1
|
Kuang W, Zhuge R, Song P, Yi L, Zhang S, Zhang Y, Wong YK, Chen R, Zhang J, Wang Y, Liu D, Gong Z, Wang P, Ouyang X, Wang J. Eupalinolide B inhibits periodontitis development by targeting ubiquitin conjugating enzyme UBE2D3. MedComm (Beijing) 2025; 6:e70034. [PMID: 39811801 PMCID: PMC11731104 DOI: 10.1002/mco2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 01/16/2025] Open
Abstract
Periodontitis is a chronic periodontal inflammatory disease caused by periodontal pathogens commonly seen in adults. Eupalinolide B (EB) is a sesquiterpenoid natural product extracted from Eupatorium lindleyanum and has been reported as a potential drug for cancers and immune disorders. Here, we explored the ameliorative effects and underlying molecular mechanism of EB on periodontitis for the first time. We demonstrated that EB ameliorates periodontal inflammation and alveolar bone resorption with a ligated periodontitis mouse model. In addition, the impact of EB on macrophages inflammation was examined in the Raw264.7 cell line. We identified ubiquitin-conjugating enzyme, UBE2D3, as the direct covalent binding protein targets of EB by using a chemoproteomic method based on activity-based protein profiling, biolayer interferometry method, and cellular thermal shift assay. Furthermore, the direct binding site of EB to UBE2D3 was identified using high-resolution mass spectrometry and confirmed by experiments. Taken together, EB ameliorates periodontitis by targeting UBE2D3 to suppress the ubiquitination degradation of IκBα, leading to inactivation of nuclear transcription factor-κB signaling pathway. And this was confirmed by siRNA-mediated gene knockdown in inflammatory macrophages. Our results suggested that EB may be a new kind of UBE2D3 inhibitor and may become a promising therapeutic agent for anti-periodontitis.
Collapse
Affiliation(s)
- Wenhua Kuang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Ruishen Zhuge
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Ping Song
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- National Clinical Research Center for Chinese Medicine CardiologyXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Letai Yi
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Inner Mongolia Medical UniversityHohhotChina
| | - Shujie Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yin Kwan Wong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Ruixing Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of PharmaceuticsGuizhou Medical UniversityGuiyangChina
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanbo Wang
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Zipeng Gong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of PharmaceuticsGuizhou Medical UniversityGuiyangChina
| | - Peili Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- National Clinical Research Center for Chinese Medicine CardiologyXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xiangying Ouyang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Jigang Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- State Key Laboratory of Antiviral Drugs, School of PharmacyHenan UniversityKaifengChina
| |
Collapse
|
2
|
He SJ, Li J, Zhou JC, Yang ZY, Liu X, Ge YW. Chemical proteomics accelerates the target discovery of natural products. Biochem Pharmacol 2024; 230:116609. [PMID: 39510194 DOI: 10.1016/j.bcp.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
More than half of the global novel drugs are directly or indirectly derived from natural products (NPs) because of their better selectivity towards proteins. Traditional medicines perform multiple bioactivities through various NPs binding to drug targets, which highlights the opportunities of target discovery for drug development. However, detecting the binding relationship between NPs and targets remains challenging. Chemical proteomics, an interdisciplinary field of chemistry, proteomics, biology, and bioinformatics, has emerged as a potential approach for uncovering drug-target interactions. This review summarizes the principles and characteristics of the current widely applied chemical proteomic technologies, while delving into their latest applications in the target discovery of natural medicine. These endeavours demonstrate the potential of chemical proteomics for target discovery to supply dependable methodologies for the target elucidation of NPs.
Collapse
Affiliation(s)
- Shu-Jie He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Xi Liu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Zhang H, Du Y, Lu D, Wang X, Li Y, Qing J, Zhang Y, Liu H, Lv L, Zhang X, Liu Y, Zhou Y, Zhang P. UBE2C orchestrates bone formation through stabilization of SMAD1/5. Bone 2024; 187:117175. [PMID: 38917963 DOI: 10.1016/j.bone.2024.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
While previous studies have demonstrated the role of ubiquitin-conjugating enzyme 2C (UBE2C) in promoting β-cell proliferation and cancer cell lineage expansion, its specific function and mechanism in bone marrow mesenchymal stem/stromal cells (BMSCs) growth and differentiation remain poorly understood. Our findings indicate that mice with conditional Ube2c deletions in BMSCs and osteoblasts exhibit reduced skeletal bone mass and impaired bone repair. A significant reduction in the proliferative capacity of BMSCs was observed in conditional Ube2c knockout mice, with no effect on apoptosis. Additionally, conditional Ube2c knockout mice exhibited enhanced osteoclastic activity and reduced osteogenic differentiation. Furthermore, human BMSCs with stable UBE2C knockdown exhibited diminished capacity for osteogenic differentiation. Mechanistically, we discovered that UBE2C binds to and stabilizes SMAD1/5 protein expression levels. Interestingly, UBE2C's role in regulating osteogenic differentiation and SMAD1/5 expression levels appears to be independent of its enzymatic activity. Notably, UBE2C regulates osteogenic differentiation through SMAD1/5 signaling. In conclusion, our findings underscore the pivotal role of UBE2C in bone formation, emphasizing its contribution to enhanced osteogenic differentiation through the stabilization of SMAD1/5. These results propose UBE2C as a promising target for BMSC-based bone regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yangge Du
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Xu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yang Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Jia Qing
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yingfei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.
| |
Collapse
|
4
|
Guan X, Wang Y, Yu W, Wei Y, Lu Y, Dai E, Dong X, Zhao B, Hu C, Yuan L, Luan X, Miao K, Chen B, Cheng X, Zhang W, Qin J. Blocking Ubiquitin-Specific Protease 7 Induces Ferroptosis in Gastric Cancer via Targeting Stearoyl-CoA Desaturase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307899. [PMID: 38460164 PMCID: PMC11095140 DOI: 10.1002/advs.202307899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Indexed: 03/11/2024]
Abstract
Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Yichao Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhouZhejiang310014China
| | - Wenkai Yu
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Yong Wei
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yang Lu
- Hangzhou Institute of Innovative MedicineInstitute of Drug Discovery and DesignCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Enyu Dai
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexas77030USA
| | - Xiaowu Dong
- Hangzhou Institute of Innovative MedicineInstitute of Drug Discovery and DesignCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Bing Zhao
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Can Hu
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Li Yuan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Kai Miao
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Bonan Chen
- Department of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong Kong999077China
| | - Xiang‐Dong Cheng
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
- School of PharmacyNaval Medical UniversityShanghai200433China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsInstitute of Medicinal Plant DevelopmentChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100193China
| | - Jiang‐Jiang Qin
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| |
Collapse
|
5
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
6
|
Zhang X, Wei Y, Wu F, Li M, Han C, Huo C, Li Z, Tang F, He W, Zhao Y, Li Y. UBE2L3 expression in human gastric cancer and its clinical significance. J Cancer Res Clin Oncol 2024; 150:210. [PMID: 38656363 PMCID: PMC11043109 DOI: 10.1007/s00432-024-05669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Gastric cancer (GC) is prevalent as one of the most common malignant tumors globally, with a particularly high incidence in China. The role of UBE2L3 in the initiation and progression of various cancers has been well documented, but its specific significance in GC is not yet fully elucidated. The objective of this study is to examine the expression and importance of UBE2L3 in human gastric cancer tissues. METHODS Immunohistochemical staining and survival analysis were conducted on 125 cases of GC. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to assess the expression of UBE2L3 in GC cell lines. Cell lines with UBE2L3 knockdown and overexpression were cultured through lentivirus transfection and subsequently assessed using Western blot analysis. The involvement of UBE2L3 in the proliferation, invasion, and apoptosis of GC cells was confirmed through in vitro experiments, and its capacity to facilitate tumor growth was also validated in in vivo studies. RESULTS The up-regulation of UBE2L3 expression was observed in GC, and its high expression was found to be significantly associated with the degree of differentiation (χ2 = 6.153, P = 0.0131), TNM stage (χ2 = 6.216, P = 0.0447), and poor overall survival. In vitro, UBE2L3 has been shown to enhance functions in GC cell lines, such as promoting proliferation and invasion, and inhibiting apoptosis. In vivo experiments have validated the role of UBE2L3 in promoting tumor growth. CONCLUSIONS The findings of our study demonstrate the significant involvement of UBE2L3 in the pathogenesis and advancement of gastric cancer, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yujie Wei
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Fanqi Wu
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Pneumology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Mei Li
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Cong Han
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Chengdong Huo
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Zhi Li
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Futian Tang
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Wenting He
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Yang Zhao
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China.
| | - Yumin Li
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China.
| |
Collapse
|
7
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
8
|
Spano D, Catara G. Targeting the Ubiquitin-Proteasome System and Recent Advances in Cancer Therapy. Cells 2023; 13:29. [PMID: 38201233 PMCID: PMC10778545 DOI: 10.3390/cells13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Ubiquitination is a reversible post-translational modification based on the chemical addition of ubiquitin to proteins with regulatory effects on various signaling pathways. Ubiquitination can alter the molecular functions of tagged substrates with respect to protein turnover, biological activity, subcellular localization or protein-protein interaction. As a result, a wide variety of cellular processes are under ubiquitination-mediated control, contributing to the maintenance of cellular homeostasis. It follows that the dysregulation of ubiquitination reactions plays a relevant role in the pathogenic states of human diseases such as neurodegenerative diseases, immune-related pathologies and cancer. In recent decades, the enzymes of the ubiquitin-proteasome system (UPS), including E3 ubiquitin ligases and deubiquitinases (DUBs), have attracted attention as novel druggable targets for the development of new anticancer therapeutic approaches. This perspective article summarizes the peculiarities shared by the enzymes involved in the ubiquitination reaction which, when deregulated, can lead to tumorigenesis. Accordingly, an overview of the main pharmacological interventions based on targeting the UPS that are in clinical use or still in clinical trials is provided, also highlighting the limitations of the therapeutic efficacy of these approaches. Therefore, various attempts to circumvent drug resistance and side effects as well as UPS-related emerging technologies in anticancer therapeutics are discussed.
Collapse
Affiliation(s)
- Daniela Spano
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
9
|
Cao F, Chu C, Qin JJ, Guan X. Research progress on antitumor mechanisms and molecular targets of Inula sesquiterpene lactones. Chin Med 2023; 18:164. [PMID: 38111074 PMCID: PMC10726648 DOI: 10.1186/s13020-023-00870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
The pharmacological effects of natural product therapy have received sigificant attention, among which terpenoids such as sesquiterpene lactones stand out due to their biological activity and pharmacological potential as anti-tumor drugs. Inula sesquiterpene lactones are a kind of sesquiterpene lactones extracted from Inula species. They have many pharmacological activities such as anti-inflammation, anti-asthma, anti-tumor, neuroprotective and anti-allergic. In recent years, more and more studies have proved that they are important candidate drugs for the treatment of a variety of cancers because of its good anti-tumor activity. In this paper, the structure, structure-activity relationship, antitumor activities, mechanisms and targets of Inula sesquiterpene lactones reported in recent years were reviewed in order to provide clues for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Fei Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chu Chu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Ma W, Hu J. The linear ANRIL transcript P14AS regulates the NF-κB signaling to promote colon cancer progression. Mol Med 2023; 29:162. [PMID: 38041015 PMCID: PMC10690983 DOI: 10.1186/s10020-023-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The linear long non-coding RNA P14AS has previously been reported to be dysregulated in colon cancer, but the mechanistic role that P14AS plays in colon cancer progression has yet to be clarified. Accordingly, this study was developed to explore the regulatory functions of ANRIL linear transcript-P14AS in cancer. METHODS The expression of P14AS, ANRIL, miR-23a-5p and their target genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell supernatants of IL6 and IL8 were measured by Enzyme linked immunosorbent (ELISA) assay. Dual-luciferase reporter assays, RNA immunoprecipitation, or pull-down assays were used to confirm the target association between miR-23a-5p and P14AS or UBE2D3. Cell proliferation and chemosensitivity of NF-κB inhibitor BAY 11-7085 were evaluated by cell counting kit 8 (CCK8). RESULTS When P14AS was overexpressed in colon cancer cell lines, enhanced TNF-NF-κB signaling pathway activity was observed together with increases in IL6 and IL8 expression. The Pita, miRanda, and RNA hybrid databases revealed the ability of miR-23a-5p to interact with P14AS, while UBE2D3 was further identified as a miR-23a-5p target gene. The results of dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation experiments confirmed these direct interactions among P14AS/miR-23a-5p/UBE2D3. The degradation of IκBa mediated by UBE2D3 may contribute to enhanced NF-κB signaling in these cells. Moreover, the beneficial impact of P14AS on colon cancer cell growth was eliminated when cells were treated with miR-23a-5p inhibitors or UBE2D3 was silenced. As such, these findings strongly supported a role for the UBE2D3/IκBa/NF-κB signaling axis as a mediator of the ability of P14AS to promote colon cancer progression. CONCLUSIONS These data suggested a mechanism through which the linear ANRIL transcript P14AS can promote inflammation and colon cancer progression through the sequestration of miR-23a-5p and the modulation of NF-κB signaling activity, thus highlighting P14AS as a promising target for therapeutic intervention efforts.
Collapse
Affiliation(s)
- Wanru Ma
- Department of Blood Transfusion, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Junhua Hu
- Department of Blood Transfusion, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.
| |
Collapse
|
11
|
Guan X, Zhao B, Guan X, Dong J, Ying J. A benzochalcone derivative synchronously induces apoptosis and ferroptosis in pancreatic cancer cells. PeerJ 2023; 11:e16291. [PMID: 37927794 PMCID: PMC10625348 DOI: 10.7717/peerj.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Background Pancreatic cancer is a highly aggressive and lethal disease with limited treatment options. In this study, we investigated the potential therapeutic effects of compound KL-6 on pancreatic cancer cells. Methods The study involved assessing the inhibitory effects of KL-6 on cell proliferation, clonogenic potential, cell cycle progression, apoptosis, migration, and invasion. Additionally, we examined the action mechanism of KL-6 by RNA-seq and bioinformatic analysis and validated by qRT-PCR and western blot in pancreatic cancer cells. Results Our results demonstrated that KL-6 effectively inhibited the growth of pancreatic cancer cells in a dose-dependent manner. It induced G2/M phase cell cycle arrest and apoptosis, disrupting the cell cycle progression and promoting cell death. KL-6 also exhibited inhibitory effects on cell migration and invasion, suggesting its potential to suppress the metastatic properties of pancreatic cancer cells. Furthermore, KL-6 modulated the expression of genes involved in various cancer-related pathways including apoptosis and ferroptosis. Conclusion These findings collectively support the potential of KL-6 as a promising therapeutic option for pancreatic cancer treatment. Further research is needed to fully understand the underlying mechanisms and evaluate the clinical efficacy of KL-6 in pancreatic cancer patients.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bing Zhao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaodan Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinyun Dong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jieer Ying
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Ye Z, Yang J, Jiang H, Zhan X. The roles of protein ubiquitination in tumorigenesis and targeted drug discovery in lung cancer. Front Endocrinol (Lausanne) 2023; 14:1220108. [PMID: 37795365 PMCID: PMC10546409 DOI: 10.3389/fendo.2023.1220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
The malignant lung cancer has a high morbidity rate and very poor 5-year survival rate. About 80% - 90% of protein degradation in human cells is occurred through the ubiquitination enzyme pathway. Ubiquitin ligase (E3) with high specificity plays a crucial role in the ubiquitination process of the target protein, which usually occurs at a lysine residue in a substrate protein. Different ubiquitination forms have different effects on the target proteins. Multiple short chains of ubiquitination residues modify substrate proteins, which are favorable signals for protein degradation. The dynamic balance adapted to physiological needs between ubiquitination and deubiquitination of intracellular proteins is beneficial to the health of the organism. Ubiquitination of proteins has an impact on many biological pathways, and imbalances in these pathways lead to diseases including lung cancer. Ubiquitination of tumor suppressor protein factors or deubiquitination of tumor carcinogen protein factors often lead to the progression of lung cancer. Ubiquitin proteasome system (UPS) is a treasure house for research and development of new cancer drugs for lung cancer, especially targeting proteasome and E3s. The ubiquitination and degradation of oncogene proteins with precise targeting may provide a bright prospect for drug development in lung cancer; Especially proteolytic targeted chimerism (PROTAC)-induced protein degradation technology will offer a new strategy in the discovery and development of new drugs for lung cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hanming Jiang
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
13
|
Xu H, Hu C, Wang Y, Shi Y, Yuan L, Xu J, Zhang Y, Chen J, Wei Q, Qin J, Xu Z, Cheng X. Glutathione peroxidase 2 knockdown suppresses gastric cancer progression and metastasis via regulation of kynurenine metabolism. Oncogene 2023:10.1038/s41388-023-02708-4. [PMID: 37138031 DOI: 10.1038/s41388-023-02708-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Gastric cancer (GC) is among the most lethal malignancies due to its poor early diagnosis and high metastasis rate, and new therapeutic targets are urgently needed to develop effective anti-GC drugs. Glutathione peroxidase-2 (GPx2) plays various roles in tumor progression and patient survival. Herein, we found that GPx2 was overexpressed and negatively correlated with poor prognosis by using clinical GC samples for validation. GPx2 knockdown suppressed GC proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) in vitro and in vivo. In addition, proteomic analysis revealed that GPx2 expression regulated kynureninase (KYNU)-mediated metabolism. As one of the key proteins involved in tryptophan catabolism, KYNU can degrade the tryptophan metabolite kynurenine (kyn), which is an endogenous ligand for AhR. Next, we revealed that the activation of the reactive oxygen species (ROS)-mediated KYNU-kyn-AhR signaling pathway caused by GPx2 knockdown was involved in GC progression and metastasis. In conclusion, our results showed that GPx2 acted as an oncogene in GC and that GPx2 knockdown suppressed GC progression and metastasis by suppressing the KYNU-kyn-AhR signaling pathway, which was caused by the accumulation of ROS.
Collapse
Affiliation(s)
- Handong Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yi Wang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yunfu Shi
- Tongde Hospital of Zhejiang Province, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Jingli Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Jiahui Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Qin Wei
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Jiangjiang Qin
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| |
Collapse
|
14
|
Guan X, Yang J, Wang W, Zhao B, Hu S, Yu D, Yuan L, Shi Y, Xu J, Dong J, Wang J, Cheng XD, Qin JJ. Dual inhibition of MYC and SLC39A10 by a novel natural product STAT3 inhibitor derived from Chaetomium globosum suppresses tumor growth and metastasis in gastric cancer. Pharmacol Res 2023; 189:106703. [PMID: 36804016 DOI: 10.1016/j.phrs.2023.106703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Gastric cancer remains one of the most common deadly diseases and lacks effective targeted therapies. In the present study, we confirmed that the signal transducer and activator of transcription 3 (STAT3) is highly expressed and associated with a poor prognosis in gastric cancer. We further identified a novel natural product inhibitor of STAT3, termed XYA-2, which interacts specifically with the SH2 domain of STAT3 (Kd= 3.29 μM) and inhibits IL-6-induced STAT3 phosphorylation at Tyr705 and nuclear translocation. XYA-2 inhibited the viability of seven human gastric cancer cell lines with 72-h IC50 values ranging from 0.5 to 0.7 μΜ. XYA-2 at 1 μΜ inhibited the colony formation and migration ability of MGC803 (72.6% and 67.6%, respectively) and MKN28 (78.5% and 96.6%, respectively) cells. In the in vivo studies, intraperitoneal administration of XYA-2 (10 mg/kg/day, 7 days/week) significantly suppressed 59.8% and 88.8% tumor growth in the MKN28-derived xenograft mouse model and MGC803-derived orthotopic mouse model, respectively. Similar results were obtained in a patient-derived xenograft (PDX) mouse model. Moreover, XYA-2 treatment extended the survival of mice bearing PDX tumors. The molecular mechanism studies based on transcriptomics and proteomics analyses indicated that XYA-2 might exert its anticancer activity by synergistically inhibiting the expression of MYC and SLC39A10, two downstream genes of STAT3 in vitro and in vivo. Together, these findings suggested that XYA-2 may be a potent STAT3 inhibitor for treating gastric cancer, and dual inhibition of MYC and SLC39A10 may be an effective therapeutic strategy for STAT3-activated cancer.
Collapse
Affiliation(s)
- Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Yang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China.
| | - Bing Zhao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shiyu Hu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dehua Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Li Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yunfu Shi
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jingli Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xiang-Dong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Lei X, Hu X, Lu Q, Fu W, Sun W, Ma Q, Huang D, Xu Q. Ubiquitin‑conjugating enzymes as potential biomarkers and therapeutic targets for digestive system cancers (Review). Oncol Rep 2023; 49:63. [PMID: 36799184 PMCID: PMC9944987 DOI: 10.3892/or.2023.8500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Digestive system cancers are the leading cause of cancer‑related death worldwide due to their high morbidity and mortality rates. The current treatment methods include surgical treatment, chemotherapy, radiotherapy and endoscopic treatment, and the precisely targeted therapy of digestive system cancers requires to be further studied. The ubiquitin‑proteasome system is the main pathway for protein degradation in cells and the ubiquitin‑conjugating enzymes (E2s) have a decisive role in the specific selection of target proteins for degradation. The E2s have an important physiological role in digestive system cancers, which is related to the clinical tumor stage, differentiation degree and poor prognosis. Furthermore, they are involved in the physiological processes of digestive system tumor cell proliferation, migration, invasion, stemness, drug resistance and autophagy. In the present article, the progress and achievements of the E2s in gastric cancer, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, intrahepatic cholangiocarcinoma, gallbladder cancer and esophageal squamous cell carcinoma were reviewed, which may provide early screening indicators and reliable therapeutic targets for digestive system cancers.
Collapse
Affiliation(s)
- Xiangxiang Lei
- Institute of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaoge Hu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wen Sun
- Second Clinical Medical Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Qiancheng Ma
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China,Correspondence to: Dr Dongsheng Huang or Dr Qiuran Xu, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Gongshu, Hangzhou, Zhejiang 310014, P.R. China, E-mail:
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China,Correspondence to: Dr Dongsheng Huang or Dr Qiuran Xu, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Gongshu, Hangzhou, Zhejiang 310014, P.R. China, E-mail:
| |
Collapse
|
16
|
Xu Q, Pan G, Wang Z, Wang L, Tang Y, Dong J, Qin JJ. Platycodin-D exerts its anti-cancer effect by promoting c-Myc protein ubiquitination and degradation in gastric cancer. Front Pharmacol 2023; 14:1138658. [PMID: 36950011 PMCID: PMC10025306 DOI: 10.3389/fphar.2023.1138658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Platycodin D (PD) is a triterpene saponin extracted from the root of Platycodon grandiflorum. It has been reported to exhibit multiple pharmacological and biological properties. There is substantial evidence to support that PD displays a wide range of anti-tumor activities. However, the detailed molecular mechanism still needs further elaboration. In the present study, to explore whether PD inhibits gastric cancer (GC) cell viability, eight GC cell lines and the GES-1 cell line (a gastric mucosal cell line) were tested. We found that PD exhibited better inhibitory activity on GC cell lines than on the non-tumor cell line. Besides, treatment with PD led to a significant cell cycle arrest, thereby causing subsequent apoptosis. Regarding the cell growth inhibition mechanism, PD can downregulate the protein level of c-Myc rather than its mRNA level in a dose-dependent manner. Further studies revealed that PD disturbed the overall ubiquitination level in GC cell lines and enhanced the ubiquitination-dependent degradation of c-Myc. Interestingly, the inhibition of cell viability by PD could be restored to a certain extent when the expression of c-Myc was recovered, suggesting that PD-mediated GC cell growth inhibition is closely associated with c-Myc expression. Our study proposes a novel molecular mechanism for PD inhibiting GC cell proliferation and growth by destabilizing the c-Myc protein. This work may lay a preliminary foundation for developing PD as an anti-cancer therapy.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- *Correspondence: Guangzhao Pan, ; Jiang-Jiang Qin,
| | - Zhonglan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lingling Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yancheng Tang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jinyun Dong
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Jiang-Jiang Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- *Correspondence: Guangzhao Pan, ; Jiang-Jiang Qin,
| |
Collapse
|
17
|
Barik GK, Sahay O, Islam S, Ghate NB, Kalita B, Alam A. Ubiquitination in Cancer Metastasis: Emerging Functions, Underlying Mechanisms, and Clinical Implications. Technol Cancer Res Treat 2023; 22:15330338231210720. [PMID: 37899723 PMCID: PMC10617293 DOI: 10.1177/15330338231210720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Affiliation(s)
- Ganesh Kumar Barik
- Laboratory of Cancer Biology, National Centre for Cell Science, Pune, Maharashtra, India
| | - Osheen Sahay
- Laboratory of Cancer Biology, National Centre for Cell Science, Pune, Maharashtra, India
| | - Sehbanul Islam
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikhil Baban Ghate
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Bhargab Kalita
- Amrita School of Nanosciences and Molecular Medicine (ASNSMM), Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Aftab Alam
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
18
|
Li H, Wang L, Cao F, Yu D, Yang J, Yu X, Dong J, Qin JJ, Guan X. Design, synthesis, and biological characterization of a potent STAT3 degrader for the treatment of gastric cancer. Front Pharmacol 2022; 13:944455. [PMID: 36034876 PMCID: PMC9412775 DOI: 10.3389/fphar.2022.944455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer is a common malignant tumor that threatens human health, and its occurrence and development mechanism is a complex process involving multiple genes and multiple signals. Signal transducer and activator of transcription 3 (STAT3) has been elucidated as a promising target for developing anticancer drugs in gastric cancer. However, there is no FDA-approved STAT3 inhibitor yet. Herein, we report the design and synthesis of a class of STAT3 degraders based on proteolysis-targeting chimeras (PROTACs). We first synthesized an analog of the STAT3 inhibitor S3I-201 as a ligand, using the cereblon (CRBN)/cullin 4A E3 ligase ligand pomalidomide to synthesize a series of PROTACs. Among them, the SDL-1 achieves the degradation of STAT3 protein in vitro, and exhibits good anti-gastric cancer cell proliferation activity, inhibits invasion and metastasis of MKN1 cell, and induces MKN1 cell apoptosis and arrests cell cycle at the same time. Our study shows that SDL-1 is a potent STAT3 degrader and may serve as a potential anti-gastric cancer drug, providing ideas for further development of drugs for clinical use.
Collapse
Affiliation(s)
- Haobin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingling Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Fei Cao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dehua Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jing Yang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xuefei Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- *Correspondence: Xiaoqing Guan, ; Jiang-Jiang Qin,
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- *Correspondence: Xiaoqing Guan, ; Jiang-Jiang Qin,
| |
Collapse
|