and localization, and participate in a variety of cellular functions and pathophysiology. In this review, we have summarized the roles and molecular mechanisms of circRNAs and IGF2BPs in cancer development and progression. In addition, we briefly introduce the role of other RNAs and IGF2BPs in cancer, discuss the current clinical applications and challenges faced by circRNAs and IGF2BPs, and propose future directions for this promising research field.
Collapse
Affiliation(s)
- Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Lin X, Zou YH, Liu CX, Lu H, Fan LJ, Xu HS, Zhou Q, Liu J, Yue ZQ, Gan JH. Methionine restriction promotes cisplatin sensitivity of gastric cancer resistant cells by down-regulating circ-CDK13 level. Exp Cell Res 2024:114315. [PMID: 39488295 DOI: 10.1016/j.yexcr.2024.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Methionine restriction (MR) is a research direction in the treatment of gastric cancer (GC). The aim of this study was to investigate the molecular mechanism of MR on enhancing cisplatin (DDP) sensitivity of drug-resistant GC cells. METHODS Twenty pairs of GC tissues and adjacent normal gastric mucosa tissues were collected. DDP-resistant cell lines (KATO/DDP and MKN45/DDP), mouse model of GC and GC patient-derived organoid (PDO) models were established. Lentivirus-mediated METase overexpression was used for MR. Cell viability and apoptosis were detected by MTT assay and flow cytometry. Western blotting was used to detect multi-drug resistance-1 (MDR1), MDR-associated protein 1 (MRP1) eukaryotic initiation factor 4A-Ⅲ (EIF4A3), and METase protein expressions. The levels of circRNAs were detected by qRT-PCR. Tumor volume and weight were measured. The proliferation of tumor cells was detected by immunohistochemical staining. RESULTS The differentially expressed circRNAs of GC were screened in Gene Expression Omnibus database. MR in KATO/DDP and MKN45/DDP cells significantly down-regulated circ-CDK13 level. Overexpression of circ-CDK13 significantly inhibited apoptosis of sensitive cells (KATO III and MKN45). Interference with circ-CDK13 significantly promoted apoptosis of drug-resistant cells (KATO/DDP and MKN45/DDP). MR enhanced the DDP sensitivity of GC resistant cells, GC PDO and GC mice by down-regulating circ-CDK13. EIF4A3 binds to the downstream flanking sequence of circ-CDK13, and interference with EIF4A3 reduces circ-CDK13 levels, but does not affect CDK13. The expressions of circ-CDK13 and EIF4A3 in GC clinical samples were increased and positively correlated. Simultaneously overexpression of METase and EIF4A3 in resistant cells inhibited apoptosis, and further interference with circ-CDK13 reversed this effect. CONCLUSION MR inhibits circ-CDK13 level by down-regulating EIF4A3, thereby increasing the sensitivity of GC drug-resistant cells to DDP.
Collapse
Affiliation(s)
- Xin Lin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Yong-Hui Zou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Chen-Xi Liu
- Excellent Ophthalmology Class 221, School of Ophthalmology & Optometry, Nanchang University
| | - Hao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Luo-Jun Fan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - He-Song Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jiang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhen-Qi Yue
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jin-Heng Gan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| |
Collapse
|
4
|
Ju L, Luo Y, Shan J, Lu R, Chen L, Shao J, Bian Z, Yao M. CircGNAO1 suppresses hepatocellular carcinoma progression and metastasis via sponging miR-182-5p and regulating FOXO1 expression. Int Immunopharmacol 2024; 140:112873. [PMID: 39098231 DOI: 10.1016/j.intimp.2024.112873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive malignant tumor with poor prognosis. Using high-throughput sequencing, we identified a novel circRNA, circGNAO1, which is downregulated in HCC tissues compared to adjacent tissues. However, the potential functions and mechanisms of circGNAO1 in HCC metastasis remain unclear. METHODS qRT-PCR was used to detect the expression of circGNAO1, miR-182-5p, and FOXO1 in HCC cells and tissues. Bioinformatics analysis, RNA pull-down assyas, and dual-luciferase reporter assays were employed to verify the interaction between circGNAO1 and miR-182-5p. Functional experiments were conducted using circGNAO1 overexpression and knockdown cell lines, including Transwell, wound healing, and EdU assays. Liver metastasis models and subcutaneous xenograft mouse models were established to analyze the effect of circGNAO1 on HCC metastasis and growth in vivo. RESULTS High-throughput sequencing and qRT-PCR results showed that the expression of circGNAO1 dramatically decreased in HCC tissues. Functionally, in vivo and in vitro experiments verified that overexpression of circGNAO1 inhibited the proliferation, migration, invasion and EMT of HCC cells, while knockdown of circGNAO1 promoted these behaviors. Mechanistically, we have demonstrated that circGNAO1 functions as a sponge for miR-182-5p to regulate FOXO1 expression, thereby activating the TGF-β/Smad3 signaling pathway and EMT process. CONCLUSIONS circGNAO1 suppresses the progression and metastasis of HCC through the miR-182-5p/FOXO1 axis, and circGNAO1 may be an efficient therapeutic target in HCC.
Collapse
Affiliation(s)
- Linling Ju
- Medical School of Nantong University, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Yunfeng Luo
- Medical School of Nantong University, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Jiajia Shan
- Nantong Haimen People's Hospital, Nantong, Jiangsu, China
| | - Rujian Lu
- Medical School of Nantong University, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Lin Chen
- Medical School of Nantong University, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Jianguo Shao
- Medical School of Nantong University, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China.
| | - Zhaolian Bian
- Medical School of Nantong University, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China.
| | - Min Yao
- Medical School of Nantong University, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
5
|
Zhang J, Cai Y. CircLPHN3 correlates with prognosis in colorectal cancer and regulates cellular processes by targeting miR-142-5p. Int J Biol Markers 2024:3936155241287219. [PMID: 39420826 DOI: 10.1177/03936155241287219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is often diagnosed late and has a poor prognosis. Circular RNAs (circRNAs) have been identified as prognostic biomarkers in various cancers, including CRC. OBJECTIVE The objective was to elucidate the role of circLPHN3 (hsa_circ_0069865) in CRC progression and to provide a promising prognostic marker for CRC. METHODS CircLPHN3 was identified through bioinformatics analysis of the GSE121842 dataset. The levels of circLPHN3 in CRC samples were analyzed by real time-quantitative polymerase chain reaction. Its clinical significance was assessed using the Kaplan-Meier curve and multivariate Cox regression. Downstream microRNAs of circLPHN3 were predicted with the RNAhybrid, Circular RNA Interactome, and starBase online databases. The target of miR-142-5p was predicted using miRDB, TargetScanHuman, starBase, and miRWalk databases. The relationship between circLPHN3, miR-142-5p, and LDB2 was verified by dual luciferase reporter assay. The function of circLPHN3 on CRC cell growth and metastasis was measured using Transwell and the cell counting kit-8 assay. RESULTS Significant downregulation of circLPHN3 was found in CRC. CircLPHN3 was closely related to higher tumor node metastasis stage, lymph node metastasis, and predicted unfavorable prognosis. miR-142-5p was highly expressed in CRC and its expression was negatively regulated by circLPHN3. Overexpression of circLPHN3 curbed CRC cell growth, migration, and invasion, mediated by miR-142-5p. Moreover, LDB2 was identified as a target of miR-142-5p. CONCLUSION CircLPHN3 acted as a prognostic biomarker and tumor suppressor for CRC via modulating miR-142-5p.
Collapse
Affiliation(s)
- JiWen Zhang
- Department of Gastroenterology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yan Cai
- Department of Gastroenterology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| |
Collapse
|
6
|
Sun Z, Dang P, Guo Y, Liu S, Hu S, Sun H, Xu Y, Wang W, Chen C, Liu J, Ji Z, Liu Y, Hu J. Targeting CircAURKA prevents colorectal cancer progression via enhancing CTNNB1 protein degradation. Oncogene 2024:10.1038/s41388-024-03155-5. [PMID: 39341990 DOI: 10.1038/s41388-024-03155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Tumor progression of colorectal cancer (CRC) seriously affects patient prognosis. For CRC patients with advanced-stage disease, it is still necessary to continuously explore more effective targeted therapeutic drugs. Circular RNAs (circRNAs) are involved in the regulation of tumor biology. We screened circAURKA, which was significantly highly expressed in CRC by previous high-throughput RNA sequencing. In vitro experiments were performed to investigate the effect of the circRNA on the proliferation and metastasis of HCT116 and SW480 cells. In addition, we used the EdU assay, Transwell assay, nude mouse xenograft tumor model and nude mouse tail vein metastasis model to examine the effect of circAURKA on the proliferation and metastasis of CRC. Mechanistically, fluorescent in situ hybridization (FISH), RNA pull-down, RNA immunoprecipitation (RIP), protein coimmunoprecipitation (co-IP) experiments and animal models were performed to confirm the underlying mechanisms of circAURKA. CircAURKA was significantly highly expressed in CRC tissues and colorectal cells and mainly present in the cytoplasm. The circRNA promoted the proliferation and metastasis of CRC cells in vitro and in vivo. In terms of the molecular mechanism, circAURKA inhibited the degradation of the CTNNB1 protein by promoting the interaction between ACLY and the CTNNB1 protein, thereby promoting the proliferation and metastasis of CRC cells. In addition, circAURKA stability was regulated by m6A methylation modification. This study revealed that circAURKA promoted the proliferation and metastasis of CRC by inhibiting CTNNB1 protein degradation, providing a basis for the development of targeted drugs to control CRC progression.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaxin Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chen Chen
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenyu Ji
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Zhang W, Zhang W, Tang C, Hu Y, Yi K, Xu X, Chen Z. Silencing AREG Enhances Sensitivity to Irradiation by Suppressing the PI3K/AKT Signaling Pathway in Colorectal Cancer Cells. Biologics 2024; 18:273-284. [PMID: 39359866 PMCID: PMC11446196 DOI: 10.2147/btt.s480361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Background It has been established that Spalt-Like Transcription Factor 4 (SALL4) promotes Colorectal Cancer (CRC) cell proliferation. Furthermore, Amphiregulin (AREG) is crucially involved in cancer cell proliferation and therapeutic resistance regulation. In this regard, this study aimed to establish whether SALL4 affects the radiosensitization of CRC cells via AREG expression regulation. Methods Transcriptome sequencing and the Human Transcription Factor Database (HumanTFDB) were used to identify the potential SALL4 targets. The dual-luciferase reporter analysis was used to confirm the SALL4-induced AREG activation. Western Blot (WB) and Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR) assays were used to examine the effect of X-ray irradiation on SALL4 and AREG expression. The AREG-KD (Knockdown) stable cell lines were created through lentiviral infection. Cell proliferation was tracked using Cell Counting Kit 8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU)-incorporation assays. Cell cycle and apoptosis were examined through flow cytometry. The cells were exposed to a controlled X-ray radiation dose (6 Gy) for imaging purposes. Results SALL4 could bound to the AREG promoter, enhancing AREG expression. Furthermore, irradiation upregulated SALL4 and AREG in CRC cells. Additionally, AREG knockdown in CRC cells led to reduced DNA replication efficiency, suppressed cell proliferation, increased DNA damage, and enhanced G1 phase arrest and apoptosis following irradiation. On the other hand, AREG overexpression reversed the inhibitory effects of SALL4 downregulation on AREG expression. Conclusion In CRC cells, SALL4 downregulation suppressed AREG expression, regulating CRC cell radiosensitivity via the PI3K-AKT pathway, thus presenting a potential therapeutic pathway for CRC treatment using Radiotherapy (RT).
Collapse
Affiliation(s)
- Wenbing Zhang
- Department of Gastrointestinal Surgery, Anqing First People's Hospital Affiliated to Anhui Medical University, Anqing, Anhui, 246000, People's Republic of China
| | - Wenjuan Zhang
- Department of Anesthesiology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Chenling Tang
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yan Hu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215400, People's Republic of China
| | - Ke Yi
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215400, People's Republic of China
| | - Xiaohui Xu
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215400, People's Republic of China
| | - Zhihua Chen
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Liu G, Liu X, Yin J, Zheng H, Zhu X. CircANXA4 (hsa_circ_0055087) regulates the miR-1256/PRM1 axis to promote tumor progression in colorectal cancer. Noncoding RNA Res 2024; 9:921-929. [PMID: 38660591 PMCID: PMC11039774 DOI: 10.1016/j.ncrna.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Colorectal cancer (CRC) incidence ranks third among malignant cancers with a high propensity for distant metastasis. Despite continuous efforts to improve treatment, the prognosis especially in patients with advanced distant metastasis is low. The mechanism of development and progression of CRC is not fully understood. Non-coding RNAs (ncRNAs) have emerged as essential regulators in cancer progression. Here, we aim to dissect the role of one critical ncRNA, circANXA4, in CRC progression. CircANXA4 expression was analyzed by the GEO database. Differentially expressed circRNAs were identified by the Limma package R software. Expression of circANXA4 and miR-1256 was detected by qRT-PCR. The regulation of circANXA4 on cell proliferation and progression was confirmed with the cell viability assay using cell counting kit-8 (CCK-8) and transwell migration assay. RNA pull-down assay, RNA immunoprecipitation (RIP), and western blot were used to determine the interaction between circANXA4, miR-1256, and protamine1 (PRM1). CircANXA4 was upregulated in both CRC tissues and cell lines. Knockdown of circANXA4 effectively reduced cell proliferation, progression, and migration. Additionally, silencing circANXA4 remarkably increased miR-1256 expression, while reducing PRM1 expression, thereby demonstrating that circANXA4 downregulates miR-1256 expression through a complementary binding site. Rescue experiments revealed the interactions between circANXA4, miR-1256, and PRM1. Pearson correlation analysis revealed that circANXA4 expression positively correlated with PRM1 expression and miR-1256 expression inversely correlated with PRM1 expression. In sum, we demonstrated that circANXA4 promotes cancer cell proliferation and progression by sponging miR-1256 and upregulating PRM1 in CRC.
Collapse
Affiliation(s)
- Guanglan Liu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, NO. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xinli Liu
- Department of Digestive Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Junfeng Yin
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, NO. 368 Hanjiang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Haijian Zheng
- Department of Neurology, Ganyu District People's Hospital, No.88 Haicheng Road, Lianyungang, 222100, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, NO. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| |
Collapse
|
9
|
Wang J, Zhang Y, Li Z. Advancements in Understanding the Role of Circular RNA in Osteosarcoma. Mol Biotechnol 2024; 66:2157-2167. [PMID: 37661210 DOI: 10.1007/s12033-023-00838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Osteosarcoma, the most prevalent primary malignant bone tumor and the third most frequent cancer in children and adolescents worldwide, still poses a significant therapeutic challenge. Even though combined chemotherapy and surgical resection have improved survival rates up to 60%, the prognosis for most patients with metastatic osteosarcoma continues to be dismal. The specific pathogenesis and key regulators of tumor invasion and metastasis remain largely elusive. Circular RNAs (circRNAs), novel endogenous non-coding RNA molecules that form covalently closed continuous loops through splicing, play a crucial role in the development, progression, clinical diagnosis, and treatment of various diseases. Recently, an escalating number of circular structures have been identified in osteosarcoma. Understanding their role in osteosarcoma is advantageous for early detection, diagnosis, and treatment of this disease. The primary function of circRNA involves its unique ability to bind specifically to miRNA, although their biological functions also extend to interacting with proteins, regulating gene transcription, and serving as translation templates. In this review, we explore the mechanisms and clinical applications of circRNAs in the pathogenesis and progression of osteosarcoma, with a particular emphasis on the regulatory mechanisms and functions of circRNAs as miRNA sponges in osteosarcoma development.
Collapse
Affiliation(s)
- Jin Wang
- Department of Orthopedics, Wuwei People's Hospital, Xuanwu Street, Liangzhou District, Wuwei, Gansu, 730030, People's Republic of China
| | - Yan Zhang
- Department of Outpatient, Liangzhou District Huangyang Hospital, Wuwei, Gansu, 733000, People's Republic of China
| | - Zicai Li
- Department of Orthopedics, Wuwei People's Hospital, Xuanwu Street, Liangzhou District, Wuwei, Gansu, 730030, People's Republic of China.
| |
Collapse
|
10
|
Liang X, Long L, Guan F, Xu Z, Huang H. Research status and potential applications of circRNAs affecting colorectal cancer by regulating ferroptosis. Life Sci 2024; 352:122870. [PMID: 38942360 DOI: 10.1016/j.lfs.2024.122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Ferroptosis is an emerging form of non-apoptotic programmed cell death (PCD), characterized by iron-mediated oxidative imbalance. This process plays a significant role in the development and progression of various tumors, including colorectal cancer, gastric cancer, and others. Circular RNA (circRNA) is a stable, non-coding RNA type with a single-stranded, covalently closed loop structure, which is intricately linked to the proliferation, invasion, and metastasis of tumor cells. Recent studies have shown that many circRNAs regulate various pathways leading to cellular ferroptosis. Colorectal cancer, known for its high incidence and mortality among cancers, is marked by a poor prognosis and pronounced chemoresistance. To enhance our understanding of how circRNA-mediated regulation of ferroptosis influences colorectal cancer development, this review systematically examines the mechanisms by which specific circRNAs regulate ferroptosis and their critical role in the progression of colorectal cancer. Furthermore, it explores the potential of circRNAs as biomarkers and therapeutic targets in colorectal cancer treatment, offering a novel approach to clinical management.
Collapse
Affiliation(s)
- Xiyuan Liang
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Linna Long
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Fan Guan
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Zilu Xu
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - He Huang
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
11
|
Zhang Y, Zhang C, Peng C, Jia J. Unraveling the crosstalk: circRNAs and the wnt signaling pathway in cancers of the digestive system. Noncoding RNA Res 2024; 9:853-864. [PMID: 38586314 PMCID: PMC10995981 DOI: 10.1016/j.ncrna.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024] Open
Abstract
Circular RNA (circRNA) is a unique type of noncoding RNA molecule characterized by its closed-loop structure. Functionally versatile, circRNAs play pivotal roles in gene expression regulation, protein activity modulation, and participation in cell signaling processes. In the context of cancers of the digestive system, the Wnt signaling pathway holds particular significance. Anomalous activation of the Wnt pathway serves as a primary catalyst for the development of colorectal cancer. Extensive research underscores the notable participation of circRNAs associated with the Wnt pathway in the progression of digestive system tumors. These circRNAs exhibit pronounced dysregulation across esophageal cancer, gastric cancer, liver cancer, colorectal cancer, pancreatic cancer, and cholangiocarcinoma. Furthermore, the altered expression of circRNAs linked to the Wnt pathway correlates with prognostic factors in digestive system tumors. Additionally, circRNAs related to the Wnt pathway showcase potential as diagnostic, therapeutic, and prognostic markers within the realm of digestive system tumors. This comprehensive review outlines the interplay between circRNAs and the Wnt signaling pathway in cancers of the digestive system. It seeks to provide a comprehensive perspective on their association while delving into ongoing research that explores the clinical applications of circRNAs associated with the Wnt pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Zeng X, Tang J, Zhang Q, Wang C, Qi J, Wei Y, Xu J, Yang K, Zhou Z, Wu H, Luo J, Jiang Y, Song Z, Wu J, Wu J. CircHIPK2 Contributes Cell Growth in Intestinal Epithelial of Colitis and Colorectal Cancer through Promoting TAZ Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401588. [PMID: 38981023 PMCID: PMC11425914 DOI: 10.1002/advs.202401588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer (CRC) and inflammatory bowel disease (IBD) are escalating global health concerns. Despite their distinct clinical presentations, both disorders share intricate genetic and molecular interactions. The Hippo signaling pathway plays a crucial role in regulating cell processes and is implicated in the pathogenesis of IBD and CRC. Circular RNAs (circRNAs) have gained attention for their roles in various diseases, including IBD and CRC. However, a comprehensive understanding of specific circRNAs involved in both IBD and CRC, and their functional roles is lacking. Here, it is found that circHIPK2 (hsa_circRNA_104507) is a bona fide circRNA consistently upregulated in both IBD and CRC suggesting its potential as a biomarker. Furthermore, silencing of circHIPK2 suppressed the growth of CRC cells in vitro and in vivo. Interestingly, decreased circHipk2 potentiated dextran sulfate sodium (DSS)-induced colitis but alleviated colitis-associated tumorigenesis. Most significantly, mechanistic investigations further unveil that circHIPK2, mediated by FUS, interacting with EIF4A3 to promote the translation of TAZ, ultimately increasing the transcription of downstream target genes CCN1 and CCN2. Taken together, circHIPK2 emerges as a key player in the shared mechanisms of IBD and CRC, modulating the Hippo signaling pathway. CircHIPK2-EIF4A3 axis contributes to cell growth in intestinal epithelial of colitis and CRC by enhancing TAZ translation.
Collapse
Affiliation(s)
- Xixi Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
- The Joint Innovation Center for Health and Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Zhejiang, 324000, China
| | - Jielin Tang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, China
| | - Qian Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Chenxing Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children of Wenzhou Medical University, Zhejiang, 325003, China
| | - Ji Qi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yusi Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jiali Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Kaiyuan Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Zuolin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Hao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jiarong Luo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children of Wenzhou Medical University, Zhejiang, 325003, China
| | - Zengqiang Song
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jinyu Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315302, China
| |
Collapse
|
13
|
Sun Z, Xu Y, Si C, Wu X, Guo Y, Chen C, Wang C. Targeting m7G-enriched circKDM1A prevents colorectal cancer progression. Mol Cancer 2024; 23:179. [PMID: 39215345 PMCID: PMC11363613 DOI: 10.1186/s12943-024-02090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Plenty of circRNAs have been reported to play an important role in colorectal cancer (CRC), while the reason of abnormal circRNA expression in cancer still keep elusive. Here, we found that m7G RNA modifications were enriched in some circRNAs, these m7G modifications in circRNAs were catalyzed by METTL1, and the GG motif was the main site preference for m7G modifications in circRNAs. We further confirmed that METTL1 played a cancer-promoting role in CRC. We then screened a highly expressed circRNA, called circKDM1A, and found that METTL1 prevented the degradation of circKDM1A by m7G modification. CircKDM1A was further verified to promote proliferation, invasion and migration of CRC in vivo and in vitro. Its cancer-promoting ability was weakened after the m7G site mutation. CircKDM1A was verified to activate AKT pathway by upregulating PDK1, consequently promoting CRC progression. These results suggest that m7G-modified circRNA promotes CRC progression via activating AKT pathway. Our study uncovers an essential physiological function and mechanism of METTL1-mediated m7G modification in the regulation of circRNA stability and cancer progression.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chaohua Si
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaxin Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
14
|
Zhang X, Fang F, Zhang J, Zhang S, Li H, Li B, Zhong Y, Zhen P. Circ_0006174 Upregulates IGF1R to Enhance Radioresistance and Tumorigenesis in Colorectal Cancer via miR-940 Suppression. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05028-9. [PMID: 39172343 DOI: 10.1007/s12010-024-05028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies all over the world. Increasing evidence has revealed that circular RNAs (circRNAs) are involved in the progression of CRC. In this study, we aimed to investigate the role and underlying mechanism of circ_0006174 in the development and radiosensitivity of CRC. Circ_0006174, microRNA-940 (miR-940), and insulin-like growth factor 1 receptor (IGF1R) expression levels were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). The radiosensitivity of cells also was assessed using colony formation assay. Besides, cell proliferation, apoptosis, migration, and invasion were detected by cell counting kit-8 (CCK-8), flow cytometry, and transwell assays. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the relationship between miR-940 and circ_0006174 or IGF1R. IGF1R protein level was examined using western blot. A xenograft tumor model was used to verify the function of circ_0006174 in CRC tumor growth in vivo. Circ_0006174 and IGF1R levels were elevated and miR-940 expression was decreased in CRC tissues and cells. Circ_0006174 knockdown enhanced the radiosensitivity of CRC cells by regulating cell proliferation, apoptosis, migration, and invasion in vitro. In mechanism, circ_0006174 served as a sponge for miR-940 to upregulate IGF1R expression. Moreover, circ_0006174 silencing suppressed CRC growth in vivo. Circ_0006174 boosts radioresistance of CRC cells at least partly through upregulating IGF1R expression by sponging miR-940, providing a novel theoretical basis for CRC therapy.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Radliation Oncology, Chifeng Tumor Hospital, No.45, Jiefang Street, Hongshan District, Chifeng City, Inner Mongolia, 024000, PR China
| | - Fang Fang
- Department of Radliation Oncology, Chifeng Tumor Hospital, No.45, Jiefang Street, Hongshan District, Chifeng City, Inner Mongolia, 024000, PR China
| | - Jiarui Zhang
- Department of Radliation Oncology, Chifeng Tumor Hospital, No.45, Jiefang Street, Hongshan District, Chifeng City, Inner Mongolia, 024000, PR China
| | - Sujuan Zhang
- Department of Radliation Oncology, Chifeng Tumor Hospital, No.45, Jiefang Street, Hongshan District, Chifeng City, Inner Mongolia, 024000, PR China
| | - Haonan Li
- Department of Radliation Oncology, Chifeng Tumor Hospital, No.45, Jiefang Street, Hongshan District, Chifeng City, Inner Mongolia, 024000, PR China
| | - Bingyao Li
- Department of Radliation Oncology, Chifeng Tumor Hospital, No.45, Jiefang Street, Hongshan District, Chifeng City, Inner Mongolia, 024000, PR China
| | - Yibo Zhong
- Department of Radliation Oncology, Chifeng Tumor Hospital, No.45, Jiefang Street, Hongshan District, Chifeng City, Inner Mongolia, 024000, PR China
| | - Peng Zhen
- Department of Radliation Oncology, Chifeng Tumor Hospital, No.45, Jiefang Street, Hongshan District, Chifeng City, Inner Mongolia, 024000, PR China.
| |
Collapse
|
15
|
Jin J, Du M, Ding D, Xuan R. CircRNA circ_0013339 Regulates the Progression of Colorectal Cancer Through miR-136-5p/SOX9 Axis. Biochem Genet 2024; 62:2362-2380. [PMID: 37925667 DOI: 10.1007/s10528-023-10540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common gastrointestinal malignancy. Dysregulation of circular RNAs (circRNAs) is associated with the progression of CRC. However, the role of circ_0013339 (hsa_circ_0013339) in CRC is still not clear. METHODS The levels of circ_0013339, miR-136-5p, and SRY-box transcription factor 9 (SOX9) in CRC were gauged by quantitative real-time polymerase chain reaction (qRT-PCR). Colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to detect cell proliferation. Cell counting kit-8 (CCK8) assay was used to measure cell viability. Western blot assay was performed to examine protein expression. The relationship between miR-136-5p and circ_0013339 or SOX9 was tested by dual-luciferase reporter assay. The effect of sh-circ_0013339 on tumor growth in vivo was examined by xenograft experiments. RESULTS Circ_0013339 expression was elevated in CRC tissues and cells, and circ_0013339 knockdown diminished the growth of CRC cells. MiR-136-5p was regulated by circ_0013339. MiR-136-5p deficiency ameliorated the effects of circ_0013339 silencing on CRC cell malignant behaviors. Circ_0013339 modulated SOX9 expression through miR-136-5p. SOX9 addition reversed the effects of miR-136-5p overexpression on CRC cell behaviors. Moreover, silencing of circ_0013339 suppressed the growth of xenograft tumors in vivo. CONCLUSION Circ_0013339 regulates the progression of CRC through miR-136-5p-dependent regulation of SOX9, uncovering a novel regulatory mechanism of circ_0013339 in CRC.
Collapse
Affiliation(s)
- Juan Jin
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230000, Anhui, China
| | - Min Du
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University(The First People's Hospital of Hefei), Hefei, 230000, Anhui, China.
| | - Ding Ding
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University(The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Ran Xuan
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University(The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| |
Collapse
|
16
|
Alrbyawi H. Stimuli-Responsive Liposomes of 5-Fluorouracil: Progressive Steps for Safe and Effective Treatment of Colorectal Cancer. Pharmaceutics 2024; 16:966. [PMID: 39065663 PMCID: PMC11280302 DOI: 10.3390/pharmaceutics16070966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
5-Fluorouracil (5-FU) has become one of the most widely employed antimetabolite chemotherapeutic agents in recent decades to treat various types of cancer. It is considered the standard first-line treatment for patients with metastatic colorectal cancer. Unfortunately, traditional chemotherapy with 5-FU presents many limitations, such as a short half-life, a low bioavailability, and a high cytotoxicity, affecting both tumor tissue and healthy tissue. In order to overcome the drawbacks of 5-FU and enhance its therapeutic effectiveness against colorectal cancer, many studies have focused on designing new delivery systems to successfully deliver 5-FU to tumor sites. Liposomes have gained attention as a well-accepted nanocarrier for several chemotherapeutic agents. These amphipathic spherical vesicles consist of one or more phospholipid bilayers, showing promise for the drug delivery of both hydrophobic and hydrophilic components in addition to distinctive properties, such as biodegradability, biocompatibility, a low toxicity, and non-immunogenicity. Recent progress in liposomes has mainly focused on chemical and structural modifications to specifically target and activate therapeutic actions against cancer within the proximity of tumors. This review provides a comprehensive overview of both internal-stimuli-responsive liposomes, such as those activated by enzymes or pH, and external-stimuli-responsive liposomes, such as those activated by the application of a magnetic field, light, or temperature variations, for the site-specific delivery of 5-FU in colorectal cancer therapy, along with the future perspectives of these smart-delivery liposomes in colorectal cancer. In addition, this review critically highlights recent innovations in the literature on various types of stimuli-responsive liposomal formulations designed to be applied either exogenously or endogenously and that have great potential in delivering 5-FU to colorectal cancer sites.
Collapse
Affiliation(s)
- Hamad Alrbyawi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| |
Collapse
|
17
|
Wan H, Zhong L, Xia T, Zhang D. Silencing Exosomal circ102927 Inhibits Foot Melanoma Metastasis via Regulating Invasiveness, Epithelial-Mesenchymal Transition and Apoptosis. Cancer Manag Res 2024; 16:825-839. [PMID: 39044746 PMCID: PMC11263183 DOI: 10.2147/cmar.s460315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Background Exosomes contain abundant circular RNAs (circRNAs), playing an important role in intercellular communication. However, the function and underlying molecular mechanism of exosomal circRNAs in foot metastatic melanoma remain unclear. Methods Twelve differentially expressed exosomal circRNAs between patients with metastatic and primary foot melanoma were screened through high-throughput sequencing, and their expression levels were detected by the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). CircRNA102927 silencing and overexpression A2058 cell line was constructed, and the effects of circRNA102927 on cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) were assessed using cell counting kit-8 (CCK-8), flow cytometry, wound healing, Transwell, and Western blot assays, respectively. Results Twelve differentially expressed exosomal circRNAs were screened and ROC curve showed that six circRNAs could be used as the diagnostic biomarkers for metastatic melanoma. Melanoma-secreted exosomes induced the differentiation of CD4+ T cells into Treg cells. CircRNA102927 was highly expressed in metastatic melanomas. Functionally, circRNA102927 silencing inhibited proliferation, EMT, migration, and invasion in metastatic melanoma cells, while promoting apoptosis. Meanwhile, overexpression of circRNA102927 had the opposite effects. Conclusion Our investigation suggests that silencing exosomal circRNA102927 may suppress foot melanoma metastasis by inhibiting invasiveness, EMT and promoting apoptosis.
Collapse
Affiliation(s)
- Huiying Wan
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ling Zhong
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Tian Xia
- Department of Pathology, Air Force Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
18
|
Zhou X, Wu L, Tian C. Overexpression of circular RNA hsa_circ_0008621 facilitates colorectal cancer progression and predicts poor prognosis. Ann Gastroenterol Surg 2024; 8:639-649. [PMID: 38957564 PMCID: PMC11216790 DOI: 10.1002/ags3.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 07/04/2024] Open
Abstract
Aim To evaluate the potential role of serum and tissue hsa_circ_0008621 as a prognostic biomarker for CRC patients. Focused on the functional role of hsa_circ_0008621 in colorectal cancer (CRC). Methods Serum and tissue hsa_circ_0008621 expression were quantified by qRT-PCR in 157 CRC patients, as well as 100 serums from healthy controls. Serum and tissue hsa_circ_0008621 expression was evaluated for their prognostic role in CRC patients using Kaplan-Meier curves and Multivariate Cox proportional hazards analysis. To further characterize the biological role of hsa_circ_0008621 expression in CRC, in vitro hsa_circ_0008621 inhibition was performed and the effects on cellular growth, migration, invasion, apoptosis, and glycolysis were explored. Next, the downstream molecules for hsa_circ_0008621 were predicted. Results Hsa_circ_0008621 expression was significantly upregulated in CRC tissues and serums. Serum hsa_circ_0008621 levels were significantly up-regulated in advanced-staged samples. High serum hsa_circ_0008621 expression was associated with shorter overall survival and recurrence-free survival in CRC patients. Multivariate Cox regression analysis identified a high level of serum hsa_circ_0008621 expression as an independent prognostic factor with respect to overall survival and recurrence-free survival. Loss of function assays for hsa_circ_0008621 in vitro led to a significant decrease in cell proliferation, migration, invasion, and glycolysis, but an increase in cell apoptosis. Hsa_circ_0008621 can sponge miR-532-5p, which targets SLC16A3. Conclusion High level of serum hsa_circ_0008621 is associated with poor survival in CRC and promotes CRC progression, suggesting it to be a promising non-invasive prognostic biomarker and novel therapeutic target in CRC patients.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Department of General SurgeryThe Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou first People's HospitalXuzhouJiangsuChina
| | - Lei Wu
- Department of General SurgeryThe Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou first People's HospitalXuzhouJiangsuChina
| | - Chunyan Tian
- Department of General SurgeryThe Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou first People's HospitalXuzhouJiangsuChina
| |
Collapse
|
19
|
Hou C, Liu J, Liu J, Yao D, Liang F, Qin C, Ma Z. METTL3-induced circ_0008345 contributes to the progression of colorectal cancer via the microRNA-182-5p/CYP1A2 pathway. BMC Cancer 2024; 24:728. [PMID: 38877514 PMCID: PMC11177402 DOI: 10.1186/s12885-024-12474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Circular RNA (circRNAs) have been found to play major roles in the progression of colorectal cancer (CRC). However, the functions of circ_0008345 (transcribed by PTK2) in regulating CRC development remain undefined. In this study, we aimed to explore the roles and underlying mechanisms of circ_0008345 in CRC. METHODS RNase R-treated total cellular RNA was used to verify the circular structure of circ_0008345, and a subcellular fractionation assay was performed to detect the subcellular localization of circ_0008345. RNA pull-down and dual-luciferase assays were used to verify the binding relation between microRNA (miR)-182-5p and circ_0008345 and/or CYP1A2. Colony formation assay, EdU, and Transwell assays were performed to detect the biological behavior of CRC cells in vitro, and CRC cells were injected into mice to observe the tumor formation. m6A immunoprecipitation was used to detect the m6A modification of circ_0008345 in CRC cells. RESULTS Circ_0008345, upregulated in CRC tissues and cells, was mainly present in the cytoplasm. Circ_0008345 bound to miR-182-5p, and miR-182-5p targeted CYP1A2, an oncogene in CRC. The colony formation, mobility, EdU-positive cell rate in vitro, and tumor growth in mice were inhibited after the knockdown of circ_0008345. However, the suppressing effects of sh-circ_0008345 on CRC and CYP1A2 expression were significantly reversed after further knockdown of miR-182-5p. METTL3 was the m6A modifier mediating circ_0008345 expression, and the suppression of METTL3 reduced the expression of circ_0008345. CONCLUSIONS METTL3-dependent m6A methylation upregulated circ_0008345, which blocked the inhibitory effect of miR-182-5p on CYP1A2, thereby exacerbating the malignant phenotype of CRC cells.
Collapse
Affiliation(s)
- Chaofeng Hou
- Department of Anorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 195, Tongbai North Road, Zhongyuan District, Zhengzhou, Henan, 450000, P.R. China
| | - Jinbo Liu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - Junwei Liu
- Department of Anorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 195, Tongbai North Road, Zhongyuan District, Zhengzhou, Henan, 450000, P.R. China
| | - Danjie Yao
- Department of Anorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 195, Tongbai North Road, Zhongyuan District, Zhengzhou, Henan, 450000, P.R. China
| | - Fang Liang
- Department of Oncology Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, P.R. China
| | - Congpeng Qin
- Department of Anorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 195, Tongbai North Road, Zhongyuan District, Zhengzhou, Henan, 450000, P.R. China
| | - Zhiyong Ma
- Department of Anorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 195, Tongbai North Road, Zhongyuan District, Zhengzhou, Henan, 450000, P.R. China.
| |
Collapse
|
20
|
Zhou Z, Lin T, Chen S, Zhang G, Xu Y, Zou H, Zhou A, Zhang Y, Weng S, Han X, Liu Z. Omics-based molecular classifications empowering in precision oncology. Cell Oncol (Dordr) 2024; 47:759-777. [PMID: 38294647 DOI: 10.1007/s13402-023-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND In the past decades, cancer enigmatical heterogeneity at distinct expression levels could interpret disparities in therapeutic response and prognosis. It built hindrances to precision medicine, a tactic to tailor customized treatment informed by the tumors' molecular profile. Single-omics analysis dissected the biological features associated with carcinogenesis to some extent but still failed to revolutionize cancer treatment as expected. Integrated omics analysis incorporated tumor biological networks from diverse layers and deciphered a holistic overview of cancer behaviors, yielding precise molecular classification to facilitate the evolution and refinement of precision medicine. CONCLUSION This review outlined the biomarkers at multiple expression layers to tutor molecular classification and pinpoint tumor diagnosis, and explored the paradigm shift in precision therapy: from single- to multi-omics-based subtyping to optimize therapeutic regimens. Ultimately, we firmly believe that by parsing molecular characteristics, omics-based typing will be a powerful assistant for precision oncology.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ting Lin
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haijiao Zou
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Aoyang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
21
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
22
|
Zhang G, Hou S, Li S, Wang Y, Cui W. Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review). Int J Oncol 2024; 64:48. [PMID: 38488027 PMCID: PMC11000535 DOI: 10.3892/ijo.2024.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Sen Hou
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Shuyue Li
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yequan Wang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
23
|
Sun L, Bin S, Huang C, Wang Q. CircROR1 upregulates CCNE1 expression to promote melanoma invasion and metastasis by recruiting KAT2A. Exp Dermatol 2024; 33:e15071. [PMID: 38566477 DOI: 10.1111/exd.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Circular RNAs (circRNAs) play important roles in cancer occurrence and progression. To explore and elucidate the clinical significance of specific circular RNA in melanoma and its potential molecular mechanism. CircROR1 expression in melanoma cells and tissues was confirmed by qRT-PCR and ISH. qRT-PCR and Western blotting were performed to measure the levels of CCNE1, KAT2A, MMP9 and TIMP2. MTT, Transwell and wound healing assays were performed to evaluate cell proliferation, invasion and metastasis. A xenograft mouse model was established to further verify the CircROR1/CCNE1 axis in vivo. RNA pull-down and RIP assays were performed to detect the direct interaction KAT2A and CircROR1. A ChIP assay was used to investigate the enrichment of H3K9ac acetylation in the CCNE1 promoter. CircROR1 was significantly upregulated in metastatic melanoma cells and tissues, promoting proliferation, invasion and metastasis in vitro and tumour growth in vivo. CircROR1 overexpression increased CCNE1 and MMP9 protein expression and decreased TIMP2 protein expression. Functional rescue assays demonstrated that CircROR1 played a role in promoting malignant progression through CCNE1. CircROR1 specifically bound to the KAT2A protein without affecting its expression. CircROR1 overexpression increased the level of H3K9ac modification in the CCNE1 promoter region by recruiting KAT2A, thus upregulating CCNE1 expression. CircROR1 upregulates CCNE1 expression through KAT2A-mediated histone acetylation. Our research confirms the critical role of CircROR1 in melanoma invasion and metastasis, and CircROR1 could serve as a potential therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Litong Sun
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shizhen Bin
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenghui Huang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Wang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Sun J, Wu H, Luo J, Qiu Y, Li Y, Xu Y, Liu L, Liu X, Zhang Q. CircTBC1D22A inhibits the progression of colorectal cancer through autophagy regulated via miR-1825/ATG14 axis. iScience 2024; 27:109168. [PMID: 38439965 PMCID: PMC10910227 DOI: 10.1016/j.isci.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/23/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Distant metastasis is the main cause of death in patients with colorectal cancer (CRC). A better understanding of the mechanisms of metastasis can greatly improve the outcome of patients with CRC. Accumulating evidence suggests that circRNA plays pivotal roles in cancer progression and metastasis, especially acting as a miRNA sponge to regulate the expression of the target gene. A public database bioinformatics analysis found that miR-1825 was highly expressed in CRC tissues. In this study, miR-1825 was highly expressed in CRC tissues, which was positively correlated with lymph node metastasis and distant metastasis. In vitro and in vivo experiments confirmed that miR-1825 was positively correlated with the proliferation and migration of CRC cells. This event can be inhibited by circTBC1D22A. CircTBC1D22A can directly interact with miR-1825 and subsequently act as a miRNA sponge to regulate the expression of the target gene ATG14, which collectively advances the autophagy-mediated progression and metastasis of CRC.
Collapse
Affiliation(s)
- Jingbo Sun
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong Province, People’s Republic of China
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510630, Guangdong, People’s Republic of China
| | - Hongmei Wu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong Province, People’s Republic of China
| | - Junjie Luo
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510630, Guangdong, People’s Republic of China
| | - Yue Qiu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong Province, People’s Republic of China
| | - Yanyan Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong Province, People’s Republic of China
| | - Yangwei Xu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong Province, People’s Republic of China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510630, Guangdong, People’s Republic of China
| | - Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510630, Guangdong, People’s Republic of China
| | - Qingling Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong Province, People’s Republic of China
| |
Collapse
|
25
|
Arabpour J, Rezaei K, Khojini JY, Razi S, Hayati MJ, Gheibihayat SM. The potential role and mechanism of circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract 2024; 255:155203. [PMID: 38368664 DOI: 10.1016/j.prp.2024.155203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Cell death encompasses various mechanisms, including necrosis and apoptosis. Ferroptosis, a unique form of regulated cell death, emerged as a non-apoptotic process reliant on iron and reactive oxygen species (ROS). Distinguishing itself from other forms of cell death, ferroptosis exhibits distinct morphological, biochemical, and genetic features. Circular RNAs (circRNAs), a novel class of RNA molecules, play crucial regulatory roles in ferroptosis-mediated pathways and cellular processes. With their circular structure and stability, circRNAs function as microRNA sponges and participate in protein regulation, offering diverse mechanisms for cellular control. Accumulating evidence indicates that circRNAs are key players in diseases associated with ferroptosis, presenting opportunities for diagnostic and therapeutic applications. This study explores the regulatory roles of circRNAs in ferroptosis and their potential in diseases such as cancer, neurological disorders, and cardiovascular diseases. By investigating the relationship between circRNAs and ferroptosis, this research provides new insights into the diagnosis, treatment, and prognosis of ferroptosis-related diseases. Furthermore, the therapeutic implications of targeting circRNAs in cancer treatment and the modulation of ferroptosis pathways demonstrate the potential of circRNAs as diagnostic markers and therapeutic targets. Overall, understanding the involvement of circRNAs in regulating ferroptosis opens up new avenues for advancements in disease management.
Collapse
Affiliation(s)
- Javad Arabpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
26
|
Wang J, Tan J, Zhang Y, Zhou L, Liu Y. circCD2AP promotes epithelial mesenchymal transition and stemness in bladder cancer by regulating FOXQ1/USP21 axis. iScience 2024; 27:108447. [PMID: 38292422 PMCID: PMC10827552 DOI: 10.1016/j.isci.2023.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 11/10/2023] [Indexed: 02/01/2024] Open
Abstract
Bladder cancer (BC) is a prevalent and deadly disease. circCD2AP was suggested to be highly expressed in BC. However, the exact mechanism needs further investigation. In this study, circCD2AP was observed to be upregulated in BC and linked to poor prognosis in individuals. Functionally, circCD2AP or USP21 knockdown inhibited BC cell EMT and stemness both in vitro and in vivo. Mechanistically, circCD2AP interacted with ELAVL1 to enhance the stability of USP21 mRNA, which, in turn, inhibited the ubiquitination degradation of FOXQ1. Through rescue assay, USP21 or FOXQ1 knockdown was found to abolish the promoting effects of circCD2AP or USP21 overexpression on BC cell EMT and stemness. Overall, this study has unveiled the role of circCD2AP/ELAVL1/USP21/FOXQ1 axis in BC EMT and stemness regulation, offering insights into the mechanisms underlying BC progression, with potential implications for therapeutic strategies.
Collapse
Affiliation(s)
- Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jing Tan
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yichuan Zhang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yuan Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
27
|
Yadav A, Mathan J, Dubey AK, Singh A. The Emerging Role of Non-Coding RNAs (ncRNAs) in Plant Growth, Development, and Stress Response Signaling. Noncoding RNA 2024; 10:13. [PMID: 38392968 PMCID: PMC10893181 DOI: 10.3390/ncrna10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Plant species utilize a variety of regulatory mechanisms to ensure sustainable productivity. Within this intricate framework, numerous non-coding RNAs (ncRNAs) play a crucial regulatory role in plant biology, surpassing the essential functions of RNA molecules as messengers, ribosomal, and transfer RNAs. ncRNAs represent an emerging class of regulators, operating directly in the form of small interfering RNAs (siRNAs), microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). These ncRNAs exert control at various levels, including transcription, post-transcription, translation, and epigenetic. Furthermore, they interact with each other, contributing to a variety of biological processes and mechanisms associated with stress resilience. This review primarily concentrates on the recent advancements in plant ncRNAs, delineating their functions in growth and development across various organs such as root, leaf, seed/endosperm, and seed nutrient development. Additionally, this review broadens its scope by examining the role of ncRNAs in response to environmental stresses such as drought, salt, flood, heat, and cold in plants. This compilation offers updated information and insights to guide the characterization of the potential functions of ncRNAs in plant growth, development, and stress resilience in future research.
Collapse
Affiliation(s)
- Amit Yadav
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Jyotirmaya Mathan
- Sashi Bhusan Rath Government Autonomous Women’s College, Brahmapur 760001, India;
| | - Arvind Kumar Dubey
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Anuradha Singh
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
Xu Y, Han J, Zhang X, Zhang X, Song J, Gao Z, Qian H, Jin J, Liang Z. Exosomal circRNAs in gastrointestinal cancer: Role in occurrence, development, diagnosis and clinical application (Review). Oncol Rep 2024; 51:19. [PMID: 38099408 PMCID: PMC10777447 DOI: 10.3892/or.2023.8678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is frequently detected at an advanced stage and has an undesirable prognosis due to the absence of efficient and precise biomarkers and therapeutic targets. Exosomes are small, living‑cell‑derived vesicles that serve a critical role in facilitating intercellular communication by transporting molecules from donor cells to receiver cells. circular RNAs (circRNAs) are mis‑expressed in a variety of diseases, including gastrointestinal cancer, and are promising as diagnostic biomarkers and tumor therapeutic targets for gastrointestinal cancer. The main features of exosomes and circRNAs are discussed in the present review, along with research on the biological function of exosomal circRNAs in the development and progression of gastrointestinal cancer. It also assesses the advantages and disadvantages of implementing these findings in clinical applications.
Collapse
Affiliation(s)
- Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiayi Han
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinyi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zihan Gao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
| | - Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
29
|
Long F, Zhong C, Long Q, Zhu K, Wang J, Yu Y, Xie C, Hu G. Circular RNA RHBDD1 regulates tumorigenicity and ferroptosis in colorectal cancer by mediating the ELAVL1/SCD mRNA interaction. Cancer Gene Ther 2024; 31:237-249. [PMID: 38072968 DOI: 10.1038/s41417-023-00698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 11/09/2023] [Indexed: 02/20/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed noncoding RNA molecules that play multiple roles in tumorigenesis and metastasis. Ferroptosis is an iron-dependent, regulated form of cell death and has emerged as a promising target for cancer treatment. However, whether and how circRNAs regulate ferroptotic cell death in colorectal cancer (CRC) remains largely unknown. Three circRNA microarrays were used to screen differentially expressed circRNAs in CRC tissues. A series of functional experiments were conducted to investigate the effects of circRNA on CRC cell proliferation, migration and ferroptosis. We found that hsa_circ_0058495 (circRHBDD1), a novel circRNA, was significantly upregulated in colorectal cancer tissues and cells. The expression levels of circRHBDD1 in serum samples were strongly associated with the advancement of CRC. Silencing of circRHBDD1 remarkably suppressed the proliferation and migration of CRC cells in vitro. Moreover, the depletion of circRHBDD1 notably increased ferroptotic cell death and enhanced RSL3-induced ferroptosis in CRC cells. Mechanistically, circRHBDD1 upregulated the expression of stearoyl-CoA desaturase (SCD), a ferroptosis suppressor mediating lipid remodelling, by enhancing the ELAVL1/SCD mRNA interaction. Finally, circRHBDD1 knockdown repressed the tumorigenesis and ferroptosis of CRC cells in vivo. In conclusion, circRHBDD1 facilitates tumour progression and obstructs ferroptosis in CRC by regulating SCD expression in an ELAVL1-dependent manner.
Collapse
Affiliation(s)
- Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China
- Postdoctoral Station of Basic Medicine, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China
| | - Chonglei Zhong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China
| | - Qinpeng Long
- Department of Pediatrics, The First Affiliated Hospital, University of South China, 421001, Hengyang, Hunan, China
| | - Kaiyu Zhu
- School of Basic Medical Science, Central South University, 410078, Changsha, Hunan, China
| | - Jia Wang
- State Key Laboratory of Oncology in South China, Sun Yat‑Sen University Cancer Center, 510060, Guangzhou, Guangdong, China
| | - Yang Yu
- Department of Gastrointestinal & Thyroid Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, 510405, Guangzhou, Guangdong, China
| | - Canbin Xie
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China.
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China.
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China.
| |
Collapse
|
30
|
Mollanoori H, Ghelmani Y, Hassani B, Dehghani M. Integrated whole transcriptome profiling revealed a convoluted circular RNA-based competing endogenous RNAs regulatory network in colorectal cancer. Sci Rep 2024; 14:91. [PMID: 38167453 PMCID: PMC10761719 DOI: 10.1038/s41598-023-50230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Recently, it has been identified that circRNAs can act as miRNA sponge to regulate gene expression in various types of cancers, associating them with cancer initiation and progression. The present study aims to identify colorectal cancer-related circRNAs and the underpinning mechanisms of circRNA/miRNA/mRNA networks in the development and progress of Colorectal Cancer. Differentially expressed circRNAs, miRNAs, and mRNAs were identified in GEO microarray datasets using the Limma package of R. The analysis of differentially expressed circRNAs resulted in 23 upregulated and 31 downregulated circRNAs. CeRNAs networks were constructed by intersecting the results of predicted and experimentally validated databases, circbank and miRWalk, and by performing DEMs and DEGs analysis using Cytoscape. Next, functional enrichment analysis was performed for DEGs included in ceRNA networks. Followed by survival analysis, expression profile assessment using TCGA and GEO data, and ROC curve analysis we identified a ceRNA sub-networks that revealed the potential regulatory effect of hsa_circ_0001955 and hsa_circ_0071681 on survival-related genes, namely KLF4, MYC, CCNA2, RACGAP1, and CD44. Overall, we constructed a convoluted regulatory network and outlined its likely mechanisms of action in CRC, which may contribute to the development of more effective approaches for early diagnosis, prognosis, and treatment of CRC.
Collapse
Affiliation(s)
- Hasan Mollanoori
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaser Ghelmani
- Clinical Research Development Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bita Hassani
- Sarem Gynecology, Obstertrics and Infertility Research Center, Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
31
|
Chen H, Zhai C, Xu X, Wang H, Han W, Shen J. Multilevel Heterogeneity of Colorectal Cancer Liver Metastasis. Cancers (Basel) 2023; 16:59. [PMID: 38201487 PMCID: PMC10778489 DOI: 10.3390/cancers16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer liver metastasis (CRLM) is a highly heterogeneous disease. Therapies that target both primary foci and liver metastasis are severely lacking. Therefore, understanding the features of metastatic tumor cells in the liver is valuable for the overall control of CRLM patients. In this review, we summarize the heterogeneity exhibited in CRLM from five aspects (gene, transcriptome, protein, metabolism, and immunity). In addition to genetic heterogeneity, the other four aspects exhibit significant heterogeneity. Compared to primary CRC, the dysregulation of epithelial-mesenchymal transition (EMT)-related proteins, the enhanced metabolic activity, and the increased infiltration of immunosuppressive cells are detected in CRLM. Preclinical evidence shows that targeting the EMT process or enhancing cellular metabolism may represent a novel approach to increasing the therapeutic efficacy of CRLM.
Collapse
Affiliation(s)
| | | | | | | | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| |
Collapse
|
32
|
Song J, Liu Q, Han L, Song T, Huang S, Zhang X, He Q, Liang C, Zhu S, Xiong B. Hsa_circ_0009092/miR-665/NLK signaling axis suppresses colorectal cancer progression via recruiting TAMs in the tumor microenvironment. J Exp Clin Cancer Res 2023; 42:319. [PMID: 38008713 PMCID: PMC10680284 DOI: 10.1186/s13046-023-02887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND It has been demonstrated that circularRNA (circRNAs) plays a critical role in various cancers. While the potential molecular mechanism of circRNAs in the progression of colorectal cancer (CRC) remains uncertain. METHODS Differentially expressed circRNAs were identified by RNA sequencing. RT-qPCR detected the expression of circ_0009092, miR-665, and NLK in CRC tissues and cells. Functions of circ_0009092 on tumor cell proliferation, migration, and invasion were investigated by a series of in vitro assays. The underlying mechanism of circ_0009092 was explored by bioinformatics analysis, RNA immunoprecipitation (RIP) and luciferase assays. A co-culture assay in vitro was performed to detect the affection of circ_0009092 on macrophage recruitment in the tumor microenvironment (TME). A xenograft mouse model was used to explore the effect of circ_0009092 on tumor growth. RESULTS Circ_0009092 was downregulated in CRCand predicted a good prognosis. Overexpression of circ_0009092 reduced tumor cell EMT, proliferation, migration, and invasion in vitro and in vivo. Mechanistically, circ_0009092 elevated the NLK expression via sponging miR-665 and suppressed the Wnt/β-catenin signaling pathway. EIF4EA3 induced circ_0009092 expression in CRC cells. In addition, NLK regulates phosphorylation and O-GlcNAcylation of STAT3 by binding to STAT3, thereby inhibiting CCL2 expression, in which it inhibits macrophage recruitment in the tumor microenvironment (TME). CONCLUSION EIF4A3 suppressed circ_0009092 biogenesis, whichinhibits CRC progression by sponging miR-665 to downregulate NLK. Circ_0009092/miR-665/NLK suppressed tumor EMT, proliferation, migration, and invasion by acting on the Wnt/β-catenin signaling pathway. NLK directly interacted with STAT3 and decreased the CCL2 expression, inhibiting the recruitment of tumor-associated macrophages (TAMs) in the TME. Our study provided novel insights into the roles of circ_0009092 as a novel promising prognostic and therapeutic target in CRC.
Collapse
Affiliation(s)
- Jialin Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Qing Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lei Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Tiantian Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Sihao Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Xinyao Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Qiuming He
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Chenxi Liang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Shuai Zhu
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China.
| |
Collapse
|
33
|
Jarak I, Isabel Santos A, Helena Pinto A, Domingues C, Silva I, Melo R, Veiga F, Figueiras A. Colorectal cancer cell exosome and cytoplasmic membrane for homotypic delivery of therapeutic molecules. Int J Pharm 2023; 646:123456. [PMID: 37778515 DOI: 10.1016/j.ijpharm.2023.123456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of death in the world. The multi-drug resistance, especially in metastatic colorectal cancer, drives the development of new strategies that secure a positive outcome and reduce undesirable side effects. Nanotechnology has made an impact in addressing some pharmacokinetic and safety issues related to administration of free therapeutic agents. However, demands of managing complex biointerfacing require equally complex methods for introducing stimuli-responsive or targeting elements. In order to procure a more efficient solution to the overcoming of biological barriers, the physiological functions of cancer cell plasma and exosomal membranes provided the source of highly functionalized coatings. Biomimetic nanovehicles based on colorectal cancer (CRC) membranes imparted enhanced biological compatibility, immune escape and protection to diverse classes of therapeutic molecules. When loaded with therapeutic load or used as a coating for other therapeutic nanovehicles, they provide highly efficient and selective cell targeting and uptake. This review presents a detailed overview of the recent application of homotypic biomimetic nanovehicles in the management of CRC. We also address some of the current possibilities and challenges associated with the CRC membrane biomimetics.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Porto, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ana Isabel Santos
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Ana Helena Pinto
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Inês Silva
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Raquel Melo
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal.
| |
Collapse
|
34
|
Yang J, Chen Z, He J, Zhao Y, Zhou C, Zhao X, Meng X. A circRNA-based ceRNA network shows its diagnostic value in non-small-cell lung cancer. Clin Biochem 2023; 121-122:110657. [PMID: 37793583 DOI: 10.1016/j.clinbiochem.2023.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Numerous studies have reported the vital roles of circular RNA (circRNA)-based competitive endogenous RNA (ceRNA) regulatory networks in cancers. Here, we established a non-small-cell lung cancer (NSCLC)-related circRNA-miRNA-mRNA axis and estimated its diagnostic value in NSCLC. METHODS The circ_0061235-miR-3180-5p-PPM1L axis was constructed by small RNA deep sequencing, bioinformatics databases, and preliminary testing. The serum levels of the selected circ_0061235, miR-3180-5p, and PPM1L were quantified using quantitative polymerase chain reaction. Receiver operating characteristic analyses were conducted to evaluate the diagnostic power. RESULTS The levels of circ_0061235, miR-3180-5p, and PPM1L showed close correlations according to the ceRNA regulation rule. They were significantly dysregulated in NSCLC and showed the diagnostic ability to discriminate between healthy and NSCLC, and remarkably, between benign lung tumors and NSCLC. Additionally, the down-regulated levels of hsa_circ_0061235, the up-regulated levels of miR-3180-5p, and the decreased levels of PPM1L were correlated to more aggressive features of NSCLC, such as lymph node metastasis, distant metastasis, and higher stages. Intriguingly, compared to the single circ_0061235, miR-3180-5p, PPM1L, and traditional tumor markers, the diverse combinations of circ_0061235, miR-3180-5p, and PPM1L showed much higher sensitivity and specificity to differentiate greater or lesser severity of NSCLC. GO annotation and KEGG pathway analyses revealed the underlying role of the circ_0061235-miR-3180-5p-PPM1L axis in NSCLC. CONCLUSIONS We established a specific circRNA-miRNA-mRNA network with higher sensitivity and specificity to diagnose NSCLC, particularly more aggressive NSCLC, providing a new strategy for further developing tumor biomarkers.
Collapse
Affiliation(s)
- Jianuo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhenhua Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinxian He
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315048, China
| | - Yikai Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Xiaodong Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
35
|
Hao Q, Zhang M, Wu Y, Guo Y, Zheng Y, Wu L, Feng L, Wang Z. Hsa_circRNA_001676 accelerates the proliferation, migration and stemness in colorectal cancer through regulating miR-556-3p/G3BP2 axis. Sci Rep 2023; 13:18353. [PMID: 37884630 PMCID: PMC10603078 DOI: 10.1038/s41598-023-45164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Circular RNAs (circRNAs) play key roles in colorectal cancer (CRC) progression, but little is known about the biological functions of hsa_circRNA_001676 in CRC. Therefore, we explored the potential role of hsa_circRNA_001676 in CRC development. RT-qPCR was performed to determine hsa_circRNA_001676, miR-556-3p and Ras-GTPase-activating SH3 domain-binding-proteins 2 (G3BP2) levels in CRC tissues. Meanwhile, to evaluate the roles of hsa_circRNA_001676, miR-556-3p and G3BP2 on CRC, functional analysis of cell proliferation, migration and stemness were then performed. Our results showed that compared to normal tissues, hsa_circRNA_001676 and G3BP2 level was elevated, but miR-556-3p level was reduced in CRC tissues. Additionally, luciferase reporter results showed that hsa_circRNA_001676 was shown to target miR-556-3p, and G3BP2 was targeted by miR-556-3p. Hsa_circRNA_001676 or G3BP2 overexpression promoted CRC cell proliferation and migration. Conversely, miR-556-3p overexpression suppressed CRC cell proliferation and migration. Moreover, deficiency of hsa_circRNA_001676 or G3BP2 repressed the CRC cell proliferation, migration and stemness. Meanwhile, hsa_circRNA_001676 deficiency obviously reduced tumor growth and stemness in a CRC mouse xenograft model. Furthermore, hsa_circRNA_001676 deficiency notably reduced G3BP2 level, but elevated miR-556-3p level in tumor tissues from tumor-bearing mice. Mechanistically, hsa_circRNA_001676 targeted miR-556-3p to increase G3BP2 level, contributing to the progression of CRC. Collectively, hsa_circRNA_001676 was able to accelerate proliferation, migration and stemness in CRC through regulating miR-556-3p/G3BP2 axis, suggesting that hsa_circRNA_001676 may become a potential therapeutic target in treating CRC.
Collapse
Affiliation(s)
- Qin Hao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010051, China
| | - Miao Zhang
- Graduate School, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Yingcai Wu
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Yuchen Guo
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Yanling Zheng
- Graduate School, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Lijuan Wu
- Graduate School, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Li Feng
- Department A of Abdominal surgery, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China.
| | - Zhenfei Wang
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China.
| |
Collapse
|
36
|
Xue J, Qin S, Ren N, Guo B, Shi X, Jia E. Extracellular vesicle biomarkers in circulation for the diagnosis of gastric cancer: A systematic review and meta‑analysis. Oncol Lett 2023; 26:423. [PMID: 37664665 PMCID: PMC10472029 DOI: 10.3892/ol.2023.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/14/2023] [Indexed: 09/05/2023] Open
Abstract
The prognosis of a gastric cancer (GC) diagnosis is poor due to the current lack of effective early diagnostic methods. Extracellular vesicle (EV) biomarkers have previously demonstrated strong diagnostic efficiency for certain types of cancer, including pancreatic and lung cancer. The present review aimed to summarize the diagnostic value of circulating EV biomarkers for early stage GC. The PubMed, Medline and Web of Science databases were searched from May 1983 to September 18, 2022. All studies that reported the diagnostic performance of EV biomarkers for GC were included for analysis. Overall, 27 studies were selected containing 2,831 patients with GC and 2,117 controls. A total of 58 EV RNAs were reported in 26 studies, including 39 microRNAs (miRNAs), 10 long non-coding RNAs (lncRNAs), five circular RNAs, three PIWI-interacting RNAs and one mRNA, in addition to one protein in the remaining study. Meta-analysis of the aforementioned studies demonstrated that the pooled sensitivity, specificity and AUC value of the total RNAs were 84, 67% and 0.822, respectively. The diagnostic values of miRNAs were consistent with the total RNA, as the pooled sensitivity, specificity and AUC value were 84, 67% and 0.808, respectively. The pooled sensitivity, specificity and AUC values of lncRNAs were 89, 69% and 0.872, respectively, markedly higher compared with that of miRNAs. A total of five studies reported the diagnostic performance of EV RNA panels for early stage GC and reported powerful diagnostic values with a pooled sensitivity, specificity and AUC value of 80, 77% and 0.879, respectively. Circulating EV RNAs could have the potential to be used in the future as effective, noninvasive biomarkers for early GC diagnosis. Further research in this field is necessary to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Shaoyou Qin
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Na Ren
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Bo Guo
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, P.R. China
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| |
Collapse
|
37
|
Lu J, Kornmann M, Traub B. Role of Epithelial to Mesenchymal Transition in Colorectal Cancer. Int J Mol Sci 2023; 24:14815. [PMID: 37834263 PMCID: PMC10573312 DOI: 10.3390/ijms241914815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular reprogramming process that occurs during embryonic development and adult tissue homeostasis. This process involves epithelial cells acquiring a mesenchymal phenotype. Through EMT, cancer cells acquire properties associated with a more aggressive phenotype. EMT and its opposite, mesenchymal-epithelial transition (MET), have been described in more tumors over the past ten years, including colorectal cancer (CRC). When EMT is activated, the expression of the epithelial marker E-cadherin is decreased and the expression of the mesenchymal marker vimentin is raised. As a result, cells temporarily take on a mesenchymal phenotype, becoming motile and promoting the spread of tumor cells. Epithelial-mesenchymal plasticity (EMP) has become a hot issue in CRC because strong inducers of EMT (such as transforming growth factor β, TGF-β) can initiate EMT and regulate metastasis, microenvironment, and immune system resistance in CRC. In this review, we take into account the significance of EMT-MET in CRC and the impact of the epithelial cells' plasticity on the prognosis of CRC. The analysis of connection between EMT and colorectal cancer stem cells (CCSCs) will help to further clarify the current meager understandings of EMT. Recent advances affecting important EMT transcription factors and EMT and CCSCs are highlighted. We come to the conclusion that the regulatory network for EMT in CRC is complicated, with a great deal of crosstalk and alternate paths. More thorough research is required to more effectively connect the clinical management of CRC with biomarkers and targeted treatments associated with EMT.
Collapse
Affiliation(s)
| | | | - Benno Traub
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.L.); (M.K.)
| |
Collapse
|
38
|
Tirpe A, Streianu C, Tirpe SM, Kocijancic A, Pirlog R, Pirlog B, Busuioc C, Pop OL, Berindan-Neagoe I. The Glioblastoma CircularRNAome. Int J Mol Sci 2023; 24:14545. [PMID: 37833993 PMCID: PMC10572686 DOI: 10.3390/ijms241914545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma remains one of the most aggressive cancers of the brain, warranting new methods for early diagnosis and more efficient treatment options. Circular RNAs (circRNAs) are rather new entities with increased stability compared to their linear counterparts that interact with proteins and act as microRNA sponges, among other functions. Herein, we provide a critical overview of the recently described glioblastoma-related circRNAs in the literature, focusing on their roles on glioblastoma cancer cell proliferation, survival, migration, invasion and metastasis, metabolic reprogramming, and therapeutic resistance. The main roles of circRNAs in regulating cancer processes are due to their regulatory roles in essential oncogenic pathways, including MAPK, PI3K/AKT/mTOR, and Wnt, which are influenced by various circRNAs. The present work pictures the wide implication of circRNAs in glioblastoma, thus highlighting their potential as future biomarkers and therapeutic targets/agents.
Collapse
Affiliation(s)
- Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Cristian Streianu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Stefana Maria Tirpe
- Department of Neurology, Ortenau-Klinikum Lahr, Klostenstrasse 19, 7933 Lahr, Germany;
| | - Anja Kocijancic
- Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
| | - Bianca Pirlog
- Department of Neurology, County Emergency Hospital, 400012 Cluj-Napoca, Romania;
| | - Constantin Busuioc
- Department of Pathology, National Institute of Infectious Disease, 021105 Bucharest, Romania;
- Department of Pathology, Onco Team Diagnostic, 010719 Bucharest, Romania
| | - Ovidiu-Laurean Pop
- Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
| |
Collapse
|
39
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics 2023; 30:193-215. [PMID: 37663132 PMCID: PMC10471515 DOI: 10.1016/j.omto.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518000, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong 516000, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| |
Collapse
|
40
|
Yang FS, Gong SX, Qiu DD. Circ-MALAT1 accelerates cell proliferation and epithelial mesenchymal transformation of colorectal cancer through regulating miR-506-3p/KAT6B axis. Kaohsiung J Med Sci 2023; 39:862-872. [PMID: 37272875 DOI: 10.1002/kjm2.12698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignant tumor of the digestive tract. Circular RNAs may play important roles in the progression of CRC. In this study, we investigated the roles and mechanisms of action of circ-MALAT1 in CRC. Gene expression and protein abundance were determined using qRT-PCR and western blot, respectively. Cell proliferation and migration were assessed by MTT, clone formation, and wound-healing assays. The interactions among the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (circ-MALAT1), miR-506-3p, and lysine acetyltransferase 6B (KAT6B) were predicted using the StarBase software and confirmed by the luciferase activity assay. Circ-MALAT1 and KAT6B were upregulated, while miR-506-3p was downregulated in CRC cells. We validated that knocking down of circ-MALAT1 suppressed proliferation, migration, and epithelial-mesenchymal transition (EMT) of CRC cells, and these effects were abolished by miR-506-3p downregulation or KAT6B sufficiency. Our study suggests that circ-MALAT1 could sponge miR-506-3p to regulate the expression of KAT6B. Moreover, KAT6B sufficiency could neutralize miR-506-3p-dependent growth arrest, migration, and EMT. Circ-MALAT1 promotes cell proliferation, migration, and EMT of CRC cells via the miR-506-3p/KAT6B axis, thereby acting as a novel potential therapeutic target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Feng-Shuai Yang
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, Hunan Province, People's Republic of China
| | - Shuang-Xi Gong
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, Hunan Province, People's Republic of China
| | - Dong-Da Qiu
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
41
|
Xiao W, Li P. Circ_0087862 promotes tumorigenesis and glycolysis in colorectal cancer by sponging miR-296-3p to regulate PGK1 expression. Pathol Res Pract 2023; 248:154695. [PMID: 37494801 DOI: 10.1016/j.prp.2023.154695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) exert crucial roles in tumor progression of multiple cancers, including colorectal cancer (CRC). However, the functions of most circRNAs are not been fully elucidated. In this study, the role and mechanism of circ_0087862 in CRC were investigated. METHODS The expression of circ_0087862, microRNA-296-3p (miR-296-3p) and phosphoglycerate kinase 1 (PGK1) was detected by quantitative real-time PCR (qRT-PCR). Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay were used to assess cell proliferation. Flow cytometry was employed to analyze cell apoptosis. Transwell assay was employed to evaluate cell invasion. Western blot assay was employed to detect the level of related protein markers and PGK1. The glucose consumption, lactate production were tested by corresponding kits. The relationship between miR-296-3p and circ_0087862 or PGK1 was verified by dual-luciferase reporter assay or RNA immunoprecipitation (RIP) assay. The in vivo function of circ_0087862 was examined by xenograft mice model. RESULTS The expression levels of circ_0087862 and PGK1 were up-regulated in CRC tissues and cells, while miR-296-3p was down-regulated. Circ_0087862 silencing suppressed cell proliferation, invasion and glycolysis and promoted cell apoptosis in CRC cells. Circ_0087862 targeted miR-296-3p in CRC cells. MiR-296-3p inhibition reversed circ_0087862 silencing-mediated inhibition effect on cell proliferation, invasion and glycolysis, as well as the promotion effect on cell apoptosis. PGK1 was a target of miR-296-3p, and the overexpression of PGK1 attenuated miR-296-3p-mediated tumor suppression effect on CRC progression. Moreover, knockdown of circ_0087862 inhibited tumorigenesis in vivo. CONCLUSION Circ_0087862 promoted CRC progression via miR-296-3p/PGK1 axis and might act as a potential target for CRC therapy.
Collapse
Affiliation(s)
- Weisheng Xiao
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Peiyuan Li
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
42
|
Long F, Li L, Xie C, Ma M, Wu Z, Lu Z, Liu B, Yang M, Zhang F, Ning Z, Zhong C, Yu B, Liu S, Wan L, Tian B, Yang K, Guo Y, Chen M, Chou J, Li X, Hu G, Lin C, Zhang Y. Intergenic CircRNA Circ_0007379 Inhibits Colorectal Cancer Progression by Modulating miR-320a Biogenesis in a KSRP-Dependent Manner. Int J Biol Sci 2023; 19:3781-3803. [PMID: 37564198 PMCID: PMC10411474 DOI: 10.7150/ijbs.85063] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNA structures that play multiple roles in tumorigenesis and progression. Compared with exon‒intron circRNAs, the biological functions and implications of intergenic circRNAs in human cancer are still poorly understood. Here, we performed circRNA microarray analysis and identified an intergenic circRNA, circ_0007379, that was significantly downregulated in patients with colorectal cancer (CRC). The biogenesis of circ_0007379 was mediated by reverse complementary matches (RCMs) and was negatively regulated by the RNA helicase DHX9. Functionally, circ_0007379 suppressed CRC cell growth and metastasis in cell culture as well as in patient-derived organoid and xenograft models. Mechanistically, circ_0007379 acted as a scaffold to facilitate the processing of both pri-miR-320a and pre-miR-320a in a KSRP-dependent manner, leading to miR-320a maturation and subsequent repression of transcription factor RUNX1 expression. Thus, our findings establish a previously unrecognized function of circRNA in inhibiting CRC progression.
Collapse
Affiliation(s)
- Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Postdoctoral Research Station of Basic Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Canbin Xie
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhiwei Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhixing Lu
- Department of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530000, China
| | - Baiying Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ming Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Fan Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhengping Ning
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Chonglei Zhong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Bowen Yu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shiyi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Longyu Wan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Buning Tian
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Kaiyan Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yihang Guo
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Miao Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jin Chou
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
43
|
Hu X, Lu Y, Zhou J, Wang L, Zhang M, Mao Y, Chen Z. Progress of regulatory RNA in small extracellular vesicles in colorectal cancer. Front Cell Dev Biol 2023; 11:1225965. [PMID: 37519298 PMCID: PMC10382209 DOI: 10.3389/fcell.2023.1225965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor of the gastrointestinal tract with the second highest mortality rate and the third highest incidence rate. Early diagnosis and treatment are important measures to reduce CRC mortality. Small extracellular vesicles (sEVs) have emerged as key mediators that facilitate communication between tumor cells and various other cells, playing a significant role in the growth, invasion, and metastasis of cancer cells. Regulatory RNAs have been identified as potential biomarkers for early diagnosis and prognosis of CRC, serving as crucial factors in promoting CRC cell proliferation, invasion and metastasis, angiogenesis, drug resistance, and immune cell differentiation. This review provides a comprehensive summary of the vital role of sEVs as biomarkers in CRC diagnosis and their potential application in CRC treatment, highlighting their importance as a promising avenue for further research and clinical translation.
Collapse
Affiliation(s)
- Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajun Zhou
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
44
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
45
|
Zhang Y, Luo J, Yang W, Ye WC. CircRNAs in colorectal cancer: potential biomarkers and therapeutic targets. Cell Death Dis 2023; 14:353. [PMID: 37296107 PMCID: PMC10250185 DOI: 10.1038/s41419-023-05881-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Globally, colorectal cancer (CRC) is the third most prevalent cancer and the second leading cause of cancer-related deaths. Circular RNAs (circRNAs) are single-stranded RNA with covalently closed-loop structures and are highly stable, conserved, and abundantly expressed in various organs and tissues. Recent research found abnormal circRNA expression in CRC patients' blood/serum, cells, CRC tissues, and exosomes. Furthermore, mounting data demonstrated that circRNAs are crucial to the development of CRC. CircRNAs have been shown to exert biological functions by acting as microRNA sponges, RNA-binding protein sponges, regulators of gene splicing and transcription, and protein/peptide translators. These characteristics make circRNAs potential markers for CRC diagnosis and prognosis, potential therapeutic targets, and circRNA-based therapies. However, further studies are still necessary to improve the understanding of the roles and biological mechanisms of circRNAs in the development of CRC. In this review, up-to-date research on the role of circRNAs in CRC was examined, focusing on their potential application in CRC diagnosis and targeted therapy, which would advance the knowledge of the functions of circRNAs in the development and progression of CRC.
Collapse
Affiliation(s)
- Yuying Zhang
- Central Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Jingyan Luo
- Forevergen Biosciences Centre, Guangzhou International Biotech Island, Guangzhou, 510300, China
| | - Weikang Yang
- Department of Prevention and Healthcare, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Wen-Chu Ye
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
46
|
Zhao R, Han Z, Zhou H, Xue Y, Chen X, Cao X. Diagnostic and prognostic role of circRNAs in pancreatic cancer: a meta-analysis. Front Oncol 2023; 13:1174577. [PMID: 37361594 PMCID: PMC10285410 DOI: 10.3389/fonc.2023.1174577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Background Circular RNAs (circRNAs) are types of endogenous noncoding RNAs produced by selective splicing that are expressed highly specifically in various organisms and tissues and have numerous clinical implications in the regulation of cancer development and progression. Since circRNA is resistant to digestion by ribonucleases and has a long half-life, there is increasing evidence that circRNA can be used as an ideal candidate biomarker for the early diagnosis and prognosis of tumors. In this study, we aimed to reveal the diagnostic and prognostic value of circRNA in human pancreatic cancer (PC). Methods A systematic search for publications from inception to 22 July 2022 was conducted on Embase, PubMed, Web of Science (WOS), and the Cochrane Library databases. Available studies that correlated circRNA expression in tissue or serum with the clinicopathological, diagnostic, and prognostic values of PC patients were enrolled. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were used to evaluate clinical pathological characteristics. Area under the curve (AUC), sensitivity, and specificity were adopted to assess diagnostic value. Hazard ratios (HRs) were utilized to assess disease-free survival (DFS) and overall survival (OS). Results This meta-analysis enrolled 32 eligible studies, including six on diagnosis and 21 on prognosis, which accounted for 2,396 cases from 245 references. For clinical parameters, high expression of carcinogenic circRNA was significantly associated with degree of differentiation (OR = 1.85, 95% CI = 1.47-2.34), TNM stage (OR = 0.46, 95% CI = 0.35-0.62), lymph node metastasis (OR = 0.39, 95% CI = 0.32-0.48), and distant metastasis (OR = 0.26, 95% CI = 0.13-0.51). As for clinical diagnostic utility, circRNA could discriminate patients with pancreatic cancer from controls, with an AUC of 0.86 (95% CI: 0.82-0.88), a relatively high sensitivity of 84%, and a specificity of 80% in tissue. In terms of prognostic significance, carcinogenic circRNA was correlated with poor OS (HR = 2.00, 95% CI: 1.76-2.26) and DFS (HR = 1.96, 95% CI: 1.47-2.62). Conclusion In summary, this study demonstrated that circRNA may act as a significant diagnostic and prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Ruihua Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuo Han
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi’an, China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Xue
- Department of Pediatric Medicine, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinguang Cao
- Department of Digestive Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Cai X, Yang H, Pan Y, Wen Y, Huang C, Li R. Circ_0060967 contributes to colorectal cancer progression by sponging miR-1184 to up-regulate SRC proto-oncogene. Arab J Gastroenterol 2023:S1687-1979(23)00010-2. [PMID: 37045727 DOI: 10.1016/j.ajg.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 12/06/2022] [Accepted: 02/05/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND AND STUDY AIMS Circular RNAs (circRNAs) are closely associated with cancer pathogenesis. The purpose of our current study was to explore the role and mechanism of circ_0060967 in colorectal cancer (CRC) development. PATIENTS AND METHODS Human CRC specimens and paired healthy tissues were used to examine variable expression. The expression of circ_0060967 and microRNA (miR)-1184 was examined by quantitative reverse transcription-PCR. The protein levels of proliferating cell nuclear antigen, BCL2-associated X, apoptosis regulator (Bax), proto-oncogene nonreceptor tyrosine kinase Src (SRC), nuclear factor-κB inhibitor alpha (IκBα), phosphorylated-IκBα (p-IκBα), RELA proto-oncogene, nuclear factor-κB subunit (p65), and phosphorylated-p65 (p-p65) were determined by western blot. Proliferation and motility of HCT-116 and SW480 CRC cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and transwell assays, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to determine the binding relation between miR-1184 and circ_0060967 or SRC. Animal studies were used to detect the role of circ_0060967 in CRC cell tumorigenicity. RESULTS Circ_0060967 abundance was enhanced in human CRC tissue samples versus paired normal colorectal tissues and in HCT-116 and SW480 CRC cells versus normal HCO cells. Decreased expression of circ_0060967 could suppress cell growth, motility, and invasiveness of CRC cells in vitro and tumor growth in vivo. Circ_0060967 sponged miR-1184, and miR-1184 targeted SRC. Furthermore, we also found circ_0060967 affected cell growth by modulating miR-1184/SRC axis in CRC. CONCLUSION This study demonstrates a novel circ_0060967/miR-1184/SRC regulatory cascade in affecting CRC cell malignant behaviors, which can have a broad effect on the field of molecularly targeted therapeutics.
Collapse
Affiliation(s)
- Xingrui Cai
- Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hui Yang
- Department of Radiotherapy, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yinglian Pan
- Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yang Wen
- Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chengmou Huang
- Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - Rucai Li
- Department of Radiotherapy, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
48
|
Luo X, Peng Y, Fan X, Xie X, Jin Z, Zhang X. The Crosstalk and Clinical Implications of CircRNAs and Glucose Metabolism in Gastrointestinal Cancers. Cancers (Basel) 2023; 15:cancers15082229. [PMID: 37190158 DOI: 10.3390/cancers15082229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The majority of glucose in tumor cells is converted to lactate despite the presence of sufficient oxygen and functional mitochondria, a phenomenon known as the "Warburg effect" or "aerobic glycolysis". Aerobic glycolysis supplies large amounts of ATP, raw material for macromolecule synthesis, and also lactate, thereby contributing to cancer progression and immunosuppression. Increased aerobic glycolysis has been identified as a key hallmark of cancer. Circular RNAs (circRNAs) are a type of endogenous single-stranded RNAs characterized by covalently circular structures. Accumulating evidence suggests that circRNAs influence the glycolytic phenotype of various cancers. In gastrointestinal (GI) cancers, circRNAs are related to glucose metabolism by regulating specific glycolysis-associated enzymes and transporters as well as some pivotal signaling pathways. Here, we provide a comprehensive review of glucose-metabolism-associated circRNAs in GI cancers. Furthermore, we also discuss the potential clinical prospects of glycolysis-associated circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in GI cancers.
Collapse
Affiliation(s)
- Xiaonuan Luo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
49
|
Liu Y, Jiang C, Liu Q, Huang R, Wang M, Guo X. CircRNAs: emerging factors for regulating glucose metabolism in colorectal cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03131-7. [PMID: 36944731 DOI: 10.1007/s12094-023-03131-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/19/2023] [Indexed: 03/23/2023]
Abstract
Colorectal cancer is a malignant disease with a high incidence and low survival rate, and the effectiveness of traditional treatments, such as surgery and radiotherapy, is very limited. CircRNAs, a kind of stable endogenous circular RNA, generally function by sponging miRNAs and binding or translating proteins. CircRNAs have been identified to play an important role in regulating the proliferation and metabolism of CRC. In recent years, many reports have indicated that by regulating the expression of glycolysis-related proteins, such as GLUT1 and HK2, or directly translating proteins, circRNAs can promote the Warburg effect in cancer cells, thereby driving CRC metabolism. Moreover, the Warburg effect increases lactate production in cancer cells and promotes acidification of the TME, which further drives cancer progression. In this review, we summarized the remarkable role of circRNAs in regulating glucose metabolism in CRC in recent years, which might be useful for finding new targets for the clinical treatment of CRC.
Collapse
Affiliation(s)
- Yulin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Mancai Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
- General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaohu Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China.
- General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
50
|
Fan B, Zheng C, Wang N, Chang Z, Liu Y, Wang C, Xiang J, Tao Y, Wang G, Zhang Q. CircSTK3 drives the metastasis of colorectal cancer by regulating epithelial-mesenchymal transition. iScience 2023; 26:106170. [PMID: 36922993 PMCID: PMC10009203 DOI: 10.1016/j.isci.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Circular RNAs (circRNAs) play crucial roles in malignancies. We aimed to delineate the functions and clinical importance of dysregulated circRNAs in colorectal cancer (CRC). We determined the circRNA expression profile from five CRC and paired adjacent normal tissues using circRNA microarray. We found that a novel circRNA, hsa_circ_0004592 (named circSTK3), was significantly upregulated in CRC tissues and correlated with decreased survival. Loss- and gain-of-function assays revealed that circSTK3 promoted the migration and invasion but not proliferation of cells. Whole genome expression microarray identified potential downstream targets and the regulatory networks of circSTK3; Gene Ontology analysis confirmed circSTK3 involvement in the CRC metastasis phenotype. Abnormal circSTK3 expression affected a subset of genes associated with CRC metastasis and triggered epithelial-mesenchymal transition programming, maintaining a tumor-promoting signature. Moreover, circSTK3 was transcriptionally regulated by CTCF. These findings reveal the functional and prognostic roles of circSTK3 and expose circRNAs as key players in metastasis.
Collapse
Affiliation(s)
- Boyang Fan
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Chaojing Zheng
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zewen Chang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yunxiao Liu
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Chunlin Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jun Xiang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yangbao Tao
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qian Zhang
- Department of Colorectal Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310000, China
| |
Collapse
|