1
|
Kounatidis D, Tentolouris N, Vallianou NG, Mourouzis I, Karampela I, Stratigou T, Rebelos E, Kouveletsou M, Stamatopoulos V, Tsaroucha E, Dalamaga M. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024; 14:388. [PMID: 39057711 PMCID: PMC11278853 DOI: 10.3390/metabo14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerotic cardiovascular disease poses a significant global health issue, with dyslipidemia standing out as a major risk factor. In recent decades, lipid-lowering therapies have evolved significantly, with statins emerging as the cornerstone treatment. These interventions play a crucial role in both primary and secondary prevention by effectively reducing cardiovascular risk through lipid profile enhancements. Beyond their primary lipid-lowering effects, extensive research indicates that these therapies exhibit pleiotropic actions, offering additional health benefits. These include anti-inflammatory properties, improvements in vascular health and glucose metabolism, and potential implications in cancer management. While statins and ezetimibe have been extensively studied, newer lipid-lowering agents also demonstrate similar pleiotropic effects, even in the absence of direct cardiovascular benefits. This narrative review explores the diverse pleiotropic properties of lipid-modifying therapies, emphasizing their non-lipid effects that contribute to reducing cardiovascular burden and exploring emerging benefits for non-cardiovascular conditions. Mechanistic insights into these actions are discussed alongside their potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | | | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
3
|
Qiu J, Liu J, Tian L, Yu J, Duan Q, Liu Y, Zhao W, Si H, Lu X, Zhang Q. Knockdown of LOX-1 ameliorates bone quality and generation of type H blood vessels in diabetic mice. Arch Biochem Biophys 2024; 752:109870. [PMID: 38141905 DOI: 10.1016/j.abb.2023.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Our previous studies have shown that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) is expressed in liver sinusoidal endothelial cells, and oxidized low-density lipoprotein induces liver sinusoidal dysfunction and defenestration through the LOX-1/ROS/NF-kB pathway, revealing that LOX-1 can mediate liver sinusoidal barrier function, involved in the regulation of non-alcoholic fatty liver disease. Here, we investigated whether, in the context of bone metabolic diseases, LOX-1 could affect bone quality and type H blood vessels in diabetic mice. We used db/db mice as model and found that LOX-1 knockdown can ameliorate bone quality and type H blood vessel generation in db/db mice. This further verifies our hypothesis that LOX-1 is involved in the regulation of bone quality and type H blood vessel homeostasis, thus inhibiting osteoporosis progression in db/db mice.
Collapse
Affiliation(s)
- Jumei Qiu
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Jing Liu
- Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China; Clinical Research Center for Metabolic Disease, Lanzhou, 730000, Gansu Province, China
| | - Limin Tian
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China; Clinical Research Center for Metabolic Disease, Lanzhou, 730000, Gansu Province, China
| | - Jing Yu
- Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China; Clinical Research Center for Metabolic Disease, Lanzhou, 730000, Gansu Province, China
| | - Qidang Duan
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Yaqian Liu
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Wenshu Zhao
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Huiling Si
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Xun Lu
- Ningxia Medical University, Yinchuan, 750000, Ningxia Hui Autonomous Region, China
| | - Qi Zhang
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China; Clinical Research Center for Metabolic Disease, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
4
|
Idowu OK, Oluyomi OO, Faniyan OO, Dosumu OO, Akinola OB. The synergistic ameliorative activity of peroxisome proliferator-activated receptor-alpha and gamma agonists, fenofibrate and pioglitazone, on hippocampal neurodegeneration in a rat model of insulin resistance. IBRAIN 2022; 8:251-263. [PMID: 37786742 PMCID: PMC10528802 DOI: 10.1002/ibra.12059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 10/04/2023]
Abstract
Insulin resistance (IR) is a risk factor for metabolic disorders and neurodegeneration. Peroxisome proliferator-activated receptor (PPAR) agonists have been proven to mitigate the neuronal pathology associated with IR. However, the synergetic efficacy of these agonists is yet to be fully described. Hence, we aimed to investigate the efficacy of PPARα/γ agonists (fenofibrate and pioglitazone) on a high-fat diet (HFD) and streptozotocin (STZ)-induced hippocampal neurodegeneration. Male Wistar rats (200 ± 25 mg/body weight [BW]) were divided into five groups. The experimental groups were fed on an HFD for 12 weeks coupled with 5 days of an STZ injection (30 mg/kg/BW, i.p) to induce IR. Fenofibrate (FEN; 100 mg/kg/BW, orally), pioglitazone (PIO; 20 mg/kg/BW, orally), and their combination were administered for 2 weeks postinduction. Behavioral tests were conducted, and blood was collected to determine insulin sensitivity after treatment. Animals were killed for assessment of oxidative stress, cellular morphology characterization, and astrocytic evaluation. HFD/STZ-induced IR increased malondialdehyde (MDA) levels and decreased glutathione (GSH) levels. Evidence of cellular alterations and overexpression of astrocytic protein was observed in the hippocampus. By contrast, monotherapy of FEN and PIO increased the GSH level (p < 0.05), decreased the MDA level (p < 0.05), and improved cellular morphology and astrocytic expression. Furthermore, the combined treatment led to improved therapeutic activities compared to monotherapies. In conclusion, FEN and PIO exerted a therapeutic synergistic effect on HFD/STZ-induced IR in the hippocampus.
Collapse
Affiliation(s)
| | | | - Oluwatomisin O. Faniyan
- Department of Physiology, School of Bioscience and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | | | | |
Collapse
|
5
|
Coppola A, Zorzetto G, Piacentino F, Bettoni V, Pastore I, Marra P, Perani L, Esposito A, De Cobelli F, Carcano G, Fontana F, Fiorina P, Venturini M. Imaging in experimental models of diabetes. Acta Diabetol 2022; 59:147-161. [PMID: 34779949 DOI: 10.1007/s00592-021-01826-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022]
Abstract
Translational medicine, experimental medicine and experimental animal models, in particular mice and rats, represent a multidisciplinary field that has made it possible to achieve, in the last decades, important scientific progress. In this review, we have summarized the most frequently used imaging animal models, such as ultrasound (US), micro-CT, MRI and the optical imaging methods, and their main implications in diagnostic and therapeutic fields, with a particular focus on diabetes mellitus, a multifactorial disease extremely widespread among the general population.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy.
| | | | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Valeria Bettoni
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paolo Marra
- Department of Diagnostic Radiology, Giovanni XXIII Hospital, Milano-Bicocca University, Bergamo, Italy
| | - Laura Perani
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Francesco De Cobelli
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Giulio Carcano
- Insubria University, Varese, Italy
- General, Emergency, and Transplant Surgery Unit, ASST Settelaghi, Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Paolo Fiorina
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| |
Collapse
|
6
|
Anagnostis P, Florentin M, Livadas S, Lambrinoudaki I, Goulis DG. Bone Health in Patients with Dyslipidemias: An Underestimated Aspect. Int J Mol Sci 2022; 23:ijms23031639. [PMID: 35163560 PMCID: PMC8835770 DOI: 10.3390/ijms23031639] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Beyond being aging-related diseases, atherosclerosis and osteoporosis share common pathogenetic pathways implicated in bone and vascular mineralization. However, the contributory role of dyslipidemia in this interplay is less documented. The purpose of this narrative review is to provide epidemiological evidence regarding the prevalence of bone disease (osteoporosis, fracture risk) in patients with dyslipidemias and to discuss potential common pathophysiological mechanisms linking osteoporosis and atherosclerosis. The effect of hypolipidemic therapy on bone metabolism is also discussed. Despite the high data heterogeneity and the variable quality of studies, dyslipidemia, mainly elevated total and low-density lipoprotein cholesterol concentrations, is associated with low bone mass and increased fracture risk. This effect may be mediated directly by the increased oxidative stress and systemic inflammation associated with dyslipidemia, leading to increased osteoclastic activity and reduced bone formation. Moreover, factors such as estrogen, vitamin D and K deficiency, and increased concentrations of parathyroid hormone, homocysteine and lipid oxidation products, can also contribute. Regarding the effect of hypolipidemic medications on bone metabolism, statins may slightly increase BMD and reduce fracture risk, although the evidence is not robust, as it is for omega-3 fatty acids. No evidence exists for the effects of ezetimibe, fibrates, and niacin. In any case, more prospective studies are needed further to elucidate the association between lipids and bone strength.
Collapse
Affiliation(s)
- Panagiotis Anagnostis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-257150; Fax: +30-2310-281179
| | - Matilda Florentin
- Department of Internal Medicine, University Hospital of Ioannina, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | | | - Irene Lambrinoudaki
- 2nd Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece;
| |
Collapse
|
7
|
Chen X, Yang K, Sun P, Zhao R, Liu B, Lu P. Exercise improves bone formation by upregulating the Wnt3a/β-catenin signalling pathway in type 2 diabetic mice. Diabetol Metab Syndr 2021; 13:116. [PMID: 34688315 PMCID: PMC8542289 DOI: 10.1186/s13098-021-00732-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The bone formation ability of type 2 diabetes is inhibited, and exercise can effectively improve the bone formation of T2DM. However, whether exercise can mediate the Wnt3a/β-catenin pathway to improve the mechanism of bone formation and metabolism still needs further research. METHODS A T2DM mouse model was established by a high-fat diet and STZ injection, and the mice were trained with swimming and downhill running exercise. Alizarin red staining is used to observe the changes of the left femoral trabecular bone; micro-CT is used to analyze the trabecular and cortical BMD, BV/TV, BS/BV, BS/TV, Tb.Th, Tb.Sp; the ALP staining of skull was used to observe the changes in ALP activity of bone tissues at the skull herringbone sutures; ALP staining was performed to observe the changes in the number of OBs and ALP activity produced by differentiation; Quantitative PCR was used to detect mRNA expression; Western blot was used to detect protein expression levels. RESULTS When the Wnt3a/β-catenin pathway in the bones of T2DM mice was inhibited, the bone formation ability of the mice was significantly reduced, resulting in the degradation of the bone tissue morphology and structure. Swimming caused the significant increase in body weight and Runx2 mRNA expression, while downhill running could significantly decrease the body weight of the mice, while the tibia length, wet weight, and the trabecular morphological structure of the distal femur and the indexes of bone histomorphology were significantly improved by activating the Wnt3a/β-catenin pathway. CONCLUSIONS Bone formation is inhibited in T2DM mice, leading to osteoporosis. Downhill running activates the Wnt3a/β-catenin pathway in the bones of T2DM mice, promotes OB differentiation and osteogenic capacity, enhances bone formation metabolism, and improves the bone morphological structure.
Collapse
Affiliation(s)
- Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| | - Kang Yang
- Rehabilitation Medicine Department, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Bo Liu
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Pengcheng Lu
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| |
Collapse
|
8
|
Wang L, Liang C, Lin X, Liu C, Li J. microRNA-491-5p regulates osteogenic differentiation of bone marrow stem cells in type 2 diabetes. Oral Dis 2021; 29:308-321. [PMID: 34618998 DOI: 10.1111/odi.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Osseointegration of oral implants has a low success rate in patients with type 2 diabetes. This is because of the inhibition of osteogenic differentiation in the jawbone marrow mesenchymal stem cells, in which the expression of microRNA(miR)-491-5p is significantly downregulated, as ascertained through gene chip screening. However, the underlying mechanisms are unclear. Here, we aimed to clarify the mechanisms involved in the influence of miR-491-5p on osteogenic differentiation. SUBJECTS AND METHODS Jawbone marrow mesenchymal stem cells were isolated from jawbones of patients with type 2 diabetes and subjected to bioinformatics and functional analyses. Osteogenesis experiments were conducted using the isolated cells and an in vivo model. RESULTS Knockdown and overexpression experiments revealed the positive effects of miR-491-5p expression on osteogenic differentiation in vivo and in vitro. Additionally, a dual-luciferase assay revealed that miR-491-5p targeted the SMAD/RUNX2 pathway by inhibiting the expression of epidermal growth factor receptor. CONCLUSIONS miR-491-5p is vital in osteogenic differentiation of jawbone mesenchymal stem cells; its downregulation in type 2 diabetes could be a major cause of decreased osteogenic differentiation. Regulation of miR-491-5p expression could improve osteogenic differentiation of jawbone mesenchymal stem cells in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Chao Liang
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Lin
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Changying Liu
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Jun Li
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China.,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
García-Gómez MC, Vilahur G. Osteoporosis and vascular calcification: A shared scenario. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2019; 32:33-42. [PMID: 31221532 DOI: 10.1016/j.arteri.2019.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a systemic skeletal disease, characterised by low bone mass and deterioration in the micro-architecture of bone tissue, which causes increased bone fragility and consequently greater susceptibility to fractures. It is the most frequent metabolic bone disease in our population, and fractures resulting from osteoporosis are becoming more common. Furthermore, vascular calcification is a recognised risk factor of cardiovascular morbidity and mortality that historically has been considered a passive and degenerative process. However, it is currently recognised as an active process, which has histopathological characteristics, mineral composition and initiation and development mechanisms characteristic of bone formation. Paradoxically, patients with osteoporosis frequently show vascular calcifications. Traditionally, they have been considered as independent processes related to age, although more recent epidemiological studies have shown that there is a close relationship between the loss of bone mass and vascular calcification, regardless of age. In fact, both conditions share risk factors and pathophysiological mechanisms. These include the relationship between proteins of bone origin, such as osteopontin and osteoprotegerin (OPG), with vascular pathology, and the intercellular protein system RANK/RANKL/OPG and the Wnt signalling pathway. The mechanisms linked in both pathologies should be considered in clinical decisions, given that treatments for osteoporosis could have unforeseen effects on vascular calcification, and vice versa. In short, a better understanding of the relationship between both entities can help in proposing strategies to reduce the increasing prevalence of vascular calcification and osteoporosis in the aging population.
Collapse
Affiliation(s)
| | - Gemma Vilahur
- Programa ICCC-Institut de Recerca Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, España; CIBERCV Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
10
|
Zhu X, Zhang K, Lu K, Shi T, Shen S, Chen X, Dong J, Gong W, Bao Z, Shi Y, Ma Y, Teng H, Jiang Q. Inhibition of pyroptosis attenuates Staphylococcus aureus-induced bone injury in traumatic osteomyelitis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:170. [PMID: 31168451 DOI: 10.21037/atm.2019.03.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Osteomyelitis is a severe bone infection and typically leads to progressive bone resorption, destruction and dysfunction. Pyroptosis is a form of programmed cell death involved in various infectious diseases. However, the identification of pyroptosis and the role it plays in osteomyelitis remains to be clarified. In this study, we investigated the expression of pyroptosis-associated proteins in osteomyelitis and the effects of inhibiting pyroptosis on S. aureus-induced osteomyelitis both in vitro and in vivo. Methods The expression of pyroptosis-associated protein-NLRP3 (NLR Family Pyrin Domain Containing 3), Caspase1 and GSDMD (GasderminD) were examined in murine and human infectious bone fragments by western blot. Bone destruction was evaluated by microcomputed tomography (µCT). The concentration of inflammatory factors was tested by Enzyme linked Immunosorbent Assay (ELISA). The expression of pyroptosis-associated gene was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Results The expression of pyroptosis-associated proteins in infectious bone fragments from patients with osteomyelitis was significantly higher than uninfected bone. Additionally, in S. aureus-induced murine osteomyelitis model, higher expression of pyroptosis-associated proteins was noticed. Furthermore, the inhibitors of pyroptosis-associated proteins alleviated S. aureus-induced pyroptosis both in vivo and in vitro. More importantly, the inhibition of pyroptosis restored the bone formative property, attenuated the aberrant activation of osteoclast in vitro and reversed bone injury in vivo. Conclusions Our study identified pyroptosis as a key pathway in osteomyelitis and elaborated that the inhibition of pyroptosis could attenuate S. aureus-induced bone destruction in osteomyelitis, providing a potential treatment target to osteomyelitis.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Kaijia Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Ke Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Xingren Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Wang Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Zhengyuan Bao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Yong Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Yuze Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Huajian Teng
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| |
Collapse
|
11
|
Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine 2018; 112:116-131. [PMID: 29937410 DOI: 10.1016/j.cyto.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 12/14/2022]
Abstract
Adiponectin, the most prevalent adipo-cytokine in plasma plays critical metabolic and anti-inflammatory roles is fast emerging as an important molecular target for the treatment of metabolic disorders. Adiponectin action is critical in multiple organs including cardio-vascular system, muscle, liver, adipose tissue, brain and bone. Adiponectin signaling in bone has been a topic of active investigation lately. Human association studies and multiple mice models of gene deletion/modification failed to define a clear cause and effect of adiponectin signaling in bone. The most plausible reason could be the multimeric forms of adiponectin that display differential binding to receptors (adipoR1 and adipoR2) with cell-specific receptor variants in bone. Discovery of small molecule agonist of adipoR1 suggested a salutary role of this receptor in bone metabolism. The downstream signaling of adipoR1 in osteoblasts involves stimulation of oxidative phosphorylation leading to increased differentiation via the likely suppression of wnt inhibitor, sclerostin. On the other hand, the inflammation modulatory effect of adiponectin signaling suppresses the RANKL (receptor activator of nuclear factor κ-B ligand) - to - OPG (osteprotegerin) ratio in osteoblasts leading to the suppression of osteoclastogenic response. This review will discuss the adiponectin signaling and its role in skeletal homeostasis and critically assess whether adipoR1 could be a therapeutic target for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Shyamsundar Pal China
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India.
| |
Collapse
|
12
|
Wang Z, Shi H, Zhao H, Dong Z, Zhao B, Weng X, Liu R, Hu K, Zou Y, Sun A, Ge J. Naoxintong Retards Atherosclerosis by Inhibiting Foam Cell Formation Through Activating Pparα Pathway. Curr Mol Med 2018; 18:698-710. [PMID: 30734676 PMCID: PMC6463403 DOI: 10.2174/1566524019666190207143207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS We recently reported that Naoxintong (NXT), a China Food and Drug Administration (FDA)-approved cardiac medicine, could reduce the plaque size, but the underlying mechanism remains elusive now. OBJECTIVE In this study, we investigated the effects of NXT on foam cell accumulation both in vivo and in vitro and explored related mechanisms. METHOD THP-1 cells and bone marrow-derived macrophages were incubated with oxidized low-density lipoprotein (ox-LDL) with/without Naoxintong. ApoE-/- mice fed an atherogenic diet were administered to receive NXT for eight weeks. Macrophage-derived foam cell formation in plaques was measured by immunohistochemical staining. Expression of proteins was evaluated by Western blot. Lentivirus was used to knockdown PPARα in THP-1 cells. RESULTS After NXT treatment, foam cell accumulation was significantly reduced in atherosclerotic plaques. Further investigation revealed that oxidized low-density lipoprotein (ox-LDL) uptake was significantly decreased and expression of scavenger receptor class A (SR-A) and class B (SR-B and CD36) was significantly downregulated post-NXT treatment. On the other hand, NXT increased cholesterol efflux and upregulated ATP-binding cassette (ABC) transporters (ABCA-1 and ABCG-1) in macrophages. Above beneficial effects of NXT were partly abolished after lentiviral knockdown of PPARα. CONCLUSION Our findings suggest that NXT could retard atherosclerosis by inhibiting foam cell formation through reducing ox-LDL uptake and enhancing cholesterol efflux and above beneficial effects are partly mediated through PPARα pathway.
Collapse
Affiliation(s)
- Zeng Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Huairui Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Huan Zhao
- Department of Pathology, LiShui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical College, ZheJiang, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Buchang Zhao
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong, China
| | - Xinyu Weng
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Rongle Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Xiao lia
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
- Department of Pathology, LiShui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical College, ZheJiang, China
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Aijun Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| |
Collapse
|