1
|
Donati B, Manzotti G, Torricelli F, Ascione C, Valli R, Santandrea G, Ragazzi M, Zanetti E, Ciarrocchi A, Piana S. Digital spatial profiling for pathologists. Virchows Arch 2024:10.1007/s00428-024-03955-w. [PMID: 39499318 DOI: 10.1007/s00428-024-03955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/07/2024]
Abstract
The advent of "omics" technologies for high-depth tumor profiling has provided new information regarding cancer heterogeneity. However, a bulk omics profile can only partially reproduce tumor complexity, and it does not meet the preferences of pathologists used to perform an in situ assessment of marker expression, for instance, with immunohistochemistry. The NanoString GeoMx® Digital Spatial Profiler (DSP) is a platform for morphology-guided multiplex profiling of tissue slides, which allows the digital quantification of target analytes in different neoplastic settings. To illustrate the feasibility and opportunities offered by DSP from a pathologist's perspective, we applied DSP in three different representative neoplastic settings: breast carcinoma, thyroid anaplastic carcinoma, and biphasic mesothelioma. Because of the perfect overlap between the hematoxylin-eosin-stained slide and the GeoMx areas of interest, in breast carcinoma, two different antibodies allowed the distinction of the tumor cells from the surrounding tumor microenvironment. In biphasic mesothelioma, we could distinguish the epithelioid from the sarcomatoid neoplastic component, and in the thyroid, we easily separated the anaplastic areas from the well-differentiated carcinoma. DSP is a promising tool that combines traditional histological evaluation, allowing spatial assessment of a tumor and its surroundings, and innovative in situ digital profiling. Pathologists should not miss the opportunity to combine morphological and genomic analyses and be at the forefront of investigating the progression of dysplasia/neoplasia, low-grade or high-grade, epithelial/mesenchymal, and, more in general, overcoming the concept of in situ vs. bulk genomic methods.
Collapse
Affiliation(s)
- Benedetta Donati
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Cristian Ascione
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Riccardo Valli
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Giacomo Santandrea
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Moira Ragazzi
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
- Dept. of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Zanetti
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy.
| | - Simonetta Piana
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy.
| |
Collapse
|
2
|
Giotti B, Dolasia K, Zhao W, Cai P, Sweeney R, Merritt E, Kiner E, Kim GS, Bhagwat A, Nguyen T, Hegde S, Fitzgerald BG, Shroff S, Dawson T, Garcia-Barros M, Abdul-Ghafar J, Chen R, Gnjatic S, Soto A, Brody R, Kim-Schulze S, Chen Z, Beaumont KG, Merad M, Flores RM, Sebra RP, Horowitz A, Marron TU, Tocheva A, Wolf A, Tsankov AM. Single-Cell View of Tumor Microenvironment Gradients in Pleural Mesothelioma. Cancer Discov 2024; 14:2262-2278. [PMID: 38959428 DOI: 10.1158/2159-8290.cd-23-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapies have shown great promise in pleural mesothelioma (PM), yet most patients still do not achieve significant clinical response, highlighting the importance of improving the understanding of the tumor microenvironment (TME). Here, we utilized high-throughput, single-cell RNA sequencing (scRNA-seq) to de novo identify 54 expression programs and construct a comprehensive cellular catalog of the PM TME. We found four cancer-intrinsic programs associated with poor disease outcome and a novel fetal-like, endothelial cell population that likely responds to VEGF signaling and promotes angiogenesis. Across cellular compartments, we observe substantial difference in the TME associated with a cancer-intrinsic sarcomatoid signature, including enrichment in fetal-like endothelial cells, CXCL9+ macrophages, and cytotoxic, exhausted, and regulatory T cells, which we validated using imaging and bulk deconvolution analyses on independent cohorts. Finally, we show, both computationally and experimentally, that NKG2A:HLA-E interaction between NK and tumor cells represents an important new therapeutic axis in PM, especially for epithelioid cases. Significance: This manuscript presents the first single-cell RNA sequencing atlas of PM tumor microenvironment. Findings of translational relevance, validated experimentally and using independent bulk cohorts, include identification of gene programs predictive of survival, a fetal-like endothelial cell population, and NKG2A blockade as a promising new immunotherapeutic intervention in PM.
Collapse
Affiliation(s)
- Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Komal Dolasia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peiwen Cai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert Sweeney
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elliot Merritt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Grace S Kim
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Atharva Bhagwat
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thinh Nguyen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samarth Hegde
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bailey G Fitzgerald
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sanjana Shroff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Travis Dawson
- The Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Monica Garcia-Barros
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jamshid Abdul-Ghafar
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Chen
- The Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sacha Gnjatic
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alan Soto
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Brody
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Seunghee Kim-Schulze
- The Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhihong Chen
- The Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Miriam Merad
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Raja M Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amir Horowitz
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas U Marron
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anna Tocheva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Wolf
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
4
|
Bertuccio FR, Agustoni F, Galli G, Bortolotto C, Saddi J, Baietto G, Baio N, Montini S, Putignano P, D’Ambrosio G, Corsico AG, Pedrazzoli P, Stella GM. Pleural Mesothelioma: Treatable Traits of a Heterogeneous Disease. Cancers (Basel) 2023; 15:5731. [PMID: 38136277 PMCID: PMC10741585 DOI: 10.3390/cancers15245731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pleural mesothelioma is an aggressive disease with diffuse nature, low median survival, and prolonged latency presenting difficulty in prognosis, diagnosis, and treatment. Here, we review all these aspects to underline the progress being made in its investigation and to emphasize how much work remains to be carried out to improve prognosis and treatment.
Collapse
Affiliation(s)
- Francesco Rocco Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco Agustoni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Galli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Jessica Saddi
- Department of Oncology, Clinical-Surgical, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Guido Baietto
- Cardiothoracic and Vascular Department, Unit of Thoracic Surgery, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Nicola Baio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Simone Montini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paola Putignano
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gioacchino D’Ambrosio
- Pathology Unit, Department of Diagnostical Services and Imaging, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo G. Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
5
|
Kreienbühl J, Changkhong S, Orlowski V, Kirschner MB, Opitz I, Meerang M. Cullin 4B Ubiquitin Ligase Is Important for Cell Survival and Regulates TGF-β1 Expression in Pleural Mesothelioma. Int J Mol Sci 2023; 24:13410. [PMID: 37686215 PMCID: PMC10487616 DOI: 10.3390/ijms241713410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
We previously demonstrated that cullin 4B (CUL4B) upregulation was associated with worse outcomes of pleural mesothelioma (PM) patients, while the overexpression of its paralog CUL4A was not associated with clinical outcomes. Here, we aimed to identify the distinct roles of CUL4B and CUL4A in PM using an siRNA approach in PM cell lines (ACC Meso-1 and Mero82) and primary culture. The knockdown of CUL4B and CUL4A resulted in significantly reduced colony formation, increased cell death, and delayed cell proliferation. Furthermore, similar to the effect of CUL4A knockdown, downregulation of CUL4B led to reduced expression of Hippo pathway genes including YAP1, CTGF, and survivin. Interestingly, CUL4B and not CUL4A knockdown reduced TGF-β1 and MMP2 expression, suggesting a unique association of CUL4B with this pathway. However, the treatment of PM cells with exogenous TGF-β1 following CUL4B knockdown did not rescue PM cell growth. We further analyzed ACC Meso-1 xenograft tumor tissues treated with the cullin inhibitor, pevonedistat, which targets protein neddylation, and observed the downregulation of human TGF-β1 and MMP2. In summary, our data suggest that CUL4B overexpression is important for tumor cell growth and survival and may drive PM aggressiveness via the regulation of TGF-β1 expression and, furthermore, reveal a new mechanism of action of pevonedistat.
Collapse
Affiliation(s)
| | | | | | | | | | - Mayura Meerang
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland (V.O.); (M.B.K.); (I.O.)
| |
Collapse
|