1
|
Yang J, Li R. Single-Cell Sequencing Data Analysis Unveiled HDAC1 as the Therapeutic Target for Chronic Pancreatitis. Mol Biotechnol 2024; 66:68-78. [PMID: 37022596 DOI: 10.1007/s12033-023-00718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
Chronic pancreatitis (CP) as a progressive inflammatory disorder, remains untreatable. The novel treatment strategy for CP is imperative. We attempted to explore the therapeutic biomarkers for CP. The single-cell sequencing data were retrieved from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in idiopathic CP were identified, followed by function and pathway annotation, and PPI network established. DEGs of interest were verified in human tissue samples. The function of candidate biomarker was determined in the murine model with CP. A total of 208 genes were specially differentially expressed in idiopathic patients. Functional enrichment analysis showed DEGs were mainly enriched in glycogen catabolic process, RNA splicing, and glucagon signaling pathway. A PPI network centered on HDAC1 was constructed. HDAC1 was overexpressed in CP patients. The murine model with CP was induced by repetitive cerulein treatment. Silencing sh-HDAC1 treatment reversed cerulein-induced inflammatory cells accumulation, high expression of TGF-β1, and collagen 1 in pancreas in vivo. HDAC1 might be served as potential biomarker for CP. The present study provided insights into the molecular mechanism of CP that may be useful in further investigations.
Collapse
Affiliation(s)
- Jie Yang
- Gastroenterology Department, The First Affiliated Hospital of Suzhou University, 899 Pinghai Road, Gusu District, Suzhou, 215000, Jiangsu, China
- Emergency Department, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, China
| | - Rui Li
- Gastroenterology Department, The First Affiliated Hospital of Suzhou University, 899 Pinghai Road, Gusu District, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
2
|
Niu Z, Xue H, Jiang Z, Chai L, Wang H. Effects of temperature on intestinal microbiota and lipid metabolism in Rana chensinensis tadpoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35398-35412. [PMID: 36534254 DOI: 10.1007/s11356-022-24709-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Climate change such as global warming is considered a major threat to amphibians. The guts of amphibians are home to trillions of microbes, which are key regulators of gastrointestinal digestion and play a crucial role in lipid metabolites. The aim of this study was to evaluate the effect of temperature change on intestinal microbiota and lipid metabolism in Rana chensinensis tadpoles. Morphological and intestinal microbiota data of R. chensinensis larvae exposed to different temperatures (15 °C, 21 °C, and 26 °C) were measured. The results show that the warm temperature causes histological damage to the intestinal epithelium. In addition, temperature treatments alter the diversity and composition of gut microbes in R. chensinensis tadpoles. At the phylum level of intestinal microbial community, Campilobacterota was detected only in the warm group. At the genera level, unclassified_f__Enterobacteriaceae was markedly declined in the warm group but was notably enriched in the cold group. For lipid metabolism-related genes, the expression levels of GPR109A, HDAC1, and APOA-I decreased significantly in both warm and cold treatment groups, while the expression levels of CLPS and LIPASE increased significantly. Collectively, these observations demonstrated that warm and cold temperatures may reduce the immune capacity of tadpoles by changing the composition of intestinal microorganisms and the expression of genes related to lipid metabolism, affecting the survival of tadpoles.
Collapse
Affiliation(s)
- Ziyi Niu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - HaoYu Xue
- School of Philosophy and Government, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhaoyang Jiang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
3
|
Yang CA, Li JP, Lai YH, Huang YL, Lin CY, Lan JL. Assessing the Immune Cell Subset and Genetic Mutations in Patients With Palindromic Rheumatism Seronegative for Rheumatoid Factor and Anti-Cyclic Citrullinated Peptide. Arthritis Rheumatol 2023; 75:187-200. [PMID: 35819819 DOI: 10.1002/art.42297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The etiology underlying cases of palindromic rheumatism (PR) not associated with other rheumatic diseases in patients who are seronegative for rheumatoid factor and anti-cyclic citrullinated peptide (seronegative PR) is unclear. We aimed to investigate the immune cells and genes involved. METHODS This was a single-center comparative study of 48 patients with seronegative PR and 48 healthy controls. Mass cytometry and RNA sequencing were used to identify distinct immune cell subsets in blood. Among the 48 seronegative PR patients, plasma samples from 40 patients were evaluated by enzyme-linked immunosorbent assay for cytokine levels, and peripheral blood samples from 25 patients were evaluated by flow cytometry for mononuclear cell subsets. Plasma samples from 21 patients were evaluated by real-time polymerase chain reaction for differential gene and protein expression, and samples from 3 patients were analyzed with whole-exome sequencing for gene mutations. RESULTS Immunophenotyping revealed a markedly increased frequency of CD14+CD11b+CD36+ and CD4+CD25-CD69+ cells in seronegative PR patients with active flares compared with healthy controls (P < 0.0001 for both cell subset comparisons). Gene enrichment analyses of RNA-sequencing data from sorted CD14+CD11b+CD36+ and CD4+CD25-CD69+ cells showed involvement of the inflammatory/stress response, phagocytosis, and regulation of apoptosis functional pathways. Up-regulated expression of CXCL16 and IL10RA was observed in monocytes from PR patients. Up-regulation of PFKFB3, DDIT4, and TGFB1, and down-regulation of PDIA6 were found in monocytes and lymphocytes from PR patients with active flares and PR patients in intercritical periods. Plasma levels of S100A8/A9 and interleukin-1β were elevated in PR patients. Whole-exome sequencing revealed novel polygenic mutations in HACL1, KDM5A, RASAL1, HAVCR2, PRDM9, MBOAT4, and JRKL. CONCLUSION In seronegative PR patients, we identified a distinct CD14+CD11b+CD36+ cell subset that can induce an inflammatory response under stress and exert antiinflammatory effects after phagocytosis of apoptotic cells, and a CD4+CD25-CD69+ T cell subset with pro- and antiinflammatory properties. Individuals with genetic mutations involving epigenetic modification, potentiation and resolution of stress-induced inflammation/apoptosis, and a dysregulated endoplasmic reticulum stress response could be predisposed to seronegative PR.
Collapse
Affiliation(s)
- Chin-An Yang
- College of Medicine, China Medical University, Division of Laboratory Medicine, China Medical University Hsinchu Hospital, and Departments of Medical Education and Pediatrics, China Medical University Hsinchu Hospital, Zhubei City, Taiwan, and Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan
| | - Ju-Pi Li
- Rheumatic Diseases Research Center, China Medical University Hospital, Department of Pathology, School of Medicine, Chung Shan Medical University and Chung Shan Medical University Hospital, Taiwan
| | - Yi-Hua Lai
- College of Medicine, China Medical University, Rheumatic Diseases Research Center, China Medical University Hospital, and Rheumatology and Immunology Center, China Medical University Hospital, Taiwan
| | - Ya-Ling Huang
- Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Chien-Yu Lin
- Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Joung-Liang Lan
- College of Medicine, China Medical University, Rheumatic Diseases Research Center, China Medical University Hospital, and Rheumatology and Immunology Center, China Medical University Hospital, Taiwan
| |
Collapse
|
4
|
Gu Z, Chen X, Zhu D, Wu S, Yu C. Histone deacetylase 1 and 3 inhibitors alleviate colon inflammation by inhibiting Th17 cell differentiation. J Clin Lab Anal 2022; 36:e24699. [PMID: 36106389 PMCID: PMC9550981 DOI: 10.1002/jcla.24699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background The etiology of inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is not completely clear, but its pathogenesis is closely related to T helper 17 (Th17) cells. Several histone deacetylase (HDAC) inhibitors have been shown to exert potent anti‐inflammatory effects and modulate Th17 cell polarization. Owing to the large variety and broad expression of HDACs, finding specific therapeutic targets for IBD is of clinical importance. Methods The proportions of Th17 cells and interleukin (IL)‐17A produced between patients with UC and healthy volunteers were compared. The differentiation of human peripheral blood mononuclear cells (PBMCs) into Th17 cells was induced in vitro. Differentiated Th17 cells were treated with RGFP109 (RG), a selective inhibitor of HDAC1 and 3, to observe its effects on these cells. Subsequently, colitis was induced in mice and treated with RG. The proportion of Th17 cells, the severity of colitis in mice, and colon histopathology and immunohistochemistry were evaluated respectively. Results The proportion of Th17 cells and IL‐17A production was significantly increased in patients with UC than in healthy individuals. RG inhibited the differentiation of human PBMCs into Th17 cells and reduced IL‐17A secretion in vitro. RG‐treated colitis mice had a lower Th17 ratio, mild colon inflammation, and decreased expression of HDAC1 and 3 in the colon. Conclusions HDAC1 and 3 inhibitors can modulate the differentiation of inflammatory Th17 cells, downregulate IL‐17A levels, and exert anti‐inflammatory effects in experimental colitis mice, indicating that HDAC1 and 3 may be potential therapeutic targets for patients with IBD.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Gastroenterology, Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| | - Xiaotian Chen
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University Nanjing China
| | - Dandan Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| | - Songting Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| | - Chenggong Yu
- Department of Gastroenterology, Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| |
Collapse
|
5
|
Gerbeth L, Glauben R. Histone Deacetylases in the Inflamed Intestinal Epithelium-Promises of New Therapeutic Strategies. Front Med (Lausanne) 2021; 8:655956. [PMID: 33842512 PMCID: PMC8032862 DOI: 10.3389/fmed.2021.655956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
The intestinal epithelium is a complex, dynamic barrier that separates luminal contents from the immune compartment while mediating nutrient absorption and controlled passage of antigens to convey oral tolerance. A compromised epithelial barrier often leads to inflammation because immune cells in the lamina propria come into direct contact with luminal antigens. Defects in epithelial cell function were also shown to be involved in the etiology of inflammatory bowel diseases. These are severe, chronically relapsing inflammatory conditions of the gastrointestinal tract that also increase the risk of developing colorectal cancer. Despite major efforts of the scientific community, the precise causes and drivers of these conditions still remain largely obscured impeding the development of a permanent cure. Current therapeutic approaches mostly focus on alleviating symptoms by targeting immune cell signaling. The protein family of histone deacetylases (HDACs) has gained increasing attention over the last years, as HDAC inhibitors were shown to be potent tumor cell suppressors and also alleviate morbid inflammatory responses. Recent research continuously identifies new roles for specific HDACs suggesting that HDACs influence the cell signaling network from many different angles. This makes HDACs very interesting targets for therapeutic approaches but predicting effects after system manipulations can be difficult. In this review, we want to provide a comprehensive overview of current knowledge about the individual roles of HDACs in the intestinal epithelium to evaluate their therapeutic potential for inflammatory conditions of the gut.
Collapse
Affiliation(s)
- Lorenz Gerbeth
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Rainer Glauben
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Soranno DE, Kirkbride-Romeo L, Wennersten SA, Ding K, Cavasin MA, Baker P, Altmann C, Bagchi RA, Haefner KR, Steinkühler C, Montford JR, Keith B, Gist KM, McKinsey TA, Faubel S. Acute Kidney Injury Results in Long-Term Diastolic Dysfunction That Is Prevented by Histone Deacetylase Inhibition. ACTA ACUST UNITED AC 2021; 6:119-133. [PMID: 33665513 PMCID: PMC7907538 DOI: 10.1016/j.jacbts.2020.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023]
Abstract
This is the first long-term (1-year) study to evaluate both the kidney and systemic sequelae of acute kidney injury in mice. Serial kidney function was measured via transcutaneous glomerular filtration rate. AKI resulted in diastolic dysfunction, followed by hypertension. Ejection fraction was preserved. One year after AKI, cardiac ATP levels were reduced compared with sham controls. Mice treated with the histone deacetylase inhibitor, ITF2357, maintained normal diastolic function normal blood pressure, and normal cardiac ATP after AKI. Metabolomics data suggest that treatment with ITF2357 preserves pathways related to energy metabolism.
Growing epidemiological data demonstrate that acute kidney injury (AKI) is associated with long-term cardiovascular morbidity and mortality. Here, the authors present a 1-year study of cardiorenal outcomes following bilateral ischemia-reperfusion injury in male mice. These data suggest that AKI causes long-term dysfunction in the cardiac metabolome, which is associated with diastolic dysfunction and hypertension. Mice treated with the histone deacetylase inhibitor, ITF2357, had preservation of cardiac function and remained normotensive throughout the study. ITF2357 did not protect against the development of kidney fibrosis after AKI.
Collapse
Affiliation(s)
- Danielle E Soranno
- Department of Pediatrics, Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA.,Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lara Kirkbride-Romeo
- Department of Pediatrics, Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA
| | - Sara A Wennersten
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Kathy Ding
- Department of Pediatrics, Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA
| | - Maria A Cavasin
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Peter Baker
- Department of Pediatrics, Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| | - Christopher Altmann
- Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Korey R Haefner
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | | | - John R Montford
- Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Brysen Keith
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Katja M Gist
- Department of Pediatrics, Pediatric Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Timothy A McKinsey
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Sarah Faubel
- Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
7
|
Deng X, He Y, Miao X, Yu B. ATF4-mediated histone deacetylase HDAC1 promotes the progression of acute pancreatitis. Cell Death Dis 2021; 12:5. [PMID: 33414424 PMCID: PMC7791124 DOI: 10.1038/s41419-020-03296-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Acute pancreatitis (AP), an acute inflammatory process, can be difficult to diagnose. Activating transcription factor 4 (ATF4) has been reported to participate in the pathogenesis of AP. Additionally, histone deacetylases (HDACs) are shown to be closely related to the development of a variety of diseases, including inflammation disease. In our study, we tried to highlight the role of ATF4 in AP through regulation of HDAC1. Firstly, we validated the effect of ATF4 on pancreatic acinar cell proliferation, apoptosis, and inflammation through in vitro experiments on cellular models of caerulein-induced AP. Next, we examined the correlation between ATF4 and HDAC1, and between HDAC1 with neutral endopeptidase (NEP) and kruppel-like factor 4 (KLF4). Finally, the regulatory role of ATF4 in AP was further assessed by determination of pathological conditions, biochemical indicators and inflammation through in vivo experiments on caerulein-induced AP mouse models. After AP induction, highly expressed ATF4 was observed, and silencing ATF4 could promote pancreatic acinar cell proliferation and inhibit apoptosis. ATF4 could bind to the HDAC1 promoter and upregulate its expression in AP. Moreover, HDAC1 could increase KLF4 expression by inhibiting NEP expression. Functionally, silencing ATF4 could suppress AP through regulation of NEP-mediated KLF4 via downregulation of HDAC1. Above all, our study uncovered the promotive role of ATF4 in AP through upregulation of HDAC1.
Collapse
Affiliation(s)
- Xiaofeng Deng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, 410000, P. R. China
| | - Yu He
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410000, P. R. China
| | - Xiongying Miao
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, 410000, P. R. China
| | - Bo Yu
- Department of Critical Care Medicine, the Second Xiangya Hospital of Central South University, Changsha, 410000, P. R. China.
| |
Collapse
|
8
|
Gatla HR, Muniraj N, Thevkar P, Yavvari S, Sukhavasi S, Makena MR. Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. Int J Mol Sci 2019; 20:E1110. [PMID: 30841513 PMCID: PMC6429312 DOI: 10.3390/ijms20051110] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) counteract with each other to regulate gene expression by altering chromatin structure. Aberrant HDAC activity was reported in many human diseases including wide range of cancers, viral infections, cardiovascular complications, auto-immune diseases and kidney diseases. HDAC inhibitors are small molecules designed to block the malignant activity of HDACs. Chemokines and cytokines control inflammation, immunological and other key biological processes and are shown to be involved in various malignancies. Various HDACs and HDAC inhibitors were reported to regulate chemokines and cytokines. Even though HDAC inhibitors have remarkable anti-tumor activity in hematological cancers, they are not effective in treating many diseases and many patients relapse after treatment. However, the role of HDACs and cytokines in regulating these diseases still remain unclear. Therefore, understanding exact mechanisms and effector functions of HDACs are urgently needed to selectively inhibit them and to establish better a platform to combat various malignancies. In this review, we address regulation of chemokines and cytokines by HDACs and HDAC inhibitors and update on HDAC inhibitors in human diseases.
Collapse
Affiliation(s)
- Himavanth Reddy Gatla
- Department of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Nethaji Muniraj
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Prashanth Thevkar
- Department of Microbiology, New York University, New York, NY 10016, USA.
| | - Siddhartha Yavvari
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Sahithi Sukhavasi
- Center for Distance Learning, GITAM University, Visakhapatnam, AP 530045, India.
| | - Monish Ram Makena
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Pooladanda V, Thatikonda S, Bale S, Pattnaik B, Sigalapalli DK, Bathini NB, Singh SB, Godugu C. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation. Cell Death Dis 2019; 10:81. [PMID: 30692512 PMCID: PMC6349848 DOI: 10.1038/s41419-018-1247-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by an excessive acute inflammatory response in lung parenchyma, which ultimately leads to refractory hypoxemia. One of the earliest abnormalities seen in lung injury is the elevated levels of inflammatory cytokines, among them, the soluble tumor necrosis factor (TNF-α) has a key role, which exerts cytotoxicity in epithelial and endothelial cells thus exacerbates edema. The bacterial lipopolysaccharide (LPS) was used both in vitro (RAW 264.7, THP-1, MLE-12, A549, and BEAS-2B) and in vivo (C57BL/6 mice), as it activates a plethora of overlapping inflammatory signaling pathways involved in ARDS. Nimbolide is a chemical constituent of Azadirachta indica, which contains multiple biological properties, while its role in ARDS is elusive. Herein, we have investigated the protective effects of nimbolide in abrogating the complications associated with ARDS. We showed that nimbolide markedly suppressed the nitrosative-oxidative stress, inflammatory cytokines, and chemokines expression by suppressing iNOS, myeloperoxidase, and nitrotyrosine expression. Moreover, nimbolide mitigated the migration of neutrophils and mast cells whilst normalizing the LPS-induced hypothermia. Also, nimbolide modulated the expression of epigenetic regulators with multiple HDAC inhibitory activity by suppressing the nuclear translocation of NF-κB and HDAC-3. We extended our studies using molecular docking studies, which demonstrated a strong interaction between nimbolide and TNF-α. Additionally, we showed that treatment with nimbolide increased GSH, Nrf-2, SOD-1, and HO-1 protein expression; concomitantly abrogated the LPS-triggered TNF-α, p38 MAPK, mTOR, and GSK-3β protein expression. Collectively, these results indicate that TNF-α-regulated NF-κB and HDAC-3 crosstalk was ameliorated by nimbolide with promising anti-nitrosative, antioxidant, and anti-inflammatory properties in LPS-induced ARDS.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Bijay Pattnaik
- Centre of Excellence in Asthma & Lung Disease and Molecular Immunogenetics Laboratory, CSIR-Institute of Genomics and Integrative Biology, 110007, New Delhi, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Nagendra Babu Bathini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
10
|
Maternal High Fat Diet-Induced Obesity Modifies Histone Binding and Expression of Oxtr in Offspring Hippocampus in a Sex-Specific Manner. Int J Mol Sci 2019; 20:ijms20020329. [PMID: 30650536 PMCID: PMC6359595 DOI: 10.3390/ijms20020329] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/05/2023] Open
Abstract
Maternal obesity during pregnancy increases risk for neurodevelopmental disorders in offspring, although the underlying mechanisms remain unclear. Epigenetic deregulation associates with many neurodevelopmental disorders, and recent evidence indicates that maternal nutritional status can alter chromatin marks in the offspring brain. Thus, maternal obesity may disrupt epigenetic regulation of gene expression during offspring neurodevelopment. Using a C57BL/6 mouse model, we investigated whether maternal high fat diet (mHFD)-induced obesity alters the expression of genes previously implicated in the etiology of neurodevelopmental disorders within the Gestational Day 17.5 (GD 17.5) offspring hippocampus. We found significant two-fold upregulation of oxytocin receptor (Oxtr) mRNA in the hippocampus of male, but not female, GD 17.5 offspring from mHFD-induced obese dams (p < 0.05). To determine whether altered histone binding at the Oxtr gene promoter may underpin these transcriptional changes, we then performed chromatin immunoprecipitation (ChIP). Consistent with the Oxtr transcriptional changes, we observed increased binding of active histone mark H3K9Ac at the Oxtr transcriptional start site (TSS) in the hippocampus of mHFD male (p < 0.05), but not female, offspring. Together, these data indicate an increased vulnerability of male offspring to maternal obesity-induced changes in chromatin remodeling processes that regulate gene expression in the developing hippocampus, and contributes to our understanding of how early life nutrition affects the offspring brain epigenome.
Collapse
|
11
|
Yuille S, Reichardt N, Panda S, Dunbar H, Mulder IE. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS One 2018; 13:e0201073. [PMID: 30052654 PMCID: PMC6063406 DOI: 10.1371/journal.pone.0201073] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/02/2018] [Indexed: 01/08/2023] Open
Abstract
Overexpression of histone deacetylase (HDAC) isoforms has been implicated in a variety of disease pathologies, from cancer and colitis to cardiovascular disease and neurodegeneration, thus HDAC inhibitors have a long history as therapeutic targets. The gut microbiota can influence HDAC activity via microbial-derived metabolites. While HDAC inhibition (HDI) by gut commensals has long been attributed to the short chain fatty acid (SCFA) butyrate, the potent metabolic reservoir provided by the gut microbiota and its role in host physiology warrants further investigation in a variety of diseases. Cell-free supernatants (CFS) of 79 phylogenetically diverse gut commensals isolated from healthy human donors were screened for their SCFA profile and their total HDAC inhibitory properties. The three most potent HDAC inhibiting strains were further evaluated and subjected to additional analysis of specific class I and class II HDAC inhibition. All three HDAC inhibitors are butyrate producing strains, and one of these also produced substantial levels of valeric acid and hexanoic acid. Valeric acid was identified as a potential contributor to the HDAC inhibitory effects. This bacterial strain, Megasphaera massiliensis MRx0029, was added to a model microbial consortium to assess its metabolic activity in interaction with a complex community. M. massiliensis MRx0029 successfully established in the consortium and enhanced the total and specific HDAC inhibitory function by increasing the capacity of the community to produce butyrate and valeric acid. We here show that single bacterial strains from the human gut microbiota have potential as novel HDI therapeutics for disease areas involving host epigenetic aberrations.
Collapse
Affiliation(s)
| | | | | | | | - Imke E. Mulder
- 4DPharma Research Ltd., Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Chen L, Wang C, Luo J, Su W, Li M, Zhao N, Lyu W, Attaran H, He Y, Ding H, He H. Histone Deacetylase 1 Plays an Acetylation-Independent Role in Influenza A Virus Replication. Front Immunol 2017; 8:1757. [PMID: 29312300 PMCID: PMC5733105 DOI: 10.3389/fimmu.2017.01757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Influenza A viruses (IAVs) take advantage of the host acetylation system for their own benefit. Whether the nucleoprotein (NP) of IAVs undergoes acetylation and the interaction between the NP and the class I histone deacetylases (HDACs) were largely unknown. Here, we showed that the NP protein of IAV interacted with HDAC1, which downregulated the acetylation level of NP. Using mass spectrometry, we identified lysine 103 as an acetylation site of the NP. Compared with wild-type protein, two K103 NP mutants, K103A and K103R, enhanced replication efficiency of the recombinant viruses in vitro. We further demonstrated that HDAC1 facilitated viral replication via two paths: promoting the nuclear retention of NP and inhibiting TBK1-IRF3 pathway. Our results lead to a new mechanism for regulating NP acetylation, indicating that HDAC1 may be a possible target for antiviral drugs.
Collapse
Affiliation(s)
- Lin Chen
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Chengmin Wang
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Luo
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen Su
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Na Zhao
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wenting Lyu
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hamidreza Attaran
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yapeng He
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hua Ding
- Department of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Hongxuan He
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Sophora subprosrate polysaccharide inhibited cytokine/chemokine secretion via suppression of histone acetylation modification and NF-κb activation in PCV2 infected swine alveolar macrophage. Int J Biol Macromol 2017; 104:900-908. [DOI: 10.1016/j.ijbiomac.2017.06.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/17/2017] [Accepted: 06/25/2017] [Indexed: 11/18/2022]
|
14
|
Abstract
PURPOSE OF REVIEW The activation of inflammatory response is dependent upon genetic factors and epigenetic control mechanisms. This overview will highlight recent advances in the understanding of epigenetic dynamics during cellular inflammation. RECENT FINDINGS There is a growing body of evidence indicating that alterations of the chromatin state associate with an increased risk of chronic disease development and inflammation. Epigenetic alterations respond rapidly to environmental changes and have a profound effect on gene regulatory cross-wirings and transcriptional regulation. SUMMARY Systematic dissection of the mechanisms underlying epigenetic effects during inflammatory response is a critical step toward elucidation of the cell's molecular processes and holds potential for the development of novel therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Dashzeveg Bayarsaihan
- Institute for System Genomics and Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
15
|
Qu X, Yu H, Jia B, Yu X, Cui Q, Liu Z, Sun C, Chu Y. Association of downregulated HDAC 2 with the impaired mitochondrial function and cytokine secretion in the monocytes/macrophages from gestational diabetes mellitus patients. Cell Biol Int 2016; 40:642-51. [PMID: 26936353 DOI: 10.1002/cbin.10598] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/27/2016] [Indexed: 12/20/2022]
Abstract
Gestational diabetes mellitus (GDM) is associated with an increased risk of type 2 diabetes (T2DM) and cardiovascular diseases in later life, yet with underlying mechanisms unclear. The present study was to explore the association of upregulated histone deacetylase 2 (HDAC 2) with the impaired mitochondrial function and the cytokine secretion in the monocytes/macrophages from GDM patients. In this study, we examined the mitochondrial function, proinflamatory cytokine secretion and the HDAC 2 level in the serum or in the monocytes/macrophages from GDM patients, investigated the influence by HDAC 2 inhibitor, AR-42 (N-hydroxy-4-[[(2S)-3-methyl-2-phenylbutanoyl]amino]benzamide), on the mitochondrial function and cytokine secretion in the isolated GDM monocytes/macrophages. Results demonstrated an increased mitochondria size, mitochondrial superoxide and reactive oxygen species (ROS) production, and an undermined mitochondria membrane potential (MMP) in the GDM monocytes/macrophages. And the serum levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6 were also markedly higher in the GDM pregnancies, while the expression and activity of HDAC 2 was downregulated. Moreover, AR-42-mediated HDAC 2 inhibition in vitro contributed to the impaired mitochondrial function and the proinflamatory cytokine secretion. In conclusion, this study suggests an association of the impaired mitochondrial function and the promoted proinflamatory cytokine secretion with the reduced HDAC 2 activity in GDM. These findings may present HDAC 2 as a target for GDM treatment.
Collapse
Affiliation(s)
- Xin Qu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Hongna Yu
- Department of Ultrasonography, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Bei Jia
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Xiaoyan Yu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Qing Cui
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Zhifen Liu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Chengming Sun
- Clinical laboratory, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Yongli Chu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| |
Collapse
|
16
|
Leus NGJ, van der Wouden PE, van den Bosch T, Hooghiemstra WTR, Ourailidou ME, Kistemaker LEM, Bischoff R, Gosens R, Haisma HJ, Dekker FJ. HDAC 3-selective inhibitor RGFP966 demonstrates anti-inflammatory properties in RAW 264.7 macrophages and mouse precision-cut lung slices by attenuating NF-κB p65 transcriptional activity. Biochem Pharmacol 2016; 108:58-74. [PMID: 26993378 PMCID: PMC4844503 DOI: 10.1016/j.bcp.2016.03.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The increasing number of patients suffering from chronic obstructive pulmonary disease (COPD) represents a major and increasing health problem. Therefore, novel therapeutic approaches are needed. Class I HDACs 1, 2 and 3 play key roles in the regulation of inflammatory gene expression with a particular pro-inflammatory role for HDAC 3. HDAC 3 has been reported to be an important player in inflammation by deacetylating NF-κB p65, which has been implicated in the pathology of COPD. Here, we applied the pharmacological HDAC 3-selective inhibitor RGFP966, which attenuated pro-inflammatory gene expression in models for inflammatory lung diseases. Consistent with this, a robust decrease of the transcriptional activity of NF-κB p65 was observed. HDAC 3 inhibition affected neither the acetylation status of NF-κB p65 nor histone H3 or histone H4. This indicates that HDAC 3 inhibition does not inhibit NF-κB p65 transcriptional activity by affecting its deacetylation but rather by inhibiting enzymatic activity of HDAC 3. Taken together, our findings indicate that pharmacological HDAC 3-selective inhibition by inhibitors such as RGFP966 may provide a novel and effective approach toward development of therapeutics for inflammatory lung diseases.
Collapse
Affiliation(s)
- Niek G J Leus
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Petra E van der Wouden
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thea van den Bosch
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter T R Hooghiemstra
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Maria E Ourailidou
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
17
|
Ourailidou ME, Leus NGJ, Krist K, Lenoci A, Mai A, Dekker FJ. Chemical epigenetics to assess the role of HDAC1–3 inhibition in macrophage pro-inflammatory gene expression. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00375c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azobenzene ortho-aminoanilides inhibit HDACs 1–3 and possess anti-inflammatory properties in murine macrophages.
Collapse
Affiliation(s)
- Maria E. Ourailidou
- Department of Chemical and Pharmaceutical Biology
- Groningen Research Institute of Pharmacy
- University of Groningen
- Groningen 9713 AV
- The Netherlands
| | - Niek G. J. Leus
- Department of Chemical and Pharmaceutical Biology
- Groningen Research Institute of Pharmacy
- University of Groningen
- Groningen 9713 AV
- The Netherlands
| | - Kim Krist
- Department of Chemical and Pharmaceutical Biology
- Groningen Research Institute of Pharmacy
- University of Groningen
- Groningen 9713 AV
- The Netherlands
| | - Alessia Lenoci
- Department of Drug Chemistry and Technologies
- ‘Sapienza’ University
- 00185 Rome
- Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies
- ‘Sapienza’ University
- 00185 Rome
- Italy
- Pasteur Institute
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology
- Groningen Research Institute of Pharmacy
- University of Groningen
- Groningen 9713 AV
- The Netherlands
| |
Collapse
|
18
|
Gonneaud A, Turgeon N, Boisvert FM, Boudreau F, Asselin C. Loss of histone deacetylase Hdac1 disrupts metabolic processes in intestinal epithelial cells. FEBS Lett 2015; 589:2776-83. [PMID: 26297832 DOI: 10.1016/j.febslet.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/07/2015] [Indexed: 12/21/2022]
Abstract
By using acetyl-CoA as a substrate, acetyltransferases and histone deacetylases regulate protein acetylation by adding or removing an acetyl group on lysines. Nuclear-located Hdac1 is a regulator of intestinal homeostasis. We have previously shown that Hdac1 define specific intestinal epithelial cell basal and inflammatory-dependent gene expression patterns and control cell proliferation. We show here that Hdac1 depletion in cellulo leads to increased histone acetylation after metabolic stresses, and to metabolic disturbances resulting in impaired responses to oxidative stresses, AMPK kinase activation and mitochondrial biogenesis. Thus, nuclear Hdac1 may control intestinal epithelial cell metabolism by regulating the supply of acetyl groups.
Collapse
Affiliation(s)
- Alexis Gonneaud
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Naomie Turgeon
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - François-Michel Boisvert
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - François Boudreau
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Claude Asselin
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.
| |
Collapse
|