1
|
El-Ansary A, Alfawaz HA, Bacha AB, Al-Ayadhi LY. Combining Anti-Mitochondrial Antibodies, Anti-Histone, and PLA2/COX Biomarkers to Increase Their Diagnostic Accuracy for Autism Spectrum Disorders. Brain Sci 2024; 14:576. [PMID: 38928576 PMCID: PMC11201962 DOI: 10.3390/brainsci14060576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and restricted and repetitive behaviors. Oxidative stress may be a critical link between mitochondrial dysfunction and ASD as reactive oxygen species (ROS) generated from pro-oxidant environmental toxicants and activated immune cells can result in mitochondrial failure. Recently, mitochondrial dysfunction, autoimmunity, and abnormal lipid mediators have been identified in multiple investigations as an acknowledged etiological mechanism of ASD that can be targeted for therapeutic intervention. METHODS The relationship between lipid mediator markers linked to inflammation induction, such as phospholipase A2/cyclooxygenase-2 (PLA2/Cox-2), and the mitochondrial dysfunction marker anti-mitochondrial antibodies (AMA-M2), and anti-histone autoantibodies in the etiology of ASD was investigated in this study using combined receiver operating characteristic (ROC) curve analyses. This study also sought to identify the linear combination for a given set of markers that optimizes the partial area under ROC curves. This study included 40 age- and sex-matched controls and 40 ASD youngsters. The plasma of both groups was tested for PLA2/COX-2, AMA-M2, and anti-histone autoantibodies' levels using ELISA kits. ROC curves and logistic regression models were used in the statistical analysis. RESULTS Using the integrated ROC curve analysis, a notable rise in the area under the curve was noticed. Additionally, the combined markers had markedly improved specificity and sensitivity. CONCLUSIONS The current study suggested that measuring the predictive value of selected biomarkers related to mitochondrial dysfunction, autoimmunity, and lipid metabolism in children with ASD using a ROC curve analysis could lead to a better understanding of the etiological mechanism of ASD as well as its relationship with metabolism.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi P.O. Box 110281, United Arab Emirates
| | - Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| | - Abir Ben Bacha
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| | - Laila Y. Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
2
|
Wang X, Hu Y, Zhu W, Wang D. Investigation of metabolite alterations in the kidneys of methionine-choline-deficient mouse by mass spectrometry imaging. Anal Bioanal Chem 2024; 416:1011-1022. [PMID: 38108841 DOI: 10.1007/s00216-023-05091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Methionine and choline both are essential nutrients which are needed for methyl group metabolism. A methionine-choline-deficient (MCD) diet leads to pathological changes in the kidney. The mechanism of the MCD diet is complex, and fundamental research is still required to provide a better understanding of the driving forces behind it. We evaluated the regional effects of the MCD diet on the metabolites of mouse kidney tissue using desorption electrospray ionization mass spectrometry imaging technology. A total of 20, 17, and 13 metabolites were significantly changed in the cortex, outer medulla, and inner medulla, respectively, of the mouse kidney tissue after the administration of the MCD diet. Among the discriminating metabolites, only three metabolites (guanidoacetic acid, serine, and nicotinamide riboside) were significantly increased, and all the other metabolites showed a significant decrease. The results showed that there were significant region-specific changes in the serine metabolism, carnitine metabolism, choline metabolism, and arginine metabolism. This study presents unique regional metabolic data, providing a more comprehensive understanding of the molecular characteristics of the MCD diet in the kidney.
Collapse
Affiliation(s)
- Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Yingying Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Wentao Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Dianlei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
3
|
Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Biomolecules 2023; 13:1371. [PMID: 37759771 PMCID: PMC10527456 DOI: 10.3390/biom13091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Tayebeh Ghorbi
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Parisa Shali
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Agriculture, Ghent University, 9000 Ghent, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
4
|
Quillet JC, Siani-Rose M, McKee R, Goldstein B, Taylor M, Kurek I. A machine learning approach for understanding the metabolomics response of children with autism spectrum disorder to medical cannabis treatment. Sci Rep 2023; 13:13022. [PMID: 37608004 PMCID: PMC10444802 DOI: 10.1038/s41598-023-40073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition impacting behavior, communication, social interaction and learning abilities. Medical cannabis (MC) treatment can reduce clinical symptoms in individuals with ASD. Cannabis-responsive biomarkers are metabolites found in saliva that change in response to MC treatment. Previously we showed levels of these biomarkers in children with ASD successfully treated with MC shift towards the physiological levels detected in typically developing (TD) children, and potentially can quantify the impact. Here, we tested for the first time the capabilities of machine learning techniques applied to our dynamic, high-resolution and rich feature dataset of cannabis-responsive biomarkers from a limited number of children with ASD before and after MC treatment and a TD group to identify: (1) biomarkers distinguishing ASD and TD groups; (2) non-cannabinoid plant molecules with synergistic effects; and (3) biomarkers associated with specific cannabinoids. We found: (1) lysophosphatidylethanolamine can distinguish between ASD and TD groups; (2) novel phytochemicals contribute to the therapeutic effects of MC treatment by inhibition of acetylcholinesterase; and (3) THC- and CBD-associated cannabis-responsive biomarkers are two distinct groups, while CBG is associated with some biomarkers from both groups.
Collapse
Affiliation(s)
| | - Michael Siani-Rose
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Robert McKee
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Bonni Goldstein
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Myiesha Taylor
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Itzhak Kurek
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA.
| |
Collapse
|
5
|
Investigation of Phospholipid Differences in Valproic Acid-Induced Autistic Mouse Model Brain Using Mass Spectrometry Imaging. Metabolites 2023; 13:metabo13020178. [PMID: 36837796 PMCID: PMC9966147 DOI: 10.3390/metabo13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Autism is a neurodevelopmental disorder for which the cause and treatment have yet not been determined. The polyunsaturated fatty acid (PUFA) levels change rapidly in the blood or cerebrospinal fluid of autistic children and PUFAs are closely related to autism spectrum disorder (ASD). This finding suggests that changes in lipid metabolism are associated with ASD and result in an altered distribution of phospholipids in cell membranes. To further understand ASD, it is necessary to analyze phospholipids in organs consisting of nerve cells, such as the brain. In this study, we investigated the phospholipid distribution in the brain tissue of valproic acid-induced autistic mice using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Phospholipids including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine were identified in each brain region and exhibited differences between the ASD and control groups. These phospholipids contain docosahexaenoic acid and arachidonic acid, which are important PUFAs for cell signaling and brain growth. We expect that the differences in phospholipids identified in the brain tissue of the ASD model with MALDI-MSI, in conjunction with conventional biological fluid analysis, will help to better understand changes in lipid metabolism in ASD.
Collapse
|
6
|
El-Ansary A, Al-Onazi M, Alhowikan AM, Alghamdi MA, Al-Ayadhi L. Assessment of a combination of plasma anti-histone autoantibodies and PLA2/PE ratio as potential biomarkers to clinically predict autism spectrum disorders. Sci Rep 2022; 12:13359. [PMID: 35922658 PMCID: PMC9349315 DOI: 10.1038/s41598-022-17533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficiencies in social interaction and repetitive behaviors. Multiple studies have reported abnormal cell membrane composition and autoimmunity as known mechanisms associated with the etiopathogenesis of ASD. In this study, multiple regression and combined receiver operating characteristic (ROC) curve as statistic tools were done to clarify the relationship between phospholipase A2 and phosphatidylethanolamine (PE) ratio (PLA2/PE) as marker of lipid metabolism and membrane fluidity, and antihistone-autoantibodies as marker of autoimmunity in the etiopathology of ASD. Furthermore, the study intended to define the linear combination that maximizes the partial area under an ROC curve for a panel of markers. Forty five children with ASD and forty age- and sex-matched controls were enrolled in the study. Using ELISA, the levels of antihistone-autoantibodies, and PLA2 were measured in the plasma of both groups. PE was measured using HPLC. Statistical analyses using ROC curves and multiple and logistic regression models were performed. A notable rise in the area under the curve was detected using combined ROC curve models. Additionally, higher specificity and sensitivity of the combined markers were documented. The present study indicates that the measurement of the predictive value of selected biomarkers related to autoimmunity and lipid metabolism in children with ASD using a ROC curve analysis should lead to a better understanding of the pathophysiological mechanism of ASD and its link with metabolism. This information may enable the early diagnosis and intervention.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P.O Box 22452, Riyadh, 11495, Saudi Arabia.
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box. 90950, Riyadh, 11623, Saudi Arabia.
| | - Mona Al-Onazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mashael A Alghamdi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box. 90950, Riyadh, 11623, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Nasri Z, Memari S, Wenske S, Clemen R, Martens U, Delcea M, Bekeschus S, Weltmann K, von Woedtke T, Wende K. Singlet-Oxygen-Induced Phospholipase A 2 Inhibition: A Major Role for Interfacial Tryptophan Dioxidation. Chemistry 2021; 27:14702-14710. [PMID: 34375468 PMCID: PMC8596696 DOI: 10.1002/chem.202102306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 11/16/2022]
Abstract
Several studies have revealed that various diseases such as cancer have been associated with elevated phospholipase A2 (PLA2 ) activity. Therefore, the regulation of PLA2 catalytic activity is undoubtedly vital. In this study, effective inactivation of PLA2 due to reactive species produced from cold physical plasma as a source to model oxidative stress is reported. We found singlet oxygen to be the most relevant active agent in PLA2 inhibition. A more detailed analysis of the plasma-treated PLA2 identified tryptophan 128 as a hot spot, rich in double oxidation. The significant dioxidation of this interfacial tryptophan resulted in an N-formylkynurenine product via the oxidative opening of the tryptophan indole ring. Molecular dynamics simulation indicated that the efficient interactions between the tryptophan residue and phospholipids are eliminated following tryptophan dioxidation. As interfacial tryptophan residues are predominantly involved in the attaching of membrane enzymes to the bilayers, tryptophan dioxidation and indole ring opening leads to the loss of essential interactions for enzyme binding and, consequently, enzyme inactivation.
Collapse
Affiliation(s)
- Zahra Nasri
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Seyedali Memari
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
- Institute of Anatomy and Cell BiologyUniversity Medicine GreifswaldFriedrich-Loeffler-Straße 23cGreifswald17487Germany
| | - Sebastian Wenske
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Ramona Clemen
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Ulrike Martens
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Straße 4Greifswald17489Germany
- Center for Innovation Competence (ZIK) HIKE (Humoral Immune Reactions in Cardiovascular Diseases)University of GreifswaldGreifswaldFleischmannstraße 4217489Germany
| | - Mihaela Delcea
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Straße 4Greifswald17489Germany
- Center for Innovation Competence (ZIK) HIKE (Humoral Immune Reactions in Cardiovascular Diseases)University of GreifswaldGreifswaldFleischmannstraße 4217489Germany
| | - Sander Bekeschus
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Thomas von Woedtke
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
- Institute for Hygiene and Environmental MedicineUniversity Medicine GreifswaldGreifswaldWalther-Rathenau-Straße 49 A17489Germany
| | - Kristian Wende
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| |
Collapse
|
8
|
Chen J, Chen J, Xu Y, Cheng P, Yu S, Fu Y, Du Y. Retinol-binding protein 4 in combination with lipids to predict the regression phenomenon of autism spectrum disorders. Lipids Health Dis 2021; 20:93. [PMID: 34446012 PMCID: PMC8390196 DOI: 10.1186/s12944-021-01522-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND About 20-40 % of autistic people experience a phenomenon of regression. Retinol binding protein 4 (RBP4) plays an important role as an inflammatory neurotrophic adipokine and is a promising mediator of the fat-brain axis. Abnormal fatty acid metabolism and lipid mediators have been reported to be related to the etiological mechanism in autism, and amelioration of impaired lipid metabolism can be recognized as a treatment strategy for autism. The purpose of this study is to explore the relationship between RBP4, lipids, and the autistic regression phenomenon, and to discuss their potentials as biomarkers for the autistic regression phenomenon. METHODS A total of 60 autistic individuals (18 with regression phenomenon, 42 without regression phenomenon) (ASD group) and 36 healthy controls were enrolled in this case-control study. The levels of RBP4, total cholesterol (TC), high-density lipoprotein (HDLC), low-density lipoprotein (LDLC), and triglyceride (TG) were measured. Childhood Autism Rating Scale (CARS) is used to assess the severity of autism. Ethical measures were performed in compliance with the current Declaration of Helsinki and written informed consent was obtained from the parents before enrollment of the children and adolescents. RESULTS Compared with control subjects, autistic individuals had lower levels of TC (P = 0.007), RBP4 (P = 0.001), and HDLC (P = 0.027). The levels of RBP4 in ASD group were positively correlated with TG (r = 0.355, P = 0.005), HDLC (r = 0.257, P = 0.047), TG/TC (r = 0.376, P = 0.003) and TG/LDLC (r = 0.363, P = 0.004), and were negatively correlated with CARS (r=-0.296, P = 0.003). Further logistic regression demonstrated that decreased RBP4 concentration was associated with the presentation of the autistic regression phenomenon even after the adjustment of the potential confounding factors. CONCLUSIONS Serum RBP4 is associated with the autistic regression phenomenon and the severity of ASD. Further studies are needed to expound whether decreased RBP4 participates in the development of the autistic regression phenomenon.
Collapse
Affiliation(s)
- Jianling Chen
- Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, China
| | - Jing Chen
- Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, China
| | - Yun Xu
- Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, China
| | - Peipei Cheng
- Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, China
| | - Shunying Yu
- Department of Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingmei Fu
- Department of Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yasong Du
- Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, China.
| |
Collapse
|
9
|
Gao H, Ni Y, Mo X, Li D, Teng S, Huang Q, Huang S, Liu G, Zhang S, Tang Y, Lu L, Liang H. Drug repositioning based on network-specific core genes identifies potential drugs for the treatment of autism spectrum disorder in children. Comput Struct Biotechnol J 2021; 19:3908-3921. [PMID: 34306572 PMCID: PMC8280514 DOI: 10.1016/j.csbj.2021.06.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of exact causative genes is important for in silico drug repositioning based on drug-gene-disease relationships. However, the complex polygenic etiology of the autism spectrum disorder (ASD) is a challenge in the identification of etiological genes. The network-based core gene identification method can effectively use the interactions between genes and accurately identify the pathogenic genes of ASD. We developed a novel network-based drug repositioning framework that contains three steps: network-specific core gene (NCG) identification, potential therapeutic drug repositioning, and candidate drug validation. First, through the analysis of transcriptome data for 178 brain tissues, gene network analysis identified 365 NCGs in 18 coexpression modules that were significantly correlated with ASD. Second, we evaluated two proposed drug repositioning methods. In one novel approach (dtGSEA), we used the NCGs to probe drug-gene interaction data and identified 35 candidate drugs. In another approach, we compared NCG expression patterns with drug-induced transcriptome data from the Connectivity Map database and found 46 candidate drugs. Third, we validated the candidate drugs using an in-house mental diseases and compounds knowledge graph (MCKG) that contained 7509 compounds, 505 mental diseases, and 123,890 edges. We found a total of 42 candidate drugs that were associated with mental illness, among which 10 drugs (baclofen, sulpiride, estradiol, entinostat, everolimus, fluvoxamine, curcumin, calcitriol, metronidazole, and zinc) were postulated to be associated with ASD. This study proposes a powerful network-based drug repositioning framework and also provides candidate drugs as well as potential drug targets for the subsequent development of ASD therapeutic drugs.
Collapse
Affiliation(s)
- Huan Gao
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Yuan Ni
- Ping An Technology, No. 20 Keji South 12 Road, Shen Zhen 518063, Guangdong, China
| | - Xueying Mo
- School of Information Management, Wuhan University, Wuhan 430072, Hubei, China
| | - Dantong Li
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Shan Teng
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou,510515, China
| | - Qingsheng Huang
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou 510623, Guangdong, China
| | - Shuai Huang
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Guangjian Liu
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Sheng Zhang
- Ping An Technology, No. 20 Keji South 12 Road, Shen Zhen 518063, Guangdong, China
| | - Yaping Tang
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou 510623, Guangdong, China
| | - Long Lu
- School of Information Management, Wuhan University, Wuhan 430072, Hubei, China
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou 510623, Guangdong, China
| | - Huiying Liang
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| |
Collapse
|
10
|
Wu Y, Liao GY, Ke HJ, Liu P. Effects of Snake-Derived Phospholipase A2 Inhibitors on Acute Pancreatitis: In vitro and in vivo Characterization. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4765-4774. [PMID: 33192052 PMCID: PMC7656965 DOI: 10.2147/dddt.s270443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Objective We aimed to investigate the effects of snake-derived phospholipase A2 inhibitor (PLA2) from Sinonatrix percarinata and Bungarus multicinctus on acute pancreatitis in vivo and in vitro and assess the mechanisms. Methods The levels of platelet-activating factor (PAF) and tumor necrosis factor (TNF)-α were detected by ELISA, and the characteristics of autophagy were detected by transmission electron microscopy and Western blotting (LC3, p62, and ATG5). Results In vitro experiments showed that PLA2 treatment caused obvious formation of autophagic bodies. By contrast, Sinonatrix and Bungarus peptides reduced the number of autophagic bodies. The concentrations of PAF and TNF-α, and the expressions of p62, autophagy-related 5 (ATG5), and microtubule-associated protein 1A/1B-light chain 3 (LC3)II/LC3I in the PLA2-treated group were significantly higher than in the control group (P<0.05). The concentrations of PAF and TNF-α, and the expressions of p62, ATG5, and LC3II/LC3I in the Sinonatrix or Bungarus peptide treatment groups were significantly lower than in the PLA2-treated cells (P<0.05). In the pancreatic tissue, autophagic bodies were observed in the model group; autophagic bodies were remarkably reduced in Sinonatrix or Bungarus peptide-treated groups compared with the model group. In vivo experiments also showed that the levels of PAF and TNF-α, and the expressions of p62, ATG5, and LC3II/LC3I were significantly higher in the model group than in the control group (P<0.05). The levels of PAF and TNF-α in the model group, and the expressions of p62, ATG5, and LC3II/LC3I in Sinonatrix or Bungarus peptide-treated groups were significantly lower than in the model group (P<0.05). Conclusion Sinonatrix or Bungarus peptide could ameliorate the features of acute pancreatitis, likely through regulating autophagy.
Collapse
Affiliation(s)
- Yanping Wu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Gen-You Liao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Hua-Jing Ke
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Pi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
11
|
Fatty Acid Profile and Metabolism Are Related to Human Sperm Parameters and Are Relevant in Idiopathic Infertility and Varicocele. Mediators Inflamm 2020; 2020:3640450. [PMID: 32934603 PMCID: PMC7479464 DOI: 10.1155/2020/3640450] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives Fatty acids (FA) modulate oxidative stress, reactive oxygen species (ROS) production, and inflammatory processes in spermatogenesis. Methods The amount of 17 different FAs and the level of F2-isoprostanes (F2-IsoPs) and cytoplasmic phospholipase A2 (cPLA2) were compared and correlated to sperm characteristics; these last ones were evaluated by light and electronic microscopy in varicocele and idiopathic infertile patients. Results Total n-3 polyunsaturated acids (PUFAs) and docosahexaenoic acid (DHA), one of the n-3 PUFAs, were significantly reduced in idiopathic infertile men compared to controls (P < 0.05). In the whole studied population, oleic acid and total monounsaturated acids (MUFAs) correlated negatively with sperm concentration, progressive motility, normal morphology, vitality, and fertility index and positively with sperm necrosis. Eicosapentaenoic acid (EPA) amount was positively correlated with the percentage of sperm necrosis and cPLA2 level and negatively with sperm concentration. Sperm vitality was negatively correlated with the saturated fatty acids (SFAs). In infertile groups, cPLA2 was negatively correlated with DHA and n-3 PUFAs (both P < 0.05) and positively with EPA (P < 0.05). In the varicocele group, sperm vitality was negatively correlated with palmitoleic acid and total n-6 PUFAs (P < 0.05); sperm apoptosis was positively correlated with the total SFA percentage (P < 0.05). Conclusions FA composition in sperm membrane and the metabolism of sperm FAs are interrelated parameters, both relevant in sperm maturation processes and fertility.
Collapse
|
12
|
Bukhari SI, Alfawaz H, Al-Dbass A, Bhat RS, Moubayed NMS, Bukhari W, Hassan SA, Merghani N, Elsamaligy S, El-Ansary A. Efficacy of Novavit in ameliorating the neurotoxicity of propionic acid. Transl Neurosci 2020; 11:134-146. [PMID: 33312719 PMCID: PMC7705989 DOI: 10.1515/tnsci-2020-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/08/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress, abnormal fatty acid metabolism, and impaired gut microbiota play a serious role in the pathology of autism. The use of dietary supplements to improve the core symptoms of autism is a common therapeutic strategy. The present study analyzed the effects of oral supplementation with Novavit, a multi-ingredient supplement, on ameliorating oxidative stress and impaired lipid metabolism in a propionic acid (PPA)-induced rodent model of autism. Male western albino rats were divided into three groups. The first group is the control, the second group was given an oral neurotoxic dose of PPA (250 mg/kg body weight/day) for 3 days and then received buffered saline until the end of the experiment. The third group received Novavit (70 mg/kg body weight/day for 30 days after the 3-day PPA treatment). Markers of oxidative stress and impaired fatty acid metabolism were measured in brain homogenates obtained from each group. Novavit modulation of the gut microbiota was also evaluated. While PPA induced significant increases in lipid peroxides and 5-lipoxygenase, together with significantly decreased glutathione, and cyclooxygenase 2, oral supplementation with Novavit ameliorated PPA-induced oxidative stress and impaired fatty acid metabolism. Our results showed that the presence of multivitamins, coenzyme Q10, minerals, and colostrum, the major components of Novavit, protects against PPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Alfawaz
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Dbass
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nadine MS Moubayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wadha Bukhari
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P O Box 22452, Riyadh, Saudi Arabia
| | | | - Nada Merghani
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P O Box 22452, Riyadh, Saudi Arabia
| | - Samar Elsamaligy
- Department of Pharamaceutics and Industrial Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| | - Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P O Box 22452, Riyadh, Saudi Arabia
- Therapeutic Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
13
|
Collodel G, Castellini C, Iacoponi F, Noto D, Signorini C. Cytosolic phospholipase A 2 and F 2 isoprostanes are involved in semen quality and human infertility-A study on leucocytospermia, varicocele and idiopathic infertility. Andrologia 2019; 52:e13465. [PMID: 31693215 DOI: 10.1111/and.13465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022] Open
Abstract
Phospholipase A2 (PLA2 ) is involved in eicosanoid release, and F2 -isoprostanes (F2 -IsoPs), as free radical-generated eicosanoids released by PLA2 , are indicators of oxidative stress in different human conditions. This study investigated the interplay between cytosolic PLA2 (cPLA2 ), F2 -IsoPs and sperm features in male infertility, when the involvement of oxidative stress has been reported. Semen evaluation was performed following WHO guidelines, sperm ultrastructure was detected by transmission electron microscopy indicating a fertility index, and the percentages of sperm immaturity, apoptosis and necrosis. In sperm cells and seminal plasma, cPLA2 levels were determined by immunological method, whereas F2 -IsoPs by mass spectrometry. Sperm concentration, morphology, vitality and fertility index values were significantly lower in infertile groups compared with fertile men. An increase in sperm apoptosis and necrosis (p < .01), apoptosis (p < .01) and immaturity (p < .001) was detected in leucocytospermia, idiopathic infertility and varicocele, respectively. Seminal cPLA2 showed the highest value in varicocele group (p < .05), whereas seminal F2 -IsoPs increased in varicocele (p < .001) and leucocytospermia (p < .05) groups. In the whole population, F2 -IsoP and cPLA2 levels were positively correlated (p < .05). On the contrary, F2 -IsoPs and cPLA2 were not significantly different when investigated in sperm cells. Our data indicate that fatty acid oxidation/metabolism plays a role in different male reproductive pathological conditions.
Collapse
Affiliation(s)
- Giulia Collodel
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Francesca Iacoponi
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Rome, Italy
| | - Daria Noto
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, Siena, Italy
| |
Collapse
|
14
|
Alfawaz H, Bhat RS, Al-Mutairi M, Alnakhli OM, Al-Dbass A, AlOnazi M, Al-Mrshoud M, Hasan IH, El-Ansary A. Comparative study on the independent and combined effects of omega-3 and vitamin B12 on phospholipids and phospholipase A2 as phospholipid hydrolyzing enzymes in PPA-treated rats as a model for autistic traits. Lipids Health Dis 2018; 17:205. [PMID: 30170600 PMCID: PMC6119280 DOI: 10.1186/s12944-018-0850-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/13/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Abnormal phospholipid metabolism is a major component of many neurodevelopmental disorders including autism. Oral administration of propionic acid (PPA) can produce behavioral abnormalities and biochemical features in rodents similar to those observed in autism and can thus be used as a model to understand impaired brain fatty acid metabolism in autism. METHODS The present study was designed to understand alterations in phospholipid metabolism in the brain of a rodent model of autism and to explore omega-3 and vitamin B12 as remedies. Five groups of rats were selected: Group 1 was the control. Group 2 was the rodent model of autism treated with a neurotoxic dose of PPA. Group 3 was given vitamin B12 cobalamin (16.7 mg/kg/day) for 30 days after PPA treatment. Group 4 was given pharmaceutical grade Omega-3 (200 mg cholesterol free-DHA/kg body weight/day), a product of Madre lab, Germany, for 30 days after PPA treatment for 3 days. Group 5 was given a combined dose of ω-3 + Vitamin B12 for the same duration post-PPA treatment. Phospholipid levels and Phospholipase A2 were measured in the brain homogenates of all the groups. ELISA and western blotting were used to detect the cPLA2 protein level. RESULTS A significant decrease in phospholipid levels and a significant increase in cPLA2 were found in brain tissue of PPA-treated rats; however, both ω-3 and vitamin B12 were efficient in ameliorating the neurotoxic effect of PPA. CONCLUSION Both ω-3 and vitamin B12 may play a role in ameliorating impaired phospholipid metabolism in autism; however, proper clinical trials are needed.
Collapse
Affiliation(s)
- Hanan Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 22452, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Manar Al-Mutairi
- Central Laboratory, Center for Female Scientific and Medical Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Osima M Alnakhli
- Central Laboratory, Center for Female Scientific and Medical Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Dbass
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mona AlOnazi
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Majidh Al-Mrshoud
- Central Laboratory, Center for Female Scientific and Medical Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Iman H Hasan
- Pharmacology and Toxicology Department, College of Pharmacy, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Center for Female Scientific and Medical Colleges, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|