1
|
Xie Y, Xu H, Gu Z. Ge-gen decoction alleviates primary dysmenorrhoea symptoms in a rat model. J OBSTET GYNAECOL 2024; 44:2337691. [PMID: 38594870 DOI: 10.1080/01443615.2024.2337691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Existing treatments for primary dysmenorrhoea (PD), such as NSAIDs, impart side effects. Ge-Gen decoction (GGD), a traditional Chinese medicine, has shown promise in treating PD, but its exact mechanisms remain unclear. Here, we aimed to investigate the efficiency of GGD in alleviating PD using a rat model to understand its precise mechanism of action. METHODS We established a rat model of dysmenorrhoea induced by oestradiol and oxytocin. The PD rats were administered GGD or Ibuprofen (positive control) intragastrically once daily for seven consecutive days. Serum levels of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2α), β-endorphin (β-EP), thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (6-keto-PGF1α) were determined using an enzyme-linked immunosorbent assay (ELISA). The expression levels of oestrogen receptor alpha (ERα) and cyclooxygenase-2 (COX-2) in uterine tissue were measured using immunohistochemical assays, and those of phosphorylated and total extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) were assessed using western blot analysis. RESULTS Treatment with GGD significantly reduced writhing behaviour, histopathological scores, and levels of COX-2, PGE2, and PGF2α in the serum of PD rats. Additionally, GGD increased β-EP content and inhibited ERK1/2 activation and ERα expression in uterine tissues. CONCLUSIONS The results of this study suggest that GGD alleviates PD in rats by suppressing the COX-2-mediated release of PGE2 and PGF2α, modulating the ERα/ERK1/2/COX-2 pathway, and increasing β-EP content. These results provide insights into the potential mechanisms of GGD in treating PD and support its further investigation as an alternative therapy for this condition.
Collapse
Affiliation(s)
- Yazhen Xie
- Department of Gynaecology, Taicang Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu, China
| | - Haifeng Xu
- Department of Anorectal Surgery, Taicang Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu, China
| | - Zhijuan Gu
- Department of Gynaecology, Taicang Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu, China
| |
Collapse
|
2
|
Chiang YF, Huang KC, Ali M, Hsia SM. Impact of Adlay-Based Formula on Pain and Discomfort in Women with Dysmenorrhea: A Randomized Controlled Trial. Nutrients 2024; 16:4026. [PMID: 39683420 DOI: 10.3390/nu16234026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Primary dysmenorrhea, a highly prevalent condition that significantly impacts women's daily activities and quality of life, occurs without underlying pelvic pathological changes. Conventional treatments, such as warm water therapy, provide temporary relief; however, more effective interventions are needed. This study aimed to evaluate the effectiveness of an Adlay-based formula in reducing dysmenorrhea symptoms through randomized controlled trials. METHODS A total of 69 participants were randomly assigned to either the Adlay-based formula group (n = 35) or the placebo group (n = 34). Baseline characteristics, including age, age of menarche, dysmenorrhea onset, menstrual duration, BMI, blood pressure, and heart rate, were comparable between groups. The primary outcomes were measured using the Visual Analogue Scale (VAS) for dysmenorrhea, pain assessment scales, the Menstrual Distress Questionnaire (MDQ), and serum levels of inflammatory biomarkers (PGE2, PGF2α, IL-6, Hs-CRP). RESULTS The intervention group showed a significant reduction in VAS scores at both the first treatment and at the end of the study compared to baseline and the placebo group. Pain assessments indicated improvements in persistent pain, dull pain, exhaustion, nausea/vomiting, lower abdominal swelling, back pain, diarrhea, and cold sweats. Additionally, biomarker analysis revealed significant reductions in PGE2, PGF2α, and Hs-CRP levels in the intervention group, with no significant change in IL-6 levels. CONCLUSIONS The Adlay-based formula effectively alleviated dysmenorrhea symptoms, improved pain and discomfort, and reduced inflammatory biomarkers compared to placebo. These findings suggested that the formula could serve as a promising alternative for managing primary dysmenorrhea.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
3
|
Lestariningsih S, Tamtomo DG, Sulistyowati S, Indarto D, Soetrisno S, Hidayati HB, Widada W. Effects of wet cupping in a rat model of primary dysmenorrhea. J Ayurveda Integr Med 2024; 15:101047. [PMID: 39657369 DOI: 10.1016/j.jaim.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/07/2024] [Accepted: 07/31/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Primary dysmenorrhea (PD) is characterized by discomfort with no organic etiology (no pelvic disease), recurring pain, or lower abdominal cramps that start between the first 8-72 h of menstruation. Cupping therapy uses a tool to form a vacuum at certain points on the skin. OBJECTIVES We investigated the mechanism of pain relief caused by cupping therapy in primary dysmenorrhea that is played by cupping therapy in PD. This study aimed to investigate the effects of the cupping method on pain symptoms, changes in PGF2α, PGE, and β-endorphin levels, and uterine morphology in PD. METHODS A total of 35 female rats were divided into five groups (n = 7 rats per group): control, PD, dysmenorrhea treated with dry cupping (DC), dysmenorrhea treated with wet cupping (WC), and dysmenorrhea treated with ibuprofen (IB) as a standard drug. Pain was assessed by measuring the degree of writhing pain. Serum PGF2α, PGE, and β-endorphin levels were evaluated using ELISA. Hematoxylin-eosin staining was used to examine uterine morphology, such as thickness, vacuolization, and inflammation. RESULTS WC had a pain normalization effect comparable to that of ibuprofen. Ibuprofen is superior to both types of cupping in reducing the PGF2α/PGE ratio and the PGF2α to β-endorphins ratio. WC and DC have capabilities comparable to those of ibuprofen in improving uterine vacuolization and inflammation. CONCLUSIONS These results indicate that WC is more effective than DC in suppressing dysmenorrhea symptoms, modulating the hormone level ratio, and repairing uterine pathology. The potential benefits of cupping provide an opportunity for further studies in human subjects.
Collapse
Affiliation(s)
- Sri Lestariningsih
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57126, Indonesia; Midwifery Program, Tanjungkarang Ministry of Health Polytechnic, Metro City, Sumatera, Lampung, Indonesia.
| | - Didik Gunawan Tamtomo
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
| | - Sri Sulistyowati
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57126, Indonesia; Department of Obstetrics and Gynecology, General Hospital UNS/Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Dono Indarto
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57126, Indonesia; Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia; Biomedical Laboratory, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Soetrisno Soetrisno
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57126, Indonesia; Department of Obstetrics and Gynecology, General Hospital UNS/Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Hanik Badriyah Hidayati
- Department of Neurology, Faculty of Medicine Airlangga University, Dr. Soetomo General Hospital, Mayjend. Prof. Dr. Moestopo Street, Number: 6-8, Surabaya, East Java, 60286, Indonesia
| | - Wahyudi Widada
- Faculty Health of Science, Muhammadiyah University of Jember, Jember, East Java, Indonesia
| |
Collapse
|
4
|
Wu J, Cao M, Jia Z, Zhu X, Zhou Y, Dong Y, Yu L, Hu C, Huang Y, Chen Z. Synergistic mechanism of stir-baked curcumae radix with vinegar in dysmenorrhea rats based on UPLC-Q-TOF/MS metabolomics. J Pharm Biomed Anal 2024; 240:115944. [PMID: 38183732 DOI: 10.1016/j.jpba.2023.115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024]
Abstract
Curcumae Radix (i.e. Huangsiyujin: HSYJ), a well-known traditional Chinese medicine (TCM), has been widely used in clinical practice for many years to treat depression and primary dysmenorrhea. Modern pharmacological researches have demonstrated its anti-inflammatory, antidepressant, and dysmenorrhea relief effects. According to the processing theory of TCM, it is believed that stir-baked HSYJ with vinegar may enhance the ability to disperse stagnant hepatoqi and alleviate pain. However, whether the vinegar concoction of HSYJ can enhance the therapeutic effect on the Qi stagnation due to liver depression (LDQS) type of dysmenorrhea and what its mechanism has not been well explained. Based on the processing drugs theory of "stir-baked with vinegar into liver", a metabolomic approach was used to investigate the therapeutic effect and mechanism of stir-baked HSYJ with vinegar to enhance the treatment of dysmenorrhea in rats. By establishing a rat model of dysmenorrhea of the "LDQS" type, observation of hemorheology, uterine pathological sections, COX-2 and OTR protein expression and other indicators; analysis of urinary metabolic changes in rats by UPLC-Q-TOF-MS technique, to compare the differential biomarkers and metabolic pathways in the treatment of dysmenorrhea due to "liver stagnation and qi stagnation" before and after stir-baked HSYJ with vinegar. Stir-baked HSYJ with vinegar significantly inhibited the writhing response of rats, improved hemorheology, repaired damaged diseased uterus and inhibited high expression of COX-2 and OTR proteins in uterus; 68 differential metabolites were screened from the urine of rats, compared with the raw HSYJ, the levels of 14 metabolites were significantly changed in stir-baked HSYJ with vinegar, involving the pathways of phenylalanine, tyrosine and tryptophan metabolism, cysteine and methionine metabolism, aspartate and glutamate metabolism. The potentiating effect of stir-baked HSYJ with vinegar may be related to the regulation of multiple amino acid metabolic pathways.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mayijie Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuolin Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoli Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yidian Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Key Laboratory for Quality and Efficiency Evaluation of TCM Formula Granules, Sichuan Neo-Green Pharmaceutical Technology Development Co., Ltd, Chengdu, China
| | - Yu Huang
- Key Laboratory for Quality and Efficiency Evaluation of TCM Formula Granules, Sichuan Neo-Green Pharmaceutical Technology Development Co., Ltd, Chengdu, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Liu X, Chen L, Sun P, Zhan Z, Wang J. Guizhi Fuling Formulation: A review on chemical constituents, quality control, pharmacokinetic studies, pharmacological properties, adverse reactions and clinical applications. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117277. [PMID: 37802375 DOI: 10.1016/j.jep.2023.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guizhi Fuling Formulation (GF), composed of Cinnamomi Ramulus, Poria, Paeoniae Radix, Moutan Cortex, and Persicae Semen, was first recorded as a pill in the Traditional Chinese Medicine (TCM) classical book Synopsis of Prescriptions of the Golden Chamber written by Zhang Zhongjing in the Eastern Han Dynasty (25-220 CE). As a TCM prescription, it functions to improve blood circulation, reduce blood stasis and eliminate abdominal lumps. Originally used to treat the restlessness of pregnancy due to a mass, it is now also effective in treating gynecological illnesses and various tumors such as cervical cancer, ovarian cancer, and others. With the expansion of clinical applications, GF was developed into different dosage forms, including Guizhi Fuling Pill (GFP), Guizhi Fuling Capsule (GFC), Guizhi Fuling Tablet (GFT), Guizhi Fuling Granule (GFG), and Guizhi Fuling Decoction (GFD). Different dosage forms of GF play an important role in clinical treatment. AIM OF THE REVIEW To systematically analyze and summarize the research findings concerning the chemical constituents, quality control, pharmacokinetic studies, pharmacological properties, adverse reactions, and clinical applications of GF, so as to point out the problems existing in the current research and provides opinions for future study. MATERIALS AND METHODS The relevant literatures were collected from classical TCM books and a variety of databases, including China National Knowledge Infrastructure, WanFang Data, PubMed, SpringerLink, Web of Science, and Google Scholar. All eligible studies are analyzed and summarized in this review. RESULTS There are some problems for GF: the quality control system is not perfect, the study of pharmacokinetics is not comprehensive, the explanation of pharmacological mechanism is insufficient, and the clinical safety has not been fully verified. A few of research directions for future research are proposed: (i) to establish the method of characteristic components combined with bioassay and multi-index content determination to improve the quality evaluation; (ii) to elucidate pharmacokinetic studies based on human pharmacokinetic characteristics and interaction with intestinal microbiota; (iii) to carry out pharmacological mechanism studies at whole, organ, cellular and molecular levels; (iv) to reconfirm safety of various dosage forms of GF based on large-scale clinical studies. CONCLUSIONS GF is extremely valuable in drug research and in clinical treatment especially for gynecological diseases. However, there are also some issues. Future efforts should focus on strengthening quality control, clarifying pharmacological and pharmacokinetic processes, and reconfirming clinical safety.
Collapse
Affiliation(s)
- Xinyue Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Lele Chen
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Peng Sun
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Zhaoshuang Zhan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Jiafeng Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| |
Collapse
|
6
|
Wu L, Yang Y, Lin M, Wang H, Li L, Wu H, Wang X, Yan M. Unraveling the anti-primary dysmenorrhea mechanism of Ainsliaea fragrans Champ. extract by the integrative approach of network pharmacology and experimental verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155213. [PMID: 37980805 DOI: 10.1016/j.phymed.2023.155213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND The plant Ainsliaea fragrans Champ. (A. fragrans) named "Xingxiang Tuerfeng", is a traditional herb with a long history of therapeutic practice in southern China in the treatment of gynecological diseases. PURPOSE The anti-inflammatory extract of Ainsliaea fragrans Champ. (AF-ext) exhibited anti-primary dysmenorrhea (PD) activity in oxytocin-induced mice. This study aimed to unravel the underlying mechanisms of AF-ext on PD by the integrative approach of network pharmacology and experimental verification. METHODS First, the therapeutic targets of AF-ext are predicted using network pharmacology and molecular docking methods. Second, activity screening and immunoblotting methods were used for target validation. Then, the therapeutic effect of AF-ext on PD was evaluated using oxytocin-induced mice and uterine strips model. RESULTS AF-p1, and AF-p2, the active ingredients of AF-ext, showed inhibitory effects on COX1/2 and EGFR, and all five active components showed antagonistic activity on TRPV1. AF-ext (25, 50, 100 mg/kg) could significantly reduce the number of writhing times and prolong writhing latencies in a dose-dependent manner. AF-ext inhibited spasmolytic activity in uterine strips induced by oxytocin and Ca2+ stimulation. AF-ext inhibited NF-κB/COX-2/PG pathway and activation of the NLRP3 inflammasome in PD mice. It significantly downregulated the PD-induced overexpression of p-p65/p65, p-IκBα, and COX-2 by inhibiting the NF-κB pathway. Moreover, the overexpression of NLRP3, p20/pro-Caspase 1, and p17/pro-IL-1β was greatly downregulated. CONCLUSIONS AF-ext demonstrated anti-inflammatory, analgesic, and spasmolytic activity in the treatment of PD. It inhibited the NF-κB/COX-2/PG pathway and NLRP3 inflammasome activation in PD mice with a multi-target approach.
Collapse
Affiliation(s)
- Liang Wu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China; Shenzhen Research Institute of China, Pharmaceutical University, Shenzhen 518057, China
| | - Ying Yang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Min Lin
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Haiqing Wang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Luqian Li
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Haixia Wu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Xue Wang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Ming Yan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China.
| |
Collapse
|
7
|
Wang J, Ru QM, Yu XH, Wang C, Li K, Han CZY, Li N, Zhao J, Wood JN, Liu X, Wang R, Wang Y. Direct inhibition of microglial activation by a μ receptor selective agonist alleviates inflammatory-induced pain hypersensitivity. Eur J Pharmacol 2023; 961:176182. [PMID: 37951488 DOI: 10.1016/j.ejphar.2023.176182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Opioids are widely used in the treatment of moderate and severe pain. Nociceptive stimulation has been reported to potentially promote microglial activation and neuroinflammation, which also causes chronic pain sensitization. The aim of this study was to demonstrate whether the novel μ receptor agonist MEL-0614 could inhibit activated microglia directly and the associated signaling pathway. Mice were administered lipopolysaccharide and formalin to induce allodynia. Von Frey test was used to detect the anti-allodynia effect of MEL-0614 before and after LPS and formalin injection. In the spinal cord, the levels of proinflammatory cytokines and microglial activation were determined after MEL-0614 administration. BV2 and primary microglia were cultured to further explore the effect of MEL-0614 on LPS-induced microglial activation and key signaling pathways involved. MEL-0614 partially prevented and reversed allodynia induced by LPS and formalin in vivo, which was not inhibited by the μ receptor antagonist CTAP. Minocycline was effective in reversing the established allodynia. MEL-0614 also downregulated the activation of microglia and related proinflammatory cytokines in the spinal cord. Additionally, in BV2 and primary microglia, MEL-0614 inhibited the LPS-induced upregulation of proinflammatory factors, which was unaffected by CTAP. The NLR family pyrin domain containing 3 (NLRP3) related signaling pathway may be involved in the interaction between MEL-0614 and microglia. The opioid agonist MEL-0614 inhibited the activation of microglia and the subsequent upregulation of proinflammatory factors both in vivo and in vitro. Notably, this effect is partially mediated by the μ receptor.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qiao-Min Ru
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Hui Yu
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Changlong Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kai Li
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chao-Zhen-Yi Han
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Na Li
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Rui Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Yuan Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
8
|
Yang X, Tian Y, Liu J, Kou Y, Xie Y, Wang S, Zhao Y. Peony Pollen Protects against Primary Dysmenorrhea in Mice by Inhibiting Inflammatory Response and Regulating the COX2/PGE2 Pathway. Int J Mol Sci 2023; 24:17245. [PMID: 38139073 PMCID: PMC10743473 DOI: 10.3390/ijms242417245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Peony pollen contains multiple nutrients and components and has been used as a traditional Chinese medicine with a long history, but the effect of the treatment of primary dysmenorrhea remains to be clarified. The aim of this study is to investigate the therapeutic effect of peony pollen on primary dysmenorrhea mice and the potential mechanism. A uterus contraction model in vitro and primary dysmenorrhea mice were used to evaluate the treatment effect of peony pollen on primary dysmenorrhea. The primary dysmenorrhea mice were treated with 62.5 mg/kg, 125 mg/kg, or 250 mg/kg of peony pollen, and the writhing response, latency period, histopathological changes in the uterus, prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) levels, and infiltration of neutrophils and macrophages were investigated. Protein expression of interleukin 1 β (IL-1β), interleukin 6 (IL-6), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cyclooxygenase-2 (COX-2), microsomal prostaglandin-E synthase 1 (mPGEs-1), BCL2-Associated X (Bax), B-cell lymphoma-2 (BCL-2), caspase-3, and cleaved caspase-3 were detected by Western blot, and the oxidative stress related marker malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and reactive oxygen species (ROS) were evaluated. Peony pollen could attenuate spontaneous or oxytocin-induced uterus contractions in vitro. Moreover, peony pollen decreased the writhing times, prolonged the writhing latency, and reduced the pathological damage of uterine tissues. Furthermore, the inflammatory cell infiltration and the protein expression of IL-1β, IL-6, and NLRP3 were decreased. The COX-2/PGE2 pathway was inhibited; oxidative stress and apoptosis in the uterus also improved in the uterus of primary dysmenorrhea mice. Peony pollen exerts a positive effect on primary dysmenorrhea by inhibiting the inflammatory response and modulating oxidative stress and apoptosis by regulating the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Siwang Wang
- The College of Life Science, Northwest University, Xi’an 710069, China; (X.Y.); (Y.T.); (Y.K.); (Y.X.)
| | - Ye Zhao
- The College of Life Science, Northwest University, Xi’an 710069, China; (X.Y.); (Y.T.); (Y.K.); (Y.X.)
| |
Collapse
|
9
|
Feng W, Duan C, Pan F, Yan C, Dong H, Wang X, Zhang J. Integration of metabolomics and network pharmacology to reveal the protective mechanism underlying Wogonoside in acute myocardial ischemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116871. [PMID: 37393028 DOI: 10.1016/j.jep.2023.116871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional medicine, both Scutellaria baicalensis Georgi (SBG) and the traditional formulas composed of it have been used to treat a wide range of diseases, including cancer and cardiovascular. Wogonoside (Wog) is the biologically active flavonoid compound extracted from the root of SBG, with potential cardiovascular protective effects. However, the mechanisms underlying the protective effect of Wog on acute myocardial ischemia (AMI) have not yet been clearly elucidated. AIM OF THE STUDY To explore the protective mechanism of Wog on AMI rats by comprehensively integrating traditional pharmacodynamics, metabolomics, and network pharmacology. METHODS The rat was pretreatment with Wog at a dose of 20 mg/kg/d and 40 mg/kg/d once daily for 10 days and then ligated the left anterior descending coronary artery of rats to establish the AMI rat model. Electrocardiogram (ECG), cardiac enzyme levels, heart weight index (HWI), Triphenyltetrazolium chloride (TTC) staining, and histopathological analyses were adopted to evaluate the protective effect of Wog on AMI rats. Moreover, a serum metabolomic-based UHPLC-Q-Orbitrap MS approach was performed to find metabolic biomarkers and metabolic pathways, and network pharmacology analysis was applied to predict targets and pathways of Wog in treating AMI. Then, the network pharmacology and metabolomic results were integrated to elucidate the mechanism of Wog in treating AMI. Finally, RT- PCR was used to detect the mRNA expression levels of PTGS1, PTGS2, ALOX5, and ALOX15 to validate the result of integrated metabolomics and network analysis. RESULTS Pharmacodynamic studies suggest that Wog could effectively prevent the ST-segment of electrocardiogram elevation, reduce the myocardial infarct size, heart weight index, and cardiac enzyme levels, and alleviate cardiac histological damage in AMI rats. Metabolomics analysis showed that the disturbances of metabolic profile in AMI rats were partly corrected by Wog and the cardio-protection effects on AMI rats involved 32 differential metabolic biomarkers and 4 metabolic pathways. In addition, the integrated analysis of network pharmacology and metabolomics showed that 7 metabolic biomarkers, 6 targets, and 6 crucial pathways were the main mechanism for the therapeutic application of Wog for AMI. Moreover, the results of RT-PCR showed that PTGS1, PTGS2, ALOX5, and ALOX15 mRNA expression levels were reduced after treatment with Wog. CONCLUSION Wog exerts cardio-protection effects on AMI rats via the regulation of multiple metabolic biomarkers, multiple targets, and multiple pathways, our current study will provide strong scientific evidence supporting the therapeutic application of Wog for AMI.
Collapse
Affiliation(s)
- Wenzhong Feng
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Cancan Duan
- Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| | - Fuzhu Pan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Caiying Yan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Hongjing Dong
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
10
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
11
|
Hosseini E, Kohan-Ghadr HR, Bazrafkan M, Amorim CA, Askari M, Zakeri A, Mousavi SN, Kafaeinezhad R, Afradiasbagharani P, Esfandyari S, Nazari M. Rescuing fertility during COVID-19 infection: exploring potential pharmacological and natural therapeutic approaches for comorbidity, by focusing on NLRP3 inflammasome mechanism. J Assist Reprod Genet 2023; 40:1173-1185. [PMID: 36892705 PMCID: PMC9995769 DOI: 10.1007/s10815-023-02768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The respiratory system was primarily considered the only organ affected by Coronavirus disease 2019 (COVID-19). As the pandemic continues, there is an increasing concern from the scientific community about the future effects of the virus on male and female reproductive organs, infertility, and, most significantly, its impact on the future generation. The general presumption is that if the primary clinical symptoms of COVID-19 are not controlled, we will face several challenges, including compromised infertility, infection-exposed cryopreserved germ cells or embryos, and health complications in future generations, likely connected to the COVID-19 infections of parents and ancestors. In this review article, we dedicatedly studied severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) virology, its receptors, and the effect of the virus to induce the activation of inflammasome as the main arm of the innate immune response. Among inflammasomes, nucleotide oligomerization domain-like receptor protein, pyrin domain containing 3 (NLRP3) inflammasome pathway activation is partly responsible for the inflicted damages in both COVID-19 infection and some reproductive disorders, so the main focus of the discussion is on NLRP3 inflammasome in the pathogenesis of COVID-19 infection alongside in the reproductive biology. In addition, the potential effects of the virus on male and female gonad functions were discussed, and we further explored the potential natural and pharmacological therapeutic approaches for comorbidity via NLRP3 inflammasome neutralization to develop a hypothesis for averting the long-term repercussions of COVID-19. Since activation of the NLRP3 inflammasome pathway contributes to the damage caused by COVID-19 infection and some reproductive disorders, NLRP3 inflammasome inhibitors have a great potential to be considered candidates for alleviating the pathological effects of the COVID-19 infection on the germ cells and reproductive tissues. This would impede the subsequent massive wave of infertility that may threaten the patients.
Collapse
Affiliation(s)
- Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Obstetrics and Gynecology, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI USA
| | - Mahshid Bazrafkan
- Reproductive Biotechnology Research Center, Avicenna Research Institute (ARI), ACECR, Tehran, Iran
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maryam Askari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Armin Zakeri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Neda Mousavi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Raheleh Kafaeinezhad
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | | | - Sahar Esfandyari
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Liang X, Zhao Y, Xu T, Wang W, Sun W, Wang R. Catalpol Alleviates Depression by Inhibiting NLRP3 Inflammasome via TLR4/MAPK/NF-Kb Pathway. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:722-731. [PMID: 37551177 PMCID: PMC10404318 DOI: 10.18502/ijph.v52i4.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/22/2023] [Indexed: 08/09/2023]
Abstract
Background We aimed to explore catalpol and NF-k. The role of antidepressant and anti-inflammatory effects of b inhibitor in depression induced by chronic unpredictable mild stress (CUMS). Methods Under the guidance of Qiqihar Medical University, from January 2020 to January 2021, the weight, sucrose consumption and rest time of mice during swimming were monitored, the neurobehavioral changes of rats under CUMS were used to determine the experimental model; ELISA detection of iNOS, ROS, caspase-1, IL-1 β And IL-18 expression level; Western blotting detection of TLR4, MAPK and NF-κB expression level; LPS-induced cell model. INOS, NLRP3, caspase-1, IL-1 in RT-qPCR and ELISA detection models β And IL-18 expression level; the TLR4, MAPK and NF-κB level were detected by Western blotting. Results CUMS can make rats lose weight, reduce sucrose consumption rate and prolong rest time. Catapol can enhance this effect; In the depression model, ROS, NLRP3, NF-κ B and iNOS were up-regulated Catalpol group MAPK, NF-κ Reduced expression of B and TLR4; ROS, caspase-1, IL-1β, IL-18 and iNOS protein increased. Cell model group TLR4, MAPK and NF-κ. The high protein content of B decreased in catalpol group. Conclusion Catalpol acts as anti-depressant and anti-inflammatory molecule indepression induced by CUMS. Combination of catalpol with NF-κB inhibitor might play a role in the treatment of depression through regulating the neuroinflammation.
Collapse
Affiliation(s)
- Xuemei Liang
- The Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Yuhuan Zhao
- The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Tianjiao Xu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161000, China
| | - Wei Wang
- Mudanjiang Medical College, Mudanjiang 155000, China
| | - Weidong Sun
- The Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Rui Wang
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161000, China
| |
Collapse
|
13
|
Wang J, He X, Zhu C, Ding H, Feng G, Yang X, Liu L, Song Y. The relationship between spino-pelvic alignment and primary dysmenorrhea. Front Surg 2023; 10:1125520. [PMID: 36843999 PMCID: PMC9945517 DOI: 10.3389/fsurg.2023.1125520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Most women of reproductive age suffered from the primary dysmenorrhea (PD). Up to date, most studies on the etiology of dysmenorrhea focused on endocrine factors while ignored the effect of spino-pelvic bony anatomy on uterus. In this study, we innovatively shed light on the relationship between primary dysmenorrhea and sagittal spino-pelvic alignment. Materials and Methods 120 patients diagnosed with primary dysmenorrhea and a control group of 118 healthy volunteers were enrolled into this study. All subjects received the standing full-length posteroanterior plain radiography to evaluate the sagittal spino-pelvic parameters. The visual analog scale (VAS) was used to assess pain rating of primary dysmenorrhea patients. Analysis of variance (ANOVA) or Student's t test was performed to measure statistical significance between differences. Results There was a significant difference in pelvic incidence (PI), sacral slope (SS), lumbar lordosis (LL) and thoracic kyphosis (TK) between PD group and Normal group (P<0.05). Furthermore, in PD group, the PI and SS was significant different between mild pain group and moderate pain group (P<0.05) and there was a significant negative correlation between pain rating and SS. From the perspective of sagittal spinal alignment, the majority of PD patients were classified with Roussouly type 2, meanwhile most normal people were classified with Roussouly type 3. Conclusion Sagittal spino-pelvic alignment was related to primary dysmenorrhea symptoms. Lower SS and PI angles may contribute to a worsen pain in PD patients.
Collapse
Affiliation(s)
- Juehan Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xin He
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China,Correspondence: Xi Yang Limin Liu
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China,Correspondence: Xi Yang Limin Liu
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Xie Y, Qian J. Ge-Gen Decoction Exerts an Anti-Primary Dysmenorrhea Effect in Rats by Inactivating the HSP90/NLRP3/NF-κB/COX-2 Pathway. J Inflamm Res 2023; 16:1571-1580. [PMID: 37092132 PMCID: PMC10115205 DOI: 10.2147/jir.s400545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Objective Although Ge-Gen decoction (GGD) has beneficial effects on primary dysmenorrhea (PD), the underlying mechanisms remain poorly understood. Our previous proteomic data revealed decreased level of heat shock protein 90 (HSP90) in uterine tissues of rats with PD after GGD treatment. However, the potential role of HSP90 in the anti-PD effect of GGD and the underlying mechanisms remain unexplored. This study investigated the potential role and mechanism of HSP90 in the anti-PD effect of GGD using a PD rat model. Methods Wistar female rats were used to investigate the potential role of HSP90 in the anti-PD effect of GGD. The rat PD model was established by injecting estradiol benzoate and oxytocin. GGD, Terazosin (an agonist of HSP90) or GGD combined with Terazosin were orally administered to the PD rats. The expression levels of protein and cytokines, including HSP90, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2) in the uterine tissue of rats in each group were detected by immunohistochemical assay or Western blot. Results GGD ameliorated the writhing response, suppressed the protein levels of HSP90 and inflammation-associated proteins, including NLRP3, NF-κB, and COX-2 in uterine tissues of rats with PD. Terazosin attenuated the anti-PD effect of GGD and reversed the effects of GGD on the protein levels of NLRP3, NF-κB and COX-2 in uterine tissues. Conclusion GGD exerts an anti-PD effect and suppresses levels of HSP90 and some inflammation associated proteins in uterine tissues of rats.
Collapse
Affiliation(s)
- Yazhen Xie
- Department of Gynaecology, Taicang Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, People’s Republic of China
- Correspondence: Yazhen Xie, Department of Gynaecology, Taicang Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, 140 Renmin South Road, Taicang, Jiangsu Province, People’s Republic of China, Tel +86 512 5372 8661, Email
| | - Jianqiang Qian
- Department of Traditional Chinese Medicine, Taicang Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, People’s Republic of China
| |
Collapse
|
15
|
Sun S, Jiang W, Yan X, Zhang J, Gao L, Wu C, Zhu B, Wu L. Ligand-gated ion channel P2X7 regulates NLRP3/Caspase-1-mediated inflammatory pain caused by pulpitis in the trigeminal ganglion and medullary dorsal horn. Brain Res Bull 2023; 192:1-10. [PMID: 36328143 DOI: 10.1016/j.brainresbull.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Emerging research has revealed that the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasomes contribute to the development of inflammatory and neuropathic pains. In addition, microglia are involved in the central nervous system (CNS) pain conduction. However, the relationship between NLRP3 inflammasome and dental inflammatory pain conduction is yet to be established. Therefore, this study aimed to investigate the roles of P2X7 and NLRP3/Caspase-1 (CASP1) in the inflammatory pain caused by pulpitis using a rat experimental pulpitis model. We discovered that the decreased pain threshold was inversely correlated with the increased expression of NLRP3, Caspase-1, P2X7, interleukin-1β (IL-1β), and IL-18 in the trigeminal ganglion and dorsal horn of the medulla after dental pulp exposure. Furthermore, the pain threshold of rats caused by pulpitis was increased by intraperitoneal injection of Brilliant Blue G (BBG), a P2X7 inhibitor, and the expression levels of NLRP3 and related inflammatory factors IL-1β and IL-18 were decreased. Moreover, treatment with 130 nM KCl, a P2X7 inhibitor, significantly reduced the expression of NLRP3, IL-1β, IL-18, Caspase-1, and P2X7 in microglia after lipopolysaccharide(LPS) stimulation. In conclusion, our findings suggest that NLRP3/ CASP1 plays a vital role in the conduction of dental pain; the P2X7regulates NLRP3 pathway in the context of dental inflammatory pain conduction, and inhibiting P2X7 may be a potential strategy for dental inflammatory pain relief.
Collapse
Affiliation(s)
- Shukai Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi 710032, China.
| | - Wenkai Jiang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, China.
| | - Xia Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi 710032, China.
| | - Jing Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi 710032, China.
| | - Lei Gao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi 710032, China.
| | | | - Bin Zhu
- Outpatient Department, General Hospital of Tibetan Military Command Lhasa, China.
| | - Lian Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
16
|
Hong F, He G, Zhang M, Yu B, Chai C. The Establishment of a Mouse Model of Recurrent Primary Dysmenorrhea. Int J Mol Sci 2022; 23:ijms23116128. [PMID: 35682815 PMCID: PMC9181441 DOI: 10.3390/ijms23116128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 01/31/2023] Open
Abstract
Primary dysmenorrhea is one of the most common reasons for gynecologic visits, but due to the lack of suitable animal models, the pathologic mechanisms and related drug development are limited. Herein, we establish a new mouse model which can mimic the periodic occurrence of primary dysmenorrhea to solve this problem. Non-pregnant female mice were pretreated with estradiol benzoate for 3 consecutive days. After that, mice were injected with oxytocin to simulate menstrual pain on the 4th, 8th, 12th, and 16th days (four estrus cycles). Assessment of the cumulative writhing score, uterine tissue morphology, and uterine artery blood flow and biochemical analysis were performed at each time point. Oxytocin injection induced an equally severe writhing reaction and increased PGF2α accompanied with upregulated expression of COX-2 on the 4th and 8th days. In addition, decreased uterine artery blood flow but increased resistive index (RI) and pulsatility index (PI) were also observed. Furthermore, the metabolomics analysis results indicated that arachidonic acid metabolism; linoleic acid metabolism; glycerophospholipid metabolism; valine, leucine, and isoleucine biosynthesis; alpha-linolenic acid metabolism; and biosynthesis of unsaturated fatty acids might play important roles in the recurrence of primary dysmenorrhea. This new mouse model is able to mimic the clinical characteristics of primary dysmenorrhea for up to two estrous cycles.
Collapse
Affiliation(s)
- Fang Hong
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (F.H.); (G.H.)
| | - Guiyan He
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (F.H.); (G.H.)
| | - Manqi Zhang
- Department of Medicine, Duke University, Durham, NC 27708, USA;
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (F.H.); (G.H.)
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (B.Y.); (C.C.)
| | - Chengzhi Chai
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (F.H.); (G.H.)
- Correspondence: (B.Y.); (C.C.)
| |
Collapse
|
17
|
Guo L, Wang Z, Li J, Cui L, Dong J, Meng X, Zhu G, Li J, Wang H. MCC950 attenuates inflammation-mediated damage in canines with Staphylococcus pseudintermedius keratitis by inhibiting the NLRP3 inflammasome. Int Immunopharmacol 2022; 108:108857. [PMID: 35597123 DOI: 10.1016/j.intimp.2022.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Bacterial keratitis is a common eye disease in dogs and can seriously affect vision. This study investigated the anti-inflammatory effect of MCC950 in the cornea of canines infected with Staphylococcus pseudintermedius (S. pseudintermedius). METHODS In vitro, canine cornea epithelial cells were pretreated with MCC950 and PDTC and then infected with S. pseudintermedius. The key proteins of the NF-κB pathway and NLRP3 inflammasome were detected by Western blotting, the levels of inflammatory factors were detected by qPCR, and the levels of MDA and LDH were detected by assay kit. In vivo, the canine keratitis model was established by injecting S. pseudintermedius into the corneal stroma layer. After treatment with MCC950, slit-lamp examinations were performed. Cornea tissue protein and RNA were extracted, and Western blotting was used to detect key proteins of the NF-κB pathway and NLRP3 inflammasome. qPCR was used to detect the inflammatory factors. Paraffin sections of corneal tissue were prepared for HE staining and immunohistochemical staining. RESULTS After MCC950 treatment, the expression levels of key proteins in the NF-κB pathway and NLRP3 inflammasome in canine cornea epithelial cells and corneal tissues were decreased, and the expression levels of IL-1β, IL-6, IL-8, IL-18 and TNF-α were reduced. Cellular MDA and LDH levels were decreased. In vivo, the degree of corneal opacity, edema, neovascularization and corneal injury area decreased after MCC950 treatment. Canine corneal sections showed that MCC950 attenuated neutrophil infiltration. CONCLUSION MCC950 alleviates the inflammatory response to canine keratitis caused by S. pseudintermedius by inhibiting the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| | - Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
18
|
MCC950 in the treatment of NLRP3-mediated inflammatory diseases: Latest evidence and therapeutic outcomes. Int Immunopharmacol 2022; 106:108595. [DOI: 10.1016/j.intimp.2022.108595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
|
19
|
Acupuncture Alleviates Menstrual Pain in Rat Model via Suppressing Eotaxin/CCR3 Axis to Weak EOS-MC Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4571981. [PMID: 35069759 PMCID: PMC8776494 DOI: 10.1155/2022/4571981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
Introduction Emerging data show that chemokine-mediated inflammation is involved in the occurrence and maintenance of pain. Recent evidence suggests that eotaxin levels rise when dysmenorrhea happens. The purpose of this study is to investigate whether eotaxin/CC chemokine receptor 3 (CCR3) axis, a key regulatory pathway for eosinophils (EOS) recruitment, is involved in acupuncture analgesia for dysmenorrhea. Methods After the cold congealing dysmenorrhea (CCD) rat model prepared, animals received perpendicular needling (PN) and transverse needling (TN) at SP6, respectively, for 20 min. The CCR3 agonist CCL11 was administered 30 min prior to acupuncture. Pain behavior was assessed via a writhing response. The uterine contraction test was detected by an electrophysiological method. Eotaxin, histamine (HIS), and interleukin-6 (IL-6) levels were evaluated by ELISA. The expression of CCR3 and histamine H1 receptor (H1R) was analyzed by RT-qPCR and Western blot. The expression of EOS, mast cells (MCs), eosinophil peroxidase (EPO), and eosinophil cationic protein (ECP) was assessed by hematoxylin-eosin staining (HE), Toluidine Blue staining (TB), and immunohistochemistry, respectively. Results Acupuncture prominently attenuated the menstrual pain in CCD rats, particularly TN technique. Electrophysiological recording data showed that the increased uterine contractility was ameliorated by acupuncture. In addition, TN decreased the release of eotaxin, HIS, IL-6, and the expression of CCR3 and H1R. HE, TB staining, and immunohistochemistry experiments showed that the increased expression of EOS, MCs, EPO, and ECP in uterine tissues was reversed by TN. Furthermore, we found that the effects of TN against CCD-induced menstrual pain, increased ECP expression, and HIS level were abolished by CCL11. Conclusion TN alleviated menstrual pain by improving the uterine inflammatory environment via suppressing eotaxin/CCR3 axis to weak EOS-MC activation in CCD rats. The study findings support the acupuncture as a promising approach for dysmenorrhea, meanwhile, indicating the importance of performing appropriate needling technique.
Collapse
|
20
|
Ni J, Jiang L, Shen G, Xia Z, Zhang L, Xu J, Feng Q, Qu H, Xu F, Li X. Hydrogen sulfide reduces pyroptosis and alleviates ischemia-reperfusion-induced acute kidney injury by inhibiting NLRP3 inflammasome. Life Sci 2021; 284:119466. [PMID: 33811893 DOI: 10.1016/j.lfs.2021.119466] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
AIMS Ischemia-reperfusion (I/R)-induced acute kidney injury (AKI) shows high mortality. Hydrogen sulfide (H2S) is essential for regulating kidney function. This study explored the role and mechanism of H2S in I/R-induced AKI. MATERIALS AND METHODS I/R-induced mouse model and hypoxia/reoxygenation (H/R)-induced HK2 cell model of AKI were established and treated with NaHS (H2S donor), MCC950 (NLRP3 inhibitor) or DL-Propargylglycine (PAG, CSE inhibitor). Serum creatinine (Cr) and blood urea nitrogen (BUN) were measured to evaluate kidney function. The pathological changes of kidney tissues were detected. H2S level and H2S synthetase activity in kidney tissues were detected. Pyroptosis was assessed by pyroptotic cell numbers and pyroptosis-related protein levels determination. HK-2 cell viability and apoptosis were measured. NLRP3 protein level was detected. The role of NLRP3/Caspase-1 was verified in vivo and in vitro after MCC950 or PAG intervention. KEY FINDINGS I/R-induced mice showed elevated levels of serum Cr and BUN, and obvious pathological changes, including severe tubular dilatation, tubular cell swelling, tubular epithelial cell abscission, tubular cell necrosis and inflammatory cell infiltration. H2S level and H2S synthetase activity were decreased. Increasing the level of H2S by NaHS improved the pathological changes of kidney tissues and limited the number of pyroptotic cells. In vitro, NaHS could reverse H/R-induced cell injury. H2S suppressed cell pyroptosis and kidney injury via inhibiting the NLRP3/Caspase-1 axis. SIGNIFICANCE We highlighted that H2S prevented cell pyroptosis via suppressing the NLRP3/Caspase-1 axis, thereby inhibiting I/R-induced AKI. These findings may confer novel insights for the clinical management of I/R-induced AKI.
Collapse
Affiliation(s)
- Jindi Ni
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Lijing Jiang
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Guofeng Shen
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Zhuye Xia
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Lu Zhang
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Jing Xu
- General Practice, Shanghai Meilong Community Health Service Center, Shanghai 201199, China
| | - Quanxia Feng
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fulin Xu
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai 201199, China.
| | - Xiang Li
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
21
|
Corcoran SE, Halai R, Cooper MA. Pharmacological Inhibition of the Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome with MCC950. Pharmacol Rev 2021; 73:968-1000. [PMID: 34117094 DOI: 10.1124/pharmrev.120.000171] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome drives release of the proinflammatory cytokines interleukin (IL)-1β and IL-18 and induces pyroptosis (lytic cell death). These events drive chronic inflammation, and as such, NLRP3 has been implicated in a large number of human diseases. These range from autoimmune conditions, the simplest of which is NLRP3 gain-of-function mutations leading to an orphan disease, cryopyrin-associated period syndrome, to large disease burden indications, such as atherosclerosis, heart failure, stroke, neurodegeneration, asthma, ulcerative colitis, and arthritis. The potential clinical utility of NLRP3 inhibitors is substantiated by an expanding list of indications in which NLRP3 activation has been shown to play a detrimental role. Studies of pharmacological inhibition of NLRP3 in nonclinical models of disease using MCC950 in combination with human genetics, epigenetics, and analyses of the efficacy of biologic inhibitors of IL-1β, such as anakinra and canakinumab, can help to prioritize clinical trials of NLRP3-directed therapeutics. Although MCC950 shows excellent (nanomolar) potency and high target selectivity, its pharmacokinetic and toxicokinetic properties limited its therapeutic development in the clinic. Several improved, next-generation inhibitors are now in clinical trials. Hence the body of research in a plethora of conditions reviewed herein may inform analysis of the potential translational value of NLRP3 inhibition in diseases with significant unmet medical need. SIGNIFICANCE STATEMENT: The nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is one of the most widely studied and best validated biological targets in innate immunity. Activation of NLRP3 can be inhibited with MCC950, resulting in efficacy in more than 100 nonclinical models of inflammatory diseases. As several next-generation NLRP3 inhibitors are entering proof-of-concept clinical trials in 2020, a review of the pharmacology of MCC950 is timely and significant.
Collapse
Affiliation(s)
- Sarah E Corcoran
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Reena Halai
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Matthew A Cooper
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| |
Collapse
|