1
|
Rodríguez-García C, Osuna-Prieto FJ, Kohler I, Sanchez-Gomez J, Ruiz-Campos S, Castillo MJ, Amaro-Gahete FJ, Martínez-Tellez B, Jurado-Fasoli L. Higher plasma levels of endocannabinoids and analogues are correlated with a worse cardiometabolic profile in middle-aged adults. J Physiol Biochem 2024:10.1007/s13105-024-01063-6. [PMID: 39636365 DOI: 10.1007/s13105-024-01063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
The increase in age-related comorbidities, such as cardiometabolic diseases, has become a global health priority. There is a growing need to find new parameters capable of improving the detection of cardiometabolic risk factors, and circulating endocannabinoids (eCBs) are a promising tool in this context. Here, we aimed to investigate the relationship between plasma levels of eCBs and their analogues with body composition and cardiometabolic risk factors in middle-aged adults. Seventy-two individuals (54% women; 53.6 ± 5.1 years old) were included in this study. Plasma levels of eCBs and analogues were determined using liquid chromatography-tandem mass spectrometry. Body composition was measured by dual-energy X-ray absorptiometry. Cardiometabolic risk factors (i.e., glucose and lipid profile, blood pressure, liver and renal parameters, and gonadal hormones) were also assessed. The plasma levels of 1- and 2-arachidonylglycerol (1-AG&2-AG) were positively correlated with adiposity (all r ≥ 0.23, P < 0.05). Interestingly, the plasma levels of 1-AG&2-AG, arachidonoylethanolamide, and palmitoyl-ethanolamide were positively correlated with the homeostatic model assessment index - Insulin Resistance (HOMA-IR) (all r ≥ 0.32, P < 0.01). Our results also showed that high levels of 1-AG&2-AG, arachidonoylethanolamide, linoleoyl ethanolamide, and palmitoleoyl ethanolamide were correlated with poorer liver (all r ≥ 0.27, P < 0.05), kidney (all r ≥ 0.24, P < 0.05), and gonadal function parameters (testosterone: all r > 0.26, P < 0.05, SHBG: 1-AG&2-AG r=-0.33, P < 0.01). The plasma levels of some eCBs and analogues are correlated with a worse cardiometabolic profile in middle-aged adults.
Collapse
Affiliation(s)
- Carmen Rodríguez-García
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Francisco J Osuna-Prieto
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain, Tarragona, 43005, Spain
- Department of Physical Education and Sports, PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, 18071, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, 1098 HX, The Netherlands
| | - Joaquin Sanchez-Gomez
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - Samuel Ruiz-Campos
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - Manuel J Castillo
- Department of Physiology, Faculty of Medicine, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
| | - Borja Martínez-Tellez
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Lucas Jurado-Fasoli
- Department of Physical Education and Sports, PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, 18071, Spain.
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands.
- Department of Physiology, Faculty of Medicine, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.
| |
Collapse
|
2
|
Cho H, Oh DE, Nam Y, Lee SH, Kim TH. Bioelectronic sensing platform emulating the human endocannabinoid system for assessing and modulating of cannabinoid activity. Biosens Bioelectron 2024; 264:116686. [PMID: 39173339 DOI: 10.1016/j.bios.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Cannabinoids are involved in physiological and neuromodulatory processes through their interactions with the human cannabinoid receptor-based endocannabinoid system. Their association with neurodegenerative diseases and brain reward pathways underscores the importance of evaluating and modulating cannabinoid activity for both understanding physiological mechanisms and developing therapeutic drugs. The use of agonists and antagonists could be strategic approaches for modulation. In this study, we introduce a bioelectronic sensor designed to monitor cannabinoid binding to receptors and assess their agonistic and antagonistic properties. We produced human cannabinoid receptor 1 (hCB1R) via an Escherichia coli expression system and incorporated it into nanodiscs (NDs). These hCB1R-NDs were then immobilized on a single-walled carbon nanotube field-effect transistor (swCNT-FET) to construct a bioelectronic sensing platform. This novel system can sensitively detect the cannabinoid ligand anandamide (AEA) at concentrations as low as 1 fM, demonstrating high selectivity and real-time response. It also successfully identified the hCB1R agonist Δ9-tetrahydrocannabinol and observed that the hCB1R antagonist rimonabant diminished the sensor signal upon AEA binding, indicating the antagonism-based modulation of ligand interaction. Consequently, our bioelectronic sensing platform holds potential for ligand detection and analysis of agonism and antagonism.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Da Eun Oh
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Youngju Nam
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
3
|
Mattelaer N, Van der Schueren B, Van Oudenhove L, Weltens N, Vangoitsenhoven R. The circulating and central endocannabinoid system in obesity and weight loss. Int J Obes (Lond) 2024; 48:1363-1382. [PMID: 38834796 DOI: 10.1038/s41366-024-01553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Major advances have been made in obesity treatment, focusing on restoring disturbances along the gut-brain axis. The endocannabinoid system (ECS) is a neuromodulatory signaling system, present along the entire gut-brain axis, that plays a critical role in central and peripheral regulation of food intake and body weight. Evidence on the impact of weight loss on the ECS is, however, more limited. Therefore, we set out to review the existing literature for changes in central and circulating endocannabinoid levels after bariatric surgery and other weight loss strategies in humans. The PubMed, Embase and Web of Science databases were searched for relevant articles. Fifty-six human studies were identified. Most studies measuring circulating 2-arachidonoylglycerol (2-AG) found no difference between normal weight and obesity, or no correlation with BMI. In contrast, studies measuring circulating arachidonoylethanolamine (AEA) found an increase or positive correlation with BMI. Two studies found a negative correlation between BMI and cannabinoid receptor type 1 (CB1) receptor availability in the brain. Only one study investigated the effect of pharmacological weight management on circulating endocannabinoid concentrations and found no effect on AEA concentrations. So far, six studies investigated potential changes in circulating endocannabinoids after bariatric surgery and reported conflicting results. Available evidence does not univocally support that circulating endocannabinoids are upregulated in individuals with obesity, which may be explained by variability across studies in several potential confounding factors (e.g. age and sex) as well as heterogeneity within the obesity population (e.g. BMI only vs. intra-abdominal adiposity). While several studies investigated the effect of lifestyle interventions on the circulating ECS, more studies are warranted that focus on pharmacologically and surgically induced weight loss. In addition, we identified several research needs which should be fulfilled to better understand the role of the ECS in obesity and its treatments.
Collapse
Affiliation(s)
- Nele Mattelaer
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Laboratory for Brain-Gut Axis Studies, Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies, Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nathalie Weltens
- Laboratory for Brain-Gut Axis Studies, Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Khan RN, Maner-Smith K, A. Owens J, Barbian ME, Jones RM, R. Naudin C. At the heart of microbial conversations: endocannabinoids and the microbiome in cardiometabolic risk. Gut Microbes 2022; 13:1-21. [PMID: 33896380 PMCID: PMC8078674 DOI: 10.1080/19490976.2021.1911572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiometabolic syndrome encompasses intertwined risk factors such as hypertension, dyslipidemia, elevated triglycerides, abdominal obesity, and other maladaptive metabolic and inflammatory aberrations. As the molecular mechanisms linking cardiovascular disease and metabolic disorders are investigated, endocannabinoids have emerged as molecules of interest. The endocannabinoid system (ECS) of biologically active lipids has been implicated in several conditions, including chronic liver disease, osteoporosis, and more recently in cardiovascular diseases. The gut microbiome is a major regulator of inflammatory and metabolic signaling in the host, and if disrupted, has the potential to drive metabolic and cardiovascular diseases. Extensive studies have unraveled the impact of the gut microbiome on host physiology, with recent reports showing that gut microbes exquisitely control the ECS, with significant influences on host metabolic and cardiac health. In this review, we outline how modulation of the gut microbiome affects host metabolism and cardiovascular health via the ECS, and how these findings could be exploited as novel therapeutic targets for various metabolic and cardiac diseases.
Collapse
Affiliation(s)
- Ramsha Nabihah Khan
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Kristal Maner-Smith
- Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, Georgia, USA
| | - Joshua A. Owens
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Maria Estefania Barbian
- Division of Neonatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Crystal R. Naudin
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA,CONTACT Crystal R. Naudin Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA30322, United States of America
| |
Collapse
|
5
|
Matheson J, Zhou XMM, Bourgault Z, Le Foll B. Potential of Fatty Acid Amide Hydrolase (FAAH), Monoacylglycerol Lipase (MAGL), and Diacylglycerol Lipase (DAGL) Enzymes as Targets for Obesity Treatment: A Narrative Review. Pharmaceuticals (Basel) 2021; 14:ph14121316. [PMID: 34959715 PMCID: PMC8703892 DOI: 10.3390/ph14121316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
The endocannabinoid system (ECS) plays an integral role in maintaining metabolic homeostasis and may affect hunger, caloric intake, and nutrient absorption. Obesity has been associated with higher levels of the endogenous cannabinoid transmitters (endocannabinoids). Therefore, the ECS is an important target in obesity treatment. Modulating the enzymes that synthesize and degrade endocannabinoids, namely fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and diacylglycerol lipase (DAGL), may be a promising strategy to treat obesity. This review aims to synthesize all studies investigating pharmacological or genetic manipulation of FAAH, MAGL, or DAGL enzymes in association with obesity-related measures. Pharmacological inhibition or genetic deletion of FAAH tended to promote an obesogenic state in animal models, though the relationships between human FAAH polymorphisms and obesity-related outcomes were heterogeneous, which could be due to FAAH having both pro-appetitive and anti-appetitive substrates. Genetic deletion of Mgll and Dagla as well as pharmacological inhibition of DAGL tended to reduce body weight and improve metabolic state in animal studies, though the effects of Mgll manipulation were tissue-dependent. Monitoring changes in body weight in ongoing clinical trials of FAAH inhibitors may clarify whether FAAH inhibition is a potential therapeutic strategy for treatment obesity. More preclinical work is needed to characterize the role of MAGL and DAGL modulation in obesity-related outcomes.
Collapse
Affiliation(s)
- Justin Matheson
- Translational Addiction Research Laboratory, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON M5S 2S1, Canada; (X.M.M.Z.); (Z.B.); (B.L.F.)
- Correspondence:
| | - Xin Ming Matthew Zhou
- Translational Addiction Research Laboratory, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON M5S 2S1, Canada; (X.M.M.Z.); (Z.B.); (B.L.F.)
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 3H7, Canada
| | - Zoe Bourgault
- Translational Addiction Research Laboratory, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON M5S 2S1, Canada; (X.M.M.Z.); (Z.B.); (B.L.F.)
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 3H7, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON M5S 2S1, Canada; (X.M.M.Z.); (Z.B.); (B.L.F.)
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 3H7, Canada
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Family and Community Medicine, University of Toronto, 500 University Avenue, 5th Floor, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
6
|
DiPatrizio NV. Endocannabinoids and the Gut-Brain Control of Food Intake and Obesity. Nutrients 2021; 13:nu13041214. [PMID: 33916974 PMCID: PMC8067588 DOI: 10.3390/nu13041214] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gut-brain signaling controls food intake and energy homeostasis, and its activity is thought to be dysregulated in obesity. We will explore new studies that suggest the endocannabinoid (eCB) system in the upper gastrointestinal tract plays an important role in controlling gut-brain neurotransmission carried by the vagus nerve and the intake of palatable food and other reinforcers. A focus will be on studies that reveal both indirect and direct interactions between eCB signaling and vagal afferent neurons. These investigations identify (i) an indirect mechanism that controls nutrient-induced release of peptides from the gut epithelium that directly interact with corresponding receptors on vagal afferent neurons, and (ii) a direct mechanism via interactions between eCBs and cannabinoid receptors expressed on vagal afferent neurons. Moreover, the impact of diet-induced obesity on these pathways will be considered.
Collapse
Affiliation(s)
- Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Yagin NL, Aliasgari F, Alizadeh M, Aliasgharzadeh S, Mahdavi R. Comparison of endocannabinoids levels, FAAH gene polymorphisms, and appetite regulatory substances in women with and without binge eating disorder: a cross- sectional study. Nutr Res 2020; 83:86-93. [DOI: 10.1016/j.nutres.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023]
|