1
|
George Warren W, Osborn M, Yates A, O'Sullivan SE. The emerging role of fatty acid binding protein 7 (FABP7) in cancers. Drug Discov Today 2024; 29:103980. [PMID: 38614160 DOI: 10.1016/j.drudis.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Fatty acid binding protein 7 (FABP7) is an intracellular protein involved in the uptake, transportation, metabolism, and storage of fatty acids (FAs). FABP7 is upregulated up to 20-fold in multiple cancers, usually correlated with poor prognosis. FABP7 silencing or pharmacological inhibition suggest FABP7 promotes cell growth, migration, invasion, colony and spheroid formation/increased size, lipid uptake, and lipid droplet formation. Xenograft studies show that suppression of FABP7 inhibits tumour formation and tumour growth, and improves host survival. The molecular mechanisms involve promotion of FA uptake, lipid droplets, signalling [focal adhesion kinase (FAK), proto-oncogene tyrosine-protein kinase Src (Src), mitogen-activated protein kinase kinase/p-extracellular signal-regulated kinase (MEK/ERK), and Wnt/β-catenin], hypoxia-inducible factor 1-alpha (Hif1α), vascular endothelial growth factor A/prolyl 4-hydroxylase subunit alpha-1 (VEGFA/P4HA1), snail family zinc finger 1 (Snail1), and twist-related protein 1 (Twist1). The oncogenic capacity of FABP7 makes it a promising pharmacological target for future cancer treatments.
Collapse
Affiliation(s)
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire, UK
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire, UK
| | | |
Collapse
|
2
|
Long Y, Shi H, He Y, Qi X. Analyzing the impact of metabolism on immune cells in tumor microenvironment to promote the development of immunotherapy. Front Immunol 2024; 14:1307228. [PMID: 38264667 PMCID: PMC10804850 DOI: 10.3389/fimmu.2023.1307228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Tumor metabolism and tumor immunity are inextricably linked. Targeting the metabolism of tumors is a point worth studying in tumor immunotherapy. Recently, the influence of the metabolism of tumors and immune cells on the occurrence, proliferation, metastasis, and prognosis of tumors has attracted more attention. Tumor tissue forms a specific tumor microenvironment (TME). In addition to tumor cells, there are also immune cells, stromal cells, and other cells in TME. To adapt to the environment, tumor cells go through the metabolism reprogramming of various substances. The metabolism reprogramming of tumor cells may further affect the formation of the tumor microenvironment and the function of a variety of cells, especially immune cells, eventually promoting tumor development. Therefore, it is necessary to study the metabolism of tumor cells and its effects on immune cells to guide tumor immunotherapy. Inhibiting tumor metabolism may restore immune balance and promote the immune response in tumors. This article will describe glucose metabolism, lipid metabolism, amino acid metabolism, and immune cells in tumors. Besides, the impact of metabolism on the immune cells in TME is also discussed for analyzing and exploring tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zhu Y, Luo J, Yang Y. Integrated Bioinformatics Analysis to Identify a Novel Four-Gene Prognostic Model of Breast Cancer and Reveal Its Association with Immune Infiltration. Crit Rev Immunol 2024; 44:1-14. [PMID: 38305332 DOI: 10.1615/critrevimmunol.2023050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Liquid-liquid phase separation (LLPS) impact immune signaling in cancer and related genes have shown prognostic value in breast cancer (BRCA). However, the crosstalk between LLPS and immune infiltration in BRCA remain unclear. Therefore, we aimed to develop a novel prognostic model of BRCA related to LLPS and immune infiltration. BRCA-related, liquid-liquid phase separation (LLPS)-related genes, and differentially expressed genes (DEGs) were identified using public databases. Mutation and drug sensitivity analyses were performed using Gene Set Cancer Analysis database. Univariate cox regression and LASSO Cox regression were used for the construction and verification of prognostic model. Kaplan-Meier analysis was performed to evaluate overall survival (OS). Gene set variation analysis was conducted to analyze key pathways. CIBERSORT was used to assess immune infiltration and its correlation with prognostic genes was determined through Pearson analysis. A total of 6056 BRCA-associated genes, 3775 LLPS-associated genes, and 4049 DEGs, resulting in 314 overlapping genes. Twenty-eight prognostic genes were screened, and some of them were mutational and related to drug sensitivity Subsequently, a prognostic model comprising L1CAM, EVL, FABP7, and CST1 was built. Patients in high-risk group had shorter OS than those in low-risk group. The infiltrating levels of CD8+ T cells, macrophages M0, macrophages M2, dendritic cells activated, and mast cells resting was altered in high-risk group of breast cancer patients compared to low-risk group. L1CAM, EVL, FABP7, and CST1 were related to these infiltrating immune cells. L1CAM, EVL, FABP7, and CST1 were potential diagnostic biomarkers and therapeutic targets for BRCA.
Collapse
Affiliation(s)
- Yunhua Zhu
- Department of Thyroid Mammary Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| | - Junjie Luo
- Department of Thyroid Mammary Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| | - Yifei Yang
- Department of Thyroid Mammary Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| |
Collapse
|
4
|
Zhang X, Pan L, Zhang P, Wang L, Shen Y, Xu P, Ren Y, Huang W, Liu P, Wu Q, Li F. Single-cell analysis of the miRNA activities in tuberculous meningitis (TBM) model mice injected with the BCG vaccine. Int Immunopharmacol 2023; 124:110871. [PMID: 37708706 DOI: 10.1016/j.intimp.2023.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Our previous study revealed the transcriptome atlas of specific cell types in tuberculous meningitis (TBM) model mice injected with the BCG vaccine via scRNA sequencing. However, the activities of miRNAs in TBM at single-cell resolution remain to be explored. METHOD Cell type-specific miRNA activities were investigated by using motif enrichment analyses (miReact) on the transcriptome data of 15 cell types. The target mRNAs of miRNAs were predicted and subjected to enrichment analysis. Furthermore, miRNAs and their target mRNAs with opposite expression trends were chosen to construct functional networks. Besides, qRT-PCR and RNA scope were performed to verify the expression level of representative miRNA. RESULTS The tSNE dimensionality reduction presented 15 cell types in TBM model mice, in which microglia and endothelial cells accounted for the majority. Target mRNAs of each cell type were predicted for verification or network construction. The immune and inflammation-related miRNA-mRNA networks of macrophages and microglia, oxidative phosphorylation-related miRNA-mRNA networks of neurons, ion and protein transport-related networks of epididymal cells, and angiogenesis-related miRNA-mRNA networks of VSMCs were constructed. The miRNA activity analysis revealed that miR-21a-3p activity was increased in microglia, macrophages, neurons and epididymal cells. The result of qRT-PCR and RNA scope indicate that miR-21a-3p was significantly higher-expressed in TBM brain tissue compared with normal brain tissue. CONCLUSION In our study, an in-depth exploration of the mRNA expression and miRNA activity of macrophages, microglia, epididymal cells, neurons and vascular smooth muscle cells during TBM progression was conducted using scRNA-Seq, which provided novel insights into the immune cell engagement in TBM patients.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lei Pan
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Peng Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yidan Shen
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ping Xu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yang Ren
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Wei Huang
- Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ping Liu
- Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qingguo Wu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Feng Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Ramshankar G, Liu R, Perry RJ. The association between the amino acid transporter LAT1, tumor immunometabolic and proliferative features and menopausal status in breast cancer. PLoS One 2023; 18:e0292678. [PMID: 37819900 PMCID: PMC10566702 DOI: 10.1371/journal.pone.0292678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
L-type Amino Acid Transporter 1 (LAT1) facilitates the uptake of specific essential amino acids, and due to this quality, it has been correlated to worse patient outcomes in various cancer types. However, the relationship between LAT1 and various clinical factors, including menopausal status, in mediating LAT1's prognostic effects remains incompletely understood. This is particularly true in the unique subset of tumors that are both obesity-associated and responsive to immunotherapy, including breast cancer. To close this gap, we employed 6 sets of transcriptomic data using the Kaplan-Meier model in the Xena Functional Genomics Explorer, demonstrating that higher LAT1 expression diminishes breast cancer patients' survival probability. Additionally, we analyzed 3'-Deoxy-3'-18F-Fluorothymidine positron emission tomography-computed tomography (18F-FLT PET-CT) images found on The Cancer Imaging Archive (TCIA). After separating all patients based on menopausal status, we correlated the measured 18F-FLT uptake with various clinical parameters quantifying body composition, tumor proliferation, and immune cell infiltration. By analyzing a wealth of deidentified, open-access data, the current study investigates the impact of LAT1 expression on breast cancer prognosis, along with the menopausal status-dependent associations between tumor proliferation, immunometabolism, and systemic metabolism.
Collapse
Affiliation(s)
- Gautham Ramshankar
- Irvington High School, Fremont, California, United States of America
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ryan Liu
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, United States of America
- Cedar Park High School, Cedar Park, Texas, United States of America
| | - Rachel J. Perry
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
6
|
Lin X, Yang Q, Zheng D, Tian H, Chen L, Wu J, Ji Z, Chen Y, Li Z. Scientometric analysis of lipid metabolism in breast neoplasm: 2012-2021. Front Physiol 2023; 14:1042603. [PMID: 37179822 PMCID: PMC10168182 DOI: 10.3389/fphys.2023.1042603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: In recent years, more and more studies have proved that lipid metabolism plays an essential role in breast cancer's proliferation and metastasisand also has a specific significance in predicting survival. Methods: This paper collected data from 725 publications related to lipid metabolism in breast neoplasm from 2012 to 2021 through the Web of Science Core Collection database. Bibliometrix, VOSviewer, and CiteSpace were used for the scientometrics analysis of countries, institutions, journals, authors, keywords, etc. Results: The number of documents published showed an increasing trend, with an average annual growth rate of 14.49%. The United States was the most productive country (n = 223, 30.76%). The journals with the largest number of publications are mostly from developed countries. Except for the retrieved topics, "lipid metabolism" (n = 272) and "breast cancer" (n = 175), the keywords that appeared most frequently were "expression" (n = 151), "fatty-acid synthase" (n = 78), "growth" (n = 72), "metabolism" (n = 67) and "cells" (n = 66). Discussion: These findings and summaries help reveal the current research status and clarify the hot spots in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
7
|
Syamprasad NP, Jain S, Rajdev B, Prasad N, Kallipalli R, Naidu VGM. Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochem Pharmacol 2023; 211:115528. [PMID: 37011733 DOI: 10.1016/j.bcp.2023.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Ravindra Kallipalli
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India.
| |
Collapse
|
8
|
Cao B, Yang S, Yan L, Li N. Comprehensive serum lipidomic analyses reveal potential biomarkers for malignant breast cancer: A case-control study. Cancer Biomark 2023; 37:289-297. [PMID: 37302027 DOI: 10.3233/cbm-220462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Breast cancer is the most worldwide commonly found malignancy among women. The evidence for lipidomic studies of breast cancer in the Chinese population is relatively limited. OBJECTIVE Our current study aimed to identify peripheral lipids capable of distinguishing adults with and without malignant breast cancer in a Chinese population and to explore the potential lipid metabolism pathways implicated in breast cancer. METHODS Lipidomics was performed with an Ultimate 3000 UHPLC system coupled with a Q-Exactive HF MS platform by using the serum of 71 female patients with malignant breast cancer and 92 age-matched (± 2 years) healthy women. The data were uploaded to and processed by the specialized online software Metaboanalyst 5.0. Both univariate and multivariate analyses were carried out for potential biomarker screening. Areas under the receiver-operating characteristic (ROC) curves (AUCs) of identified differential lipids were obtained for evaluating their classification capacity. RESULTS A total of 47 significantly different lipids were identified by applying the following criteria: false discovery rate-adjusted P < 0.05, variable importance in projection ⩾ 1.0, and fold change ⩾ 2.0 or ⩽ 0.5. Among them, 13 lipids were identified as diagnostic biomarkers with the area under curve (AUC) greater than 0.7. Multivariate ROC curves indicated that AUCs greater than 0.8 could be achieved with 2-47 lipids. CONCLUSIONS Using an untargeted LC-MS-based metabolic profiling approach, our study provides preliminary evidence that extensive dysregulations of OxPCs, PCs, SMs and TAGs were involved in the pathological processes of breast cancer. We provided clues for furtherly investigating the role of lipid alterations in the pathoetiology of breast cancer.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality (SWU), Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| | - Siyu Yang
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Liu X, Fang X, Lu L, Liu G. Prognostic significance and immune landscape of a fatty acid metabolism-related gene signature in colon adenocarcinoma. Front Genet 2022; 13:996625. [PMID: 36568396 PMCID: PMC9780302 DOI: 10.3389/fgene.2022.996625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Fatty acid metabolism (FAM), as a hallmark of caner, plays important roles in tumor initiation and carcinogenesis. However, the significance of fatty acid metabolism-related genes in colon adenocarcinoma (COAD) are largely unknown. Methods: RNA sequencing data and clinical information were downloaded from the Cancer Genome Atlas (TCGA) cohort. Univariate and multivariate Cox regression analyses were utilized to construct a fatty acid metabolism-related gene signature. Kaplan-Meier survival and receiver operating characteristic (ROC) analyses were used to verify the performance of this signature. GEO datasets were applied to validate the signature. Maftools package was utilized to analyze the mutation profiles of this signature. Correlation between the risk signature and stemness scores was compared by RNA stemness score (RNAss). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set variation analysis (GSVA) were performed to explore the potential functions and signaling pathways. Immune landscape of the signature was explored by analyzing different immune cells infiltration, immune functions and microsatellite instability. A nomogram was constructed by combining the risk signature and multiple clinical factors. Expression levels and prognostic values of the risk genes were revealed in the cancer genome atlas and GEO databases. Moreover, the expression the risk genes were measured in cell lines using real time quantitative PCR (qRT-PCR). Results: Eight fatty acid metabolism-related genes (CD36, ENO3, MORC2, PTGR1, SUCLG2, ELOVL3, ELOVL6 and CPT2) were used to construct a risk signature. This signature demonstrated better prognostic value than other clinicopathological parameters, with AUC value was 0.734 according to the cancer genome atlas database. There was negative correlation between the riskscore and RNA stemness score. The patients in the high-risk group demonstrated higher infiltration of M0 macrophages, and less infiltration of activated CD4 memory T cells and Eosinophils. There were more MSI patients in the high-risk group than those in the low-risk group (38% vs. 30%). The risk scores of patients in the MSI group were slightly higher than those in the microsatellite stability group. Gene ontology, kyoto encyclopedia of genes and genomes and gene set variation analysis enrichment analyses showed that several metabolism-related functions and signaling pathways were enriched. A nomogram showed good predictive capability of the signature. Moreover, qRT-PCR revealed upregulated expression of ENO3, MORC2, SUCLG2 and ELOVL6, and downregulated expression of CPT2 in all examined colon adenocarcinoma cell lines. Conclusion: This study provided novel insights into a fatty acid metabolism-related signature in the prognosis an immune landscape of colon adenocarcinoma patients.
Collapse
Affiliation(s)
| | | | - Lin Lu
- *Correspondence: Guolong Liu, ; Lin Lu,
| | | |
Collapse
|
10
|
Liu C, Tao Y, Lin H, Lou X, Wu S, Chen L. Classification of stomach adenocarcinoma based on fatty acid metabolism-related genes frofiling. Front Mol Biosci 2022; 9:962435. [PMID: 36090054 PMCID: PMC9461144 DOI: 10.3389/fmolb.2022.962435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fatty acid metabolism (FAM)-related genes play a key role in the development of stomach adenocarcinoma (STAD). Although immunotherapy has led to a paradigm shift in STAD treatment, the overall response rate of immunotherapy for STAD is low due to heterogeneity of the tumor immune microenvironment (TIME). How FAM-related genes affect TIME in STAD remains unclear.Methods: The univariate Cox regression analysis was performed to screen prognostic FAM-related genes using transcriptomic profiles of the Cancer Genome Atlas (TCGA)-STAD cohort. Next, the consensus clustering analysis was performed to divide the STAD cohort into two groups based on the 13 identified prognostic genes. Then, gene set enrichment analysis (GSEA) was carried out to identify enriched pathways in the two groups. Furthermore, we developed a prognostic signature model based on 7 selected prognostic genes, which was validated to be capable in predicting the overall survival (OS) of STAD patients using the univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analyses. Finally, the “Estimation of STromal and Immune cells in MAlignant Tumours using Expression data” (ESTIMATE) algorithm was used to evaluate the stromal, immune, and ESTIMATE scores, and tumor purity of each STAD sample.Results: A total of 13 FAM-related genes were identified to be significantly associated with OS in STAD patients. Two molecular subtypes, which we named Group 1 and Group 2, were identified based on these FAM-related prognostic genes using the consensus clustering analysis. We showed that Group 2 was significantly correlated with poor prognosis and displayed higher programmed cell death ligand 1 (PD-L1) expressions and distinct immune cell infiltration patterns. Furthermore, using GSEA, we showed that apoptosis and HCM signaling pathways were significantly enriched in Group 2. We constructed a prognostic signature model using 7 selected FAM-related prognostic genes, which was proven to be effective for prediction of STAD (HR = 1.717, 95% CI = 1.105–1.240, p < 0.001). After classifying the patients into the high- and low-risk groups based on our model, we found that patients in the high-risk group tend to have more advanced T stages and higher tumor grades, as well as higher immune scores. We also found that the risk scores were positively correlated with the infiltration of certain immune cells, including resting dendritic cells (DCs), and M2 macrophages. We also demonstrated that elevated expression of gamma-glutamyltransferase 5 (GGT5) is significantly associated with worse OS and disease-free survival (DFS), more advanced T stage and higher tumor grade, and increased immune cell infiltration, suggesting that STAD patients with high GGT5 expression in the tumor tissues might have a better response to immunotherapy.Conclusion: FAM-related genes play critical roles in STAD prognosis by shaping the TIME. These genes can regulate the infiltration of various immune cells and thus are potential therapeutic targets worthy of further investigation. Furthermore, GGT5 was a promising marker for predicting immunotherapeutic response in STAD patients.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Yongjun Tao
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Huajian Lin
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Xiqiang Lou
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Simin Wu
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Liping Chen
- Research Center of Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Liping Chen,
| |
Collapse
|