1
|
Chen H, Lin L, Zou L, Guo S, Qiu X, Ma K. NXT629 Ameliorates Cholesterol Gallstones in Mice Model by Improving Lipid Metabolism Disorder and Cholesterol Homeostasis Through Inhibiting the GPAM Pathway. Dig Dis Sci 2024:10.1007/s10620-024-08798-8. [PMID: 39724467 DOI: 10.1007/s10620-024-08798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND NXT629, a PPAR-alpha antagonist, exerts widespread effects in many diseases; however, its function and relevant mechanism in cholesterol gallstones (CG) remain largely unknown. METHODS Male C57BL/6 J mice were fed a regular diet or lithogenic diet (LD), followed by treatment with intraperitoneal injection of NXT629. H&E staining was performed to analyze hepatic pathological changes, and Oil red O staining was conducted to detect lipid accumulation. Concentrations of total cholesterol (TC), triglyceride (TG), phospholipids (PL), total bile acids (TBA), and cholesterol saturation index (CSI) in both bile and serum were analyzed using commercially available kits. The mRNA expressions of ABCG5/8, CYP7A1, CYP7B1, PPAR-α, and ABCB11 in mouse liver tissues were measured by qRT-PCR assay. Overexpression of glycerol-3-phosphate acyltransferase mitochondrial (GPAM) was constructed to investigate the molecular mechanism of NXT629 in CG. RESULTS NXT629 could prevent the formation of cholesterol gallstones (CG) and improve lipid metabolic disorders in mice fed a lithogenic diet (LD). Treatment with NXT629 significantly reduced the levels of ABCG5, ABCG8, and ABCB11, while increasing the levels of CYP7A1 and CYP7B1 in the LD group. Additionally, NXT629 treatment downregulated GPAM expression in hepatic tissue from LD-fed mice. Overexpression of GPAM partially counteracted the beneficial effects of NXT629 on CG formation, lipid metabolic disorders, and lipid-related gene expressions. CONCLUSION NXT629 can inhibit CG formation, improve lipid metabolism disorders and cholesterol homeostasis by inhibiting GPAM expression, suggesting that NXT629 may serve as a potential therapeutic strategy for cholesterol stones prevention and treatment.
Collapse
Affiliation(s)
- Hao Chen
- Huadu District People's Hospital of Guangzhou, Huadu District, No. 48 Xinhua Road, Guangzhou, 510800, China.
| | - Liang Lin
- Huadu District People's Hospital of Guangzhou, Huadu District, No. 48 Xinhua Road, Guangzhou, 510800, China
| | - Laibin Zou
- Huadu District People's Hospital of Guangzhou, Huadu District, No. 48 Xinhua Road, Guangzhou, 510800, China
| | - Shenglan Guo
- Huadu District People's Hospital of Guangzhou, Huadu District, No. 48 Xinhua Road, Guangzhou, 510800, China
| | - Xubin Qiu
- Huadu District People's Hospital of Guangzhou, Huadu District, No. 48 Xinhua Road, Guangzhou, 510800, China
| | - Keqiang Ma
- Huadu District People's Hospital of Guangzhou, Huadu District, No. 48 Xinhua Road, Guangzhou, 510800, China
| |
Collapse
|
2
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [PMID: 38663779 DOI: 10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.
Collapse
Affiliation(s)
- Yingkun Sheng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guibing Meng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaopeng Chen
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [DOI: https:/doi.org/10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
4
|
Chen MZ, Xie P, Wu XC, Tan ZH, Qian H, Ma ZH, Yao X. Comparison of biliary protein spectrum in gallstone patients with obesity and those with normal body weight. Hepatobiliary Pancreat Dis Int 2024; 23:385-392. [PMID: 38040523 DOI: 10.1016/j.hbpd.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Obesity is a common public health issue and is currently deemed a disease. Research has shown that the risk of gallstones in individuals with obesity is elevated. This study aimed to explore the bile proteomics differences between cholelithiasis patients with obesity and normal body weight. METHODS Bile samples from 20 patients (10 with obesity and 10 with normal body weight) who underwent laparoscopic cholecystectomy at our center were subjected to tandem mass tag labeling (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by further bioinformatic analysis. RESULTS Among the differentially expressed proteins, 23 were upregulated and 67 were downregulated. Bioinformatic analysis indicated that these differentially expressed proteins were mainly involved in cell development, inflammatory responses, glycerolipid metabolic processes, and protein activation cascades. In addition, the activity of the peroxisome proliferator-activated receptor (PPAR, a subfamily of nuclear receptors) signaling pathway was decreased in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Two downregulated proteins in the PPAR signaling pathway, APO A-I and APO A-II, were confirmed using enzyme-linked immunosorbent assay. CONCLUSIONS The PPAR signaling pathway may play a crucial role in the development of cholelithiasis among patients with obesity. Furthermore, biliary proteomics profiling of gallstones patients with obesity is revealed, providing a reference for future research.
Collapse
Affiliation(s)
- Min-Zhi Chen
- Department of Hepatopancreatobiliary Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China
| | - Ping Xie
- Department of Hepatopancreatobiliary Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China
| | - Xiao-Chang Wu
- Department of Hepatopancreatobiliary Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China
| | - Zhen-Hua Tan
- Department of Hepatopancreatobiliary Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China
| | - Hai Qian
- Department of Hepatopancreatobiliary Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China
| | - Zhi-Hong Ma
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China
| | - Xing Yao
- Department of Hepatopancreatobiliary Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China.
| |
Collapse
|
5
|
Zhou L, Zhang CL, Jiang K, Cheng HY, Xiong WW, Zhu JX. Therapeutic Potential of Danyankang Capsule in High-Fat Diet-Induced Cholelithiasis and Its Impact on Liver FXR Signaling and Gut Microbiota. Biol Pharm Bull 2024; 47:680-691. [PMID: 38522942 DOI: 10.1248/bpb.b24-00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cholelithiasis, commonly known as gallstones, represents a prevalent hepatobiliary disorder. This study aimed to elucidate the therapeutic role and mechanism of Danyankang capsulein treating cholelithiasis induced by a high-fat diet in C57BL/6 mice. The therapeutical potential of Danyankang was assessed through biochemical analyses, histopathological examinations, protein detection, and 16S rDNA sequencing. A high-fat diet resulted in cholelithiasis manifestation in mice, with discernable abnormal serum biochemical indices and disrupted biliary cholesterol homeostasis. Danyankang treatment notably ameliorated liver inflammation symptoms and rectified serum and liver biochemical abnormalities. Concurrently, it addressed biliary imbalances. Elevated expressions of toll-like receptor 4 (TLR4), nuclear factor-kappaB (NF-κB)/pNF-κB, HMGCR, CYP7A1, and CYP8B1 observed at the inception of cholelithiasis, were notably reduced upon Danyankang administration. Furthermore, 16S rDNA analysis revealed a decline in species number and diversity of the intestinal flora in cholelithiasis-treated mice, while the decline was reversed with Danyankang treatment. Danyankang capsules reduced the abundance of Verrucomicrobiota and increased the abundance of Actinobacteriota and Proteobacteria. In conclusion, the present study demonstrates that Danyankang exerts potent therapeutic efficacy against high-fat diet-induced cholelithiasis. This beneficial outcome is potentially linked to the inhibition of the TLR4/pNF-κB and SHP/CYP7A1/CYP8B1 signaling pathways, as well as the enhancement of intestinal flora species abundance.
Collapse
Affiliation(s)
- Lin Zhou
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine
| | - Chu-Ling Zhang
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine
| | - Kun Jiang
- Guizhou Bailing Enterprise Group Pharmaceutical Co., Ltd
| | - Hong-Yu Cheng
- College of Humanities, Jiangxi University of Chinese Medicine
| | - Wen-Wen Xiong
- Medical Clinic, Jiangxi University of Chinese Medicine
| | - Ji-Xiao Zhu
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine
| |
Collapse
|
6
|
Shen S, Huang D, Qian S, Ye X, Zhuang Q, Wan X, Dong Z. Hyodeoxycholic acid attenuates cholesterol gallstone formation via modulation of bile acid metabolism and gut microbiota. Eur J Pharmacol 2023; 955:175891. [PMID: 37429516 DOI: 10.1016/j.ejphar.2023.175891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND & AIMS Hyodeoxycholic acid (HDCA), a hydrophilic bile acid (BA), may prevent and suppress the formation of cholesterol gallstones (CGs). However, the mechanism by which HDCA prevents CGs formation remains unclear. This study aimed to investigate the underlying mechanism of HDCA in preventing CG formation. METHODS C57BL/6J mice were fed either a lithogenic diet (LD), a chow diet, or LD combined with HDCA. The concentration of BAs in the liver and ileum were determined using liquid chromatography-mass spectrometry (LC-MS/MS). Genes involved in cholesterol and BAs metabolism were detected using polymerase chain reaction (PCR). The gut microbiota in the faeces was determined using 16S rRNA. RESULTS HDCA supplementation effectively prevented LD-induced CG formation. HDCA increased the gene expression of BA synthesis enzymes, including Cyp7a1, Cyp7b1, and Cyp8b1, and decreased the expression of the cholesterol transporter Abcg5/g8 gene in the liver. HDCA inhibited LD-induced Nuclear farnesoid X receptor (Fxr) activation and reduced the gene expression of Fgf15 and Shp in the ileum. These data indicate that HDCA could prevent CGs formation partly by promoting BA synthesis in the liver and reduced the cholesterol efflux. In addition, HDCA administration reversed the LD-induced decrease in the abundance of norank_f_Muribaculaceae, which was inversely proportional to cholesterol levels. CONCLUSIONS HDCA attenuated CG formation by modulating BA synthesis and gut microbiota. This study provides new insights into the mechanism by which HDCA prevents CG formation. LAY SUMMARY In this study, we found that HDCA supplementation suppressed LD-induced CGs in mice by inhibiting Fxr in the ileum, enhancing BA synthesis, and increasing the abundance of norank_f_Muribaculaceae in the gut microbiota. HDCA can also downregulate the level of total cholesterol in the serum, liver, and bile.
Collapse
Affiliation(s)
- Shuang Shen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Central Lab, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengnan Qian
- Central Lab, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ye
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhuang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Ainiwaer A, Hou WQ, Kadier K, Rehemuding R, Liu PF, Maimaiti H, Qin L, Ma X, Dai JG. A Machine Learning Framework for Diagnosing and Predicting the Severity of Coronary Artery Disease. Rev Cardiovasc Med 2023; 24:168. [PMID: 39077543 PMCID: PMC11264126 DOI: 10.31083/j.rcm2406168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 07/31/2024] Open
Abstract
Background Although machine learning (ML)-based prediction of coronary artery disease (CAD) has gained increasing attention, assessment of the severity of suspected CAD in symptomatic patients remains challenging. Methods The training set for this study consisted of 284 retrospective participants, while the test set included 116 prospectively enrolled participants from whom we collected 53 baseline variables and coronary angiography results. The data was pre-processed with outlier processing and One-Hot coding. In the first stage, we constructed a ML model that used baseline information to predict the presence of CAD with a dichotomous model. In the second stage, baseline information was used to construct ML regression models for predicting the severity of CAD. The non-CAD population was included, and two different scores were used as output variables. Finally, statistical analysis and SHAP plot visualization methods were employed to explore the relationship between baseline information and CAD. Results The study included 269 CAD patients and 131 healthy controls. The eXtreme Gradient Boosting (XGBoost) model exhibited the best performance amongst the different models for predicting CAD, with an area under the receiver operating characteristic curve of 0.728 (95% CI 0.623-0.824). The main correlates were left ventricular ejection fraction, homocysteine, and hemoglobin (p < 0.001). The XGBoost model performed best for predicting the SYNTAX score, with the main correlates being brain natriuretic peptide (BNP), left ventricular ejection fraction, and glycated hemoglobin (p < 0.001). The main relevant features in the model predictive for the GENSINI score were BNP, high density lipoprotein, and homocysteine (p < 0.001). Conclusions This data-driven approach provides a foundation for the risk stratification and severity assessment of CAD. Clinical Trial Registration The study was registered in www.clinicaltrials.gov protocol registration system (number NCT05018715).
Collapse
Affiliation(s)
- Aikeliyaer Ainiwaer
- Department of Cardiology, The First Affiliated Hospital of Xinjiang
Medical University, 830011 Urumqi, Xinjiang, China
| | - Wen Qing Hou
- College of Information Science and Technology, Shihezi University, 832003
Shihezi, Xinjiang, China
| | - Kaisaierjiang Kadier
- Department of Cardiology, The First Affiliated Hospital of Xinjiang
Medical University, 830011 Urumqi, Xinjiang, China
| | - Rena Rehemuding
- Department of Cardiology, The First Affiliated Hospital of Xinjiang
Medical University, 830011 Urumqi, Xinjiang, China
| | - Peng Fei Liu
- Department of Cardiology, The First Affiliated Hospital of Xinjiang
Medical University, 830011 Urumqi, Xinjiang, China
| | - Halimulati Maimaiti
- Department of Cardiology, The First Affiliated Hospital of Xinjiang
Medical University, 830011 Urumqi, Xinjiang, China
| | - Lian Qin
- Department of Cardiology, The First Affiliated Hospital of Xinjiang
Medical University, 830011 Urumqi, Xinjiang, China
| | - Xiang Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang
Medical University, 830011 Urumqi, Xinjiang, China
| | - Jian Guo Dai
- College of Information Science and Technology, Shihezi University, 832003
Shihezi, Xinjiang, China
| |
Collapse
|
8
|
Guman MSS, Haal S, Acherman YIZ, van de Laar AWL, Nieuwdorp M, Voermans RP, Gerdes VEA. Ursodeoxycholic Acid Use After Bariatric Surgery: Effects on Metabolic and Inflammatory Blood Markers. Obes Surg 2023:10.1007/s11695-023-06581-8. [PMID: 37186289 DOI: 10.1007/s11695-023-06581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND In addition to the reduction of symptomatic gallstone disease, ursodeoxycholic acid (UDCA) might also have beneficial metabolic effects after bariatric surgery. We examined the impact of UDCA on liver enzymes, hemoglobin A1c (HbA1c), lipids, and inflammation markers. METHODS Patients in the UPGRADE trial (placebo-controlled, double-blind) were randomized between UDCA 900 mg daily or placebo pills for 6 months after bariatric surgery. Patients without blood measurements pre- or 6 months postoperatively were excluded. The change in liver enzymes, Hba1c, lipids, and inflammation markers after surgery were compared between the UDCA and placebo group, followed by a postoperative cross-sectional comparison. RESULTS In total, 513 patients were included (age [mean ± SD] 45.6 ± 10.7 years; 79% female). Preoperative blood values did not differ between UDCA (n = 266) and placebo (n = 247) groups. Increase of alkaline phosphatase (ALP) was greater in the UDCA group (mean difference 3.81 U/l [95%CI 0.50 7.12]). Change in other liver enzymes, HbA1c, lipids, and CRP levels did not differ. Postoperative cross-sectional comparison in 316 adherent patients also revealed a higher total cholesterol (mean difference 0.25 mg/dl [95%CI 0.07-0.42]), lower aspartate aminotransferase (mean difference -3.12 U/l [-5.16 - -1.08]), and lower alanine aminotransferase level (mean difference -5.89 U/l [-9.41 - -2.37]) in the UDCA group. CONCLUSION UDCA treatment leads to a higher, but clinically irrelevant increase in ALP level in patients 6 months after bariatric surgery. No other changes in metabolic or inflammatory markers were observed. Except for the reduction of gallstone formation, UDCA has no effects after bariatric surgery.
Collapse
Affiliation(s)
- Maimoena S S Guman
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
- Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands.
| | - Sylke Haal
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Rogier P Voermans
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Victor E A Gerdes
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands
| |
Collapse
|
9
|
Genetic and environmental circadian disruption induce weight gain through changes in the gut microbiome. Mol Metab 2022; 66:101628. [PMID: 36334897 PMCID: PMC9672454 DOI: 10.1016/j.molmet.2022.101628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Internal clocks time behavior and physiology, including the gut microbiome, in a circadian (∼24 h) manner. Mismatch between internal and external time, e.g. during shift work, disrupts circadian system coordination promoting the development of obesity and type 2 diabetes (T2D). Conversely, body weight changes induce microbiota dysbiosis. The relationship between circadian disruption and microbiota dysbiosis in metabolic diseases, however, remains largely unknown. METHODS Core and accessory clock gene expression in different gastrointestinal (GI) tissues were determined by qPCR in two different models of circadian disruption - mice with Bmal1 deficiency in the circadian pacemaker, the suprachiasmatic nucleus (Bmal1SCNfl/-), and wild-type mice exposed to simulated shift work (SSW). Body composition and energy balance were evaluated by nuclear magnetic resonance (NMR), bomb calorimetry, food intake and running-wheel activity. Intestinal permeability was measured in an Ussing chamber. Microbiota composition and functionality were evaluated by 16S rRNA gene amplicon sequencing, PICRUST2.0 analysis and targeted metabolomics. Finally, microbiota transfer was conducted to evaluate the functional impact of SSW-associated microbiota on the host's physiology. RESULTS Both chronodisruption models show desynchronization within and between peripheral clocks in GI tissues and reduced microbial rhythmicity, in particular in taxa involved in short-chain fatty acid (SCFA) fermentation and lipid metabolism. In Bmal1SCNfl/- mice, loss of rhythmicity in microbial functioning associates with previously shown increased body weight, dysfunctional glucose homeostasis and adiposity. Similarly, we observe an increase in body weight in SSW mice. Germ-free colonization experiments with SSW-associated microbiota mechanistically link body weight gain to microbial changes. Moreover, alterations in expression of peripheral clock genes as well as clock-controlled genes (CCGs) relevant for metabolic functioning of the host were observed in recipients, indicating a bidirectional relationship between microbiota rhythmicity and peripheral clock regulation. CONCLUSIONS Collectively, our data suggest that loss of rhythmicity in bacteria taxa and their products, which likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.
Collapse
|
10
|
Guan Y, Xu F, Zhang X, Fu X, Wang J, Song S, Sun Y, Yuan Q, Zhu F. Roles of ursodeoxycholic acid in the bile biochemistry and metabolomics in patients with choledocholithiasis: a prospective study. Metabolomics 2022; 18:46. [PMID: 35778620 DOI: 10.1007/s11306-022-01906-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Recurrence after the endoscopic treatment of common bile duct stones (CBDS) is related to bile metabolism and bile compositions. Ursodeoxycholic acid (UDCA) has been proved effective in reducing the recurrence of CBDS. However, the detailed effects of UDCA on bile metabolism are still not extensively explored. OBJECTIVES This study aimed to analyze the role of UDCA in patients with choledocholithiasis (CDC) from the perspective of biochemistry and metabolomics. METHODS A total of 89 patients with CDC who underwent endoscopic retrograde cholangiopancreatography were prospectively examined and randomly assigned to control and UDCA groups. The biochemical detections (cholesterol, bilirubin, and so on) were performed on the collected bile. Moreover, the metabolomics analysis was conducted based on bile from 20 patients in the UDCA group. RESULTS The bile levels of cholesterol and endotoxins significantly decreased after UDCA treatment. Regarding bile metabolomics, the levels of 25 metabolites changed significantly after UDCA treatment. The pathway enrichment analysis showed that the UDCA addition evoked a common response related to phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; arachidonic acid metabolism; and terpenoid backbone biosynthesis. CONCLUSIONS UDCA treatment within a short time interval (7 days) did not improve the circulating laboratory values in patients with CDC who had undergone endoscopy surgery. However, relevant decreases in the bile levels of cholesterol and endotoxin were observed. UDCA evoked a common response related to lipid metabolism and amino acid metabolism, which probably reduced the bile level of cholesterol, protected hepatocytes, and corrected the abnormality of lipid metabolism caused by CDC.
Collapse
Affiliation(s)
- Yaping Guan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Fei Xu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Xiaodong Zhang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Xiao Fu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Jing Wang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Sentao Song
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Yan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Qiongying Yuan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Feng Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China.
| |
Collapse
|
11
|
Sharma R, Kumar K, Tanvi K. Dealkenylation of neoandrographolide, a phytochemical from Andrographis paniculata stimulates FXR (Farnesoid X Receptor) and enhances gallstone dissolution. J Biomol Struct Dyn 2022; 41:3339-3348. [PMID: 35253613 DOI: 10.1080/07391102.2022.2048078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
FXR (Farnesoid X Receptor) is one of the nuclear receptors expressed in the liver performing a significant role in the maintenance of bile acid concentration. An imbalance of cholesterol and bile acid ratio due to any undefined reason could cause gallstone formation. Hence, this paper aims to screen phytochemicals that could maintain a requisite balance of cholesterol and bile acid by targeting FXR and thereby contributing to the dissolution of gallstone. Nineteen phytochemicals were selected and queried for Pa and Pi in the way2drug online server for hepatoprotective property, cholesterol synthesis and absorption inhibition property, and β-glucuronidase inhibiting activity. Cianidanol, neoandrographolide, cynarine, saponins, and tanins with satisfying stated properties were docked with the screened FXR (PDB ID- 1OSH) using HADDOCK server, followed by pharmacokinetics study utilizing SwissADME tool. Neoandrographolide fits best among the other selected literature-based phytochemicals with minor violation of 'Brenk's rule'. The violation was corrected with the removal of an alkene group in the provided ChemDraw space of SwissADME. This Dealkenylated compound was further docked with FXR. The promising response under the static condition of the Dealkenylated compound was analyzed for molecular dynamic simulation at physiological conditions for 100 ns. Dealkenylated Neoandrographolide (DN) exhibited hepatoprotective, cholesterol synthesis and absorption inhibition property, and β-glucuronidase inhibition activity with a superior binding score of -42.6+/-1.5 with FXR. The interaction of the FXR receptor and the DN showed exceptional stability at physiological conditions during MD simulation and fit for the ADME properties, therefore it could be a potent candidate to dissolve gallstones.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajani Sharma
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Kunal Kumar
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Kumari Tanvi
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| |
Collapse
|
12
|
Gao W, Li Z, Chu H, Yuan H, Hu L, Yao L, Zhang L, Wang W, Lin R, Yang L. Ursodeoxycholic Acid in Liver Cirrhosis: A Chinese Perspective. PHARMACOTHERAPY FOR LIVER CIRRHOSIS AND ITS COMPLICATIONS 2022:81-111. [DOI: 10.1007/978-981-19-2615-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Papotti B, Escolà-Gil JC, Julve J, Potì F, Zanotti I. Impact of Dietary Lipids on the Reverse Cholesterol Transport: What We Learned from Animal Studies. Nutrients 2021; 13:nu13082643. [PMID: 34444804 PMCID: PMC8401548 DOI: 10.3390/nu13082643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Reverse cholesterol transport (RCT) is a physiological mechanism protecting cells from an excessive accumulation of cholesterol. When this process begins in vascular macrophages, it acquires antiatherogenic properties, as has been widely demonstrated in animal models. Dietary lipids, despite representing a fundamental source of energy and exerting multiple biological functions, may induce detrimental effects on cardiovascular health. In the present review we summarize the current knowledge on the mechanisms of action of the most relevant classes of dietary lipids, such as fatty acids, sterols and liposoluble vitamins, with effects on different steps of RCT. We also provide a critical analysis of data obtained from experimental models which can serve as a valuable tool to clarify the effects of dietary lipids on cardiovascular disease.
Collapse
Affiliation(s)
- Bianca Papotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain; (J.C.E.-G.); (J.J.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Josep Julve
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain; (J.C.E.-G.); (J.J.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Francesco Potì
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy;
| | - Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
- Correspondence: ; Tel.: +39-0521905040
| |
Collapse
|
14
|
Sun D, Lu J, Zhang Y, Liu J, Liu Z, Yao B, Guo Y, Wang X. Characterization of a Novel CYP1A2 Knockout Rat Model Constructed by CRISPR/Cas9. Drug Metab Dispos 2021; 49:638-647. [PMID: 34074728 DOI: 10.1124/dmd.121.000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
CYP1A2, as one of the most important cytochrome P450 isoforms, is involved in the biotransformation of many important endogenous and exogenous substances. CYP1A2 also plays an important role in the development of many diseases because it is involved in the biotransformation of precancerous substances and poisons. Although the generation of Cyp1a2 knockout (KO) mouse model has been reported, there are still no relevant rat models for the study of CYP1A2-mediated pharmacokinetics and diseases. In this report, CYP1A2 KO rat model was established successfully by CRISPR/Cas9 without any detectable off-target effect. Compared with wild-type rats, this model showed a loss of CYP1A2 protein expression in the liver. The results of pharmacokinetics in vivo and incubation in vitro of specific substrates of CYP1A2 confirmed the lack of function of CYP1A2 in KO rats. In further studies of potential compensatory effects, we found that CYP1A1 was significantly upregulated, and CYP2E1, CYP3A2, and liver X receptor β were downregulated in KO rats. In addition, CYP1A2 KO rats exhibited a significant increase in serum cholesterol and free testosterone accompanied by mild liver damage and lipid deposition, suggesting that CYP1A2 deficiency affects lipid metabolism and liver function to a certain extent. In summary, we successfully constructed the CYP1A2 KO rat model, which provides a useful tool for studying the metabolic function and physiologic function of CYP1A2. SIGNIFICANCE STATEMENT: Human CYP1A2 not only metabolizes clinical drugs and pollutants but also mediates the biotransformation of endogenous substances and plays an important role in the development of many diseases. However, there are no relevant CYP1A2 rat models for the research of pharmacokinetics and diseases. This study successfully established CYP1A2 knockout rat model by using CRISPR/Cas9. This rat model provides a powerful tool to study the function of CYP1A2 in drug metabolism and diseases.
Collapse
Affiliation(s)
- Dongyi Sun
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jian Lu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zongjun Liu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|