1
|
Zhao X, Cai X, Zhu H, Dang Q, Yang Q, Zhu Y, Zhang Y, Zhang M, Jiang X, Hu Z, Wei Y, Xiao R, Yu H. 27-Hydroxycholesterol inhibits trophoblast fusion during placenta development by activating PI3K/AKT/mTOR signaling pathway. Arch Toxicol 2024; 98:849-863. [PMID: 38180513 DOI: 10.1007/s00204-023-03664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Trophoblast cell syncytialization is essential for placental and fetal development. Abnormal trophoblast cell fusion leads to pregnancy pathologies, such as preeclampsia (PE), intrauterine growth restriction (IUGR), and miscarriage. 27-hydroxycholesterol (27-OHC) is the most abundant oxysterol in human peripheral blood synthesized by sterol 27-hydroxylase (CYP27A1) and is considered a critical mediator between hypercholesterolemia and a variety of related disorders. Gestational hypercholesterolemia was associated with spontaneous preterm delivery and low birth weight (LBW) in term infants, yet the mechanism is unclear. In this study, two trophoblast cell models and CD-1 mice were used to evaluate the effects of 27-OHC on trophoblast fusion during placenta development. Two different kinds of trophoblast cells received a dosage of 2.5, 5, or 10 uM 27-OHC. Three groups of pregnant mice were randomly assigned: control, full treatment (E0.5-E17.5), or late treatment (E13.5-E17.5). All mice received daily intraperitoneal injections of saline (control group) and 27-OHC (treatment group; 5.5 mg/kg). In vitro experiments, we found that 27-OHC inhibited trophoblast cell fusion in primary human trophoblasts (PHT) and forskolin (FSK)-induced BeWo cells. 27-OHC up-regulated the expression of the PI3K/AKT/mTOR signaling pathway-related proteins. Moreover, the PI3K inhibitor LY294002 rescued the inhibitory effect of 27-OHC. Inhibition of trophoblast cell fusion by 27-OHC was also observed in CD-1 mice. Furthermore, fetal weight and placental efficiency decreased and fetal blood vessel development was inhibited in pregnant mice treated with 27-OHC. This study was the first to prove that 27-OHC inhibits trophoblast cell fusion by Activating PI3K/AKT/mTOR signaling pathway. This study reveals a novel mechanism by which dyslipidemia during pregnancy results in adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Haiyan Zhu
- FuXing Hospital, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qinyu Dang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qian Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yandi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yadi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Mengling Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xinyin Jiang
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, New York, NY, 11210, USA
| | - Zhuo Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yuchen Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Huanling Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
2
|
Elsheikh M, El Amrousy D, El-Mahdy H, Dawoud H, Harkan A, El-Barky A. Lipid profile after omega-3 supplementation in neonates with intrauterine growth retardation: a randomized controlled trial. Pediatr Res 2023; 94:1503-1509. [PMID: 37202530 PMCID: PMC10589086 DOI: 10.1038/s41390-023-02632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Neonates with intrauterine growth restriction (IUGR) have a high lipid profile that predisposes them to cardiovascular disease later in life. We aimed to evaluate the effect of omega 3 supplementation on serum leptin level, lipid profile, and growth in neonates with IUGR. METHODS This clinical trial was conducted on 70 full-term neonates with IUGR. Neonates were randomly divided into two equal groups; the treatment group: received omega 3 supplement (40 mg/kg/day) for 2 weeks after the establishment of full feeding, and the control group, who were followed up to full feeding without any supplementation. Serum leptin level, total cholesterol (TC), high-density lipoprotein (HDL), triglycerides (TG), low-density lipoprotein (LDL), and anthropometric measurement were evaluated at admission and after 2 weeks of omega 3 supplementation in both groups. RESULTS After treatment, HDL significantly increased, unlike TC, TG, LDL, LDL, and serum leptin levels, which significantly decreased in the treatment group compared to the control group after treatment. Interestingly, weight, length, and ponderal index greatly increased in omega 3-treated neonates compared to the control group. CONCLUSION Omega 3 supplementations lowered serum leptin level, TG, TC, LDL, and VLDL but increased HDL and growth in neonates with IUGR. CLINICAL TRIAL REGISTRATION The study was registered at clinicaltrials.gov (NCT05242107). IMPACT Neonates with intrauterine growth retardation (IUGR) were reported to have a high lipid profile that predisposes them to cardiovascular disease later in life. Leptin is a hormone that adjusts dietary intake and body mass and has a significant role in fetal development. Omega 3 is known to be essential for neonatal growth and brain development. We aimed to evaluate the effect of omega 3 supplementation on serum leptin level, lipid profile, and growth in neonates with IUGR. We found that omega 3 supplementations lowered serum leptin level and serum lipid profile but increased high density lipoprotein and growth in neonates with IUGR.
Collapse
Affiliation(s)
- Mai Elsheikh
- Pediatric Department, Tanta University, Tanta, Egypt
| | | | - Heba El-Mahdy
- Pediatric Department, Tanta University, Tanta, Egypt
| | - Heba Dawoud
- Pediatric Department, Tanta University, Tanta, Egypt
| | - Ahmed Harkan
- Pediatric Department, Tanta University, Tanta, Egypt
| | | |
Collapse
|
3
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
4
|
Ji X, Jiang P, Li Y, Yan W, Yue H. New insights into the effect of bisphenol AF exposure on maternal mammary glands at various stages of gestation in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157793. [PMID: 35934037 DOI: 10.1016/j.scitotenv.2022.157793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol AF (BPAF) is the most estrogenic compound among BPA analogs. Mammary glands (MDs) are special organs that undergo repeated cycles of structural development, metabolism, and functional differentiation. Gestation is a sensitive window for MDs. In the present study, plug-positive CD-1 mice were exposed to vehicle (Veh) or 300 μg/kg BPAF through oral gavage every second day during gestation, and maternal MDs were collected from different developmental windows at 9.5, 13.5, and 18.5 d of gestation (gestation day [GD]9.5, GD13.5 and GD18.5). The results showed that gestational BPAF exposure induced a significantly elevated MD density at GD18.5. Non-target metabolomics analysis was used to screen for tyrosine, valine, ornithine, proline, threonine, phenylalanine and asymmetrical dimethylarginine (ADMA) amino acids, which changed significantly at all time points. Furthermore, the mRNA expression levels of genes related to these amino acids also changed significantly. Additionally, amino acid levels in BPAF-treated MGs at GD18.5 were related to the serum ammonia concentration of the corresponding offspring. These results provide a comprehensive view of the adverse effects of BPAF exposure during gestation on the maternal MG structure and function, which may affect milk components during lactation. Moreover, higher amino acids content may lead to amino acid imbalance or hyperammonemia in newborns.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Peiyun Jiang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yating Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Wei Yan
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China..
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
5
|
Hu Z, Han L, Liu J, Fowke JH, Han JC, Kakhniashvili D, LeWinn KZ, Bush NR, Mason WA, Zhao Q. Prenatal metabolomic profiles mediate the effect of maternal obesity on early childhood growth trajectories and obesity risk: the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) Study. Am J Clin Nutr 2022; 116:1343-1353. [PMID: 36055779 PMCID: PMC9630879 DOI: 10.1093/ajcn/nqac244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Maternal prepregnancy obesity is an important risk factor for offspring obesity, which may partially operate through prenatal programming mechanisms. OBJECTIVES The study aimed to systematically identify prenatal metabolomic profiles mediating the intergenerational transmission of obesity. METHODS We included 450 African-American mother-child pairs from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) Study pregnancy cohort. LC-MS was used to conduct metabolomic profiling on maternal plasma samples of the second trimester. The childhood growth outcomes of interest included BMI trajectories from birth to age 4 y (rising-high-, moderate-, and low-BMI trajectories) as well as overweight/obesity (OWO) risk at age 4 y. Mediation analysis was conducted to identify metabolite mediators linking maternal OWO and childhood growth outcomes. The potential causal effects of maternal OWO on metabolite mediators were examined using the Mendelian randomization (MR) method. RESULTS Among the 880 metabolites detected in the maternal plasma during pregnancy, 14 and 11 metabolites significantly mediated the effects of maternal prepregnancy OWO on childhood BMI trajectories and the OWO risk at age 4 y, respectively, and 5 mediated both outcomes. The MR analysis suggested 6 of the 20 prenatal metabolite mediators might be causally influenced by maternal prepregnancy OWO, most of which are from the pathways related to the metabolism of amino acids (hydroxyasparagine, glutamate, and homocitrulline), sterols (campesterol), and nucleotides (N2,N2-dimethylguanosine). CONCLUSIONS Our study provides further evidence that prenatal metabolomic profiles might mediate the effect of maternal OWO on early childhood growth trajectories and OWO risk in offspring. The metabolic pathways, including identified metabolite mediators, might provide novel intervention targets for preventing the intrauterine development of obesity in the offspring of mothers with obesity.
Collapse
Affiliation(s)
- Zunsong Hu
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Luhang Han
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jiawang Liu
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmaceutical Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jay H Fowke
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joan C Han
- Departments of Pediatrics and Physiology, University of Tennessee Health Science Center, and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, NY, USA
| | - David Kakhniashvili
- Proteomics and Metabolomics Core, Office of Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - W Alex Mason
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
6
|
Effects of Gestational Diabetes Mellitus on Cholesterol Metabolism in Women with High-Risk Pregnancies: Possible Implications for Neonatal Outcome. Metabolites 2022; 12:metabo12100959. [PMID: 36295861 PMCID: PMC9607346 DOI: 10.3390/metabo12100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic disorders in pregnancy, particularly gestational diabetes mellitus (GDM), are associated with an increased risk for adverse pregnancy outcome and long-term cardiometabolic health of mother and child. This study analyzed changes of serum cholesterol synthesis and absorption markers during the course of high-risk pregnancies, with respect to the development of GDM. Possible associations of maternal lipid biomarkers with neonatal characteristics were also investigated. The study included 63 women with high risk for development of pregnancy complications. Size and proportions of small low-density (LDL) and high-density lipoprotein (HDL) particles were assessed across trimesters (T1−T3), as well as concentrations of cholesterol synthesis (lathosterol, desmosterol) and absorption markers (campesterol, β-sitosterol). During the study, 15 women developed GDM, while 48 had no complications (non-GDM). As compared to the non-GDM group, women with GDM had significantly higher triglycerides in each trimester, while having a lower HDL-C level in T3. In addition, they had significantly lower levels of β-sitosterol in T3 (p < 0.05). Cholesterol synthesis markers increased across trimesters in both groups. A decrease in serum β-sitosterol levels during the course of pregnancies affected by GDM was observed. The prevalence of small-sized HDL decreased in non-GDM, while in the GDM group remained unchanged across trimesters. Newborn’s size in the non-GDM group was significantly higher (p < 0.01) and inversely associated with proportions of both small, dense LDL and HDL particles (p < 0.05) in maternal plasma in T1. In conclusion, high-risk pregnancies affected by GDM are characterized by altered cholesterol absorption and HDL maturation. Advanced lipid testing may indicate disturbed lipid homeostasis in GDM.
Collapse
|
7
|
Lu F, Ferriero DM, Jiang X. Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Curr Neuropharmacol 2022; 20:1400-1412. [PMID: 34766894 PMCID: PMC9881076 DOI: 10.2174/1570159x19666211111122311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) is enriched with important classes of lipids, in which cholesterol is known to make up a major portion of myelin sheaths, besides being a structural and functional unit of CNS cell membranes. Unlike in the adult brain, where the cholesterol pool is relatively stable, cholesterol is synthesized and accumulated at the highest rate in the developing brain to meet the needs of rapid brain growth at this stage, which is also a critical period for neuroplasticity. In addition to its biophysical role in membrane organization, cholesterol is crucial for brain development due to its involvement in brain patterning, myelination, neuronal differentiation, and synaptogenesis. Thus any injuries to the immature brain that affect cholesterol homeostasis may have long-term adverse neurological consequences. In this review, we describe the unique features of brain cholesterol biosynthesis and metabolism, cholesterol trafficking between different cell types, and highlight cholesterol-dependent biological processes during brain maturation. We also discuss the association of impaired cholesterol homeostasis with several forms of perinatal brain disorders in term and preterm newborns, including hypoxic-ischemic encephalopathy. Strategies targeting the cholesterol pathways may open new avenues for the diagnosis and treatment of developmental brain injury.
Collapse
Affiliation(s)
- Fuxin Lu
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA;
| | - Donna M. Ferriero
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Departments of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Xiangning Jiang
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Address correspondence to this author at the Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane Room 494, San Francisco, CA 94158, USA; Tel/Fax: 415-502-7285; E-mail:
| |
Collapse
|
8
|
Loscalzo G, Scheel J, Ibañez-Cabellos JS, García-Lopez E, Gupta S, García-Gimenez JL, Mena-Mollá S, Perales-Marín A, Morales-Roselló J. Overexpression of microRNAs miR-25-3p, miR-185-5p and miR-132-3p in Late Onset Fetal Growth Restriction, Validation of Results and Study of the Biochemical Pathways Involved. Int J Mol Sci 2021; 23:ijms23010293. [PMID: 35008715 PMCID: PMC8745308 DOI: 10.3390/ijms23010293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022] Open
Abstract
In a prospective study, 48 fetuses were evaluated with Doppler ultrasound after 34 weeks and classified, according to the cerebroplacental ratio (CPR) and estimated fetal weight (EFW), into fetuses with normal growth and fetuses with late-onset fetal growth restriction (LO-FGR). Overexpression of miRNAs from neonatal cord blood belonging to LO-FGR fetuses, was validated by real-time PCR. In addition, functional characterization of overexpressed miRNAs was performed by analyzing overrepresented pathways, gene ontologies, and prioritization of synergistically working miRNAs. Three miRNAs: miR-25-3p, miR-185-5p and miR-132-3p, were significantly overexpressed in cord blood of LO-FGR fetuses. Pathway and gene ontology analysis revealed over-representation of certain molecular pathways associated with cardiac development and neuron death. In addition, prioritization of synergistically working miRNAs highlighted the importance of miR-185-5p and miR-25-3p in cholesterol efflux and starvation responses associated with LO-FGR phenotypes. Evaluation of miR-25-3p; miR-132-3p and miR-185-5p might serve as molecular biomarkers for the diagnosis and management of LO-FGR; improving the understanding of its influence on adult disease.
Collapse
Affiliation(s)
- Gabriela Loscalzo
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.P.-M.); (J.M.-R.)
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Correspondence: (G.L.); (J.S.)
| | - Julia Scheel
- Department of Systems Biology and Bioinformatics, University Rostock, 18055 Rostock, Germany;
- Correspondence: (G.L.); (J.S.)
| | - José Santiago Ibañez-Cabellos
- EpiDisease S.L, Parc Científic, University of Valencia, 46980 Paterna, Spain; (J.S.I.-C.); (E.G.-L.); (J.L.G.-G.); (S.M.-M.)
- Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Carrer d’Alvaro de Bazan, 10, 46010 Valencia, Spain
| | - Eva García-Lopez
- EpiDisease S.L, Parc Científic, University of Valencia, 46980 Paterna, Spain; (J.S.I.-C.); (E.G.-L.); (J.L.G.-G.); (S.M.-M.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University Rostock, 18055 Rostock, Germany;
| | - José Luis García-Gimenez
- EpiDisease S.L, Parc Científic, University of Valencia, 46980 Paterna, Spain; (J.S.I.-C.); (E.G.-L.); (J.L.G.-G.); (S.M.-M.)
- Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Carrer d’Alvaro de Bazan, 10, 46010 Valencia, Spain
- Institute of Health Carlos III, Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Salvador Mena-Mollá
- EpiDisease S.L, Parc Científic, University of Valencia, 46980 Paterna, Spain; (J.S.I.-C.); (E.G.-L.); (J.L.G.-G.); (S.M.-M.)
- Institute of Health Carlos III, Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Alfredo Perales-Marín
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.P.-M.); (J.M.-R.)
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Morales-Roselló
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.P.-M.); (J.M.-R.)
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
9
|
Kothandapani A, Jefcoate CR, Jorgensen JS. Cholesterol Contributes to Male Sex Differentiation Through Its Developmental Role in Androgen Synthesis and Hedgehog Signaling. Endocrinology 2021; 162:6204698. [PMID: 33784378 PMCID: PMC8168945 DOI: 10.1210/endocr/bqab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Two specialized functions of cholesterol during fetal development include serving as a precursor to androgen synthesis and supporting hedgehog (HH) signaling activity. Androgens are produced by the testes to facilitate masculinization of the fetus. Recent evidence shows that intricate interactions between the HH and androgen signaling pathways are required for optimal male sex differentiation and defects of either can cause birth anomalies indicative of 46,XY male variations of sex development (VSD). Further, perturbations in cholesterol synthesis can cause developmental defects, including VSD, that phenocopy those caused by disrupted androgen or HH signaling, highlighting the functional role of cholesterol in promoting male sex differentiation. In this review, we focus on the role of cholesterol in systemic androgen and local HH signaling events during fetal masculinization and their collective contributions to pediatric VSD.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Correspondence: Anbarasi Kothandapani, PhD, Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53705, USA. E-mail:
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Correspondence: Joan S. Jorgensen, DVM, PhD, Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53705, USA. E-mail:
| |
Collapse
|