1
|
Sendani AA, Farmani M, Jahankhani K, Kazemifard N, Ghavami SB, Houri H, Ashrafi F, Sadeghi A. Exploring the Anti-Inflammatory and Antioxidative Potential of Selenium Nanoparticles Biosynthesized by Lactobacillus casei 393 on an Inflamed Caco-2 Cell Line. Cell Biochem Biophys 2024:10.1007/s12013-024-01356-z. [PMID: 39261390 DOI: 10.1007/s12013-024-01356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 09/13/2024]
Abstract
Selenium (Se) plays a crucial role in modulating inflammation and oxidative stress within the human system. Biogenic selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei (L. casei) exhibit anti-inflammatory and anti-oxidative properties, positioning them as a promising alternative to traditional supplements characterized by limited bioavailability. With this context in mind, this study investigates the impact of selenium and L. casei in ameliorating inflammation and oxidative stress using a cell line model. The study is centered on the biosynthesis of selenium nanoparticles (SeNPs) by L. casei 393 under anaerobic conditions using a solution of sodium selenite (Na2SeO3) in the bacterial culture medium. The generation of SeNPs ensued from the interaction of L. casei bacteria with selenium ions, a process characterized via transmission electron microscopy (TEM) to confirm the synthesis of SeNPs. To induce inflammation, the human colonic adenocarcinoma cell line, Caco-2 was subjected to interleukin-1 beta (IL-1β) at concentrations of 0.5 and 25 ng/ml. Subsequent analyses encompass the evaluation of SeNPs derived from L. casei, its supernatant, commercial selenium, and L. casei probiotic on Caco2 cell line. Finally, we assessed the inflammatory and oxidative stress markers. The assessment of inflammation involved the quantification of NF-κB and TGF-β gene expression levels, while oxidative stress was evaluated through the measurement of Nrf2, Keap1, NOX1, and SOD2 gene levels. L. casei successfully produced SeNPs, as confirmed by the color change in the culture medium and TEM analysis showing their uniform distribution within the bacteria. In the inflamed Caco-2 cell line, the NF-κB gene was upregulated, but treatment with L. casei-SeNPs and selenium increased TGF-β expression. Moreover, L. casei-SeNPs upregulated SOD2 and Nrf2 genes, while downregulating NOX1, Keap1, and NF-κB genes. These results demonstrated the potential of L. casei-SeNPs for reducing inflammation and managing oxidative stress in the Caco-2 cell line. The study underscores the ability of L. casei-SeNPs to reduce oxidative stress and inflammation in inflamed Caco-2 cell lines, emphasizing the effectiveness of L. casei as a source of selenium. These insights hold significant promise for the development of SeNPs derived from L. casei as potent anti-inflammatory and anti-cancer agents, paving the way for novel therapeutic applications in the field.
Collapse
Affiliation(s)
- Azadeh Aghamohammadi Sendani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kang L, Jia Y, Wu Y, Liu H, Zhao D, Ju Y, Pan C, Mao J. Selenium Nanoparticle and Melatonin Treatments Improve Melon Seedling Growth by Regulating Carbohydrate and Polyamine. Int J Mol Sci 2024; 25:7830. [PMID: 39063071 PMCID: PMC11276989 DOI: 10.3390/ijms25147830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Bio-stimulants, such as selenium nanoparticles and melatonin, regulate melon growth. However, the effects of individual and combined applications of selenium nanoparticles and melatonin on the growth of melon seedlings have not been reported. Here, two melon cultivars were sprayed with selenium nanoparticles, melatonin, and a combined treatment, and physiological and biochemical properties were analyzed. The independent applications of selenium nanoparticles, melatonin, and their combination had no significant effects on the plant heights and stem diameters of Jiashi and Huangmengcui melons. Compared with the controls, both selenium nanoparticle and melatonin treatments increased soluble sugars (6-63%) and sucrose (11-88%) levels, as well as the activity of sucrose phosphate synthase (171-237%) in melon leaves. The phenylalanine ammonia lyase (29-95%), trans cinnamate 4-hydroxylase (32-100%), and 4-coumaric acid CoA ligase (26-113%), as well as mRNA levels, also increased in the phenylpropanoid metabolism pathway. Combining the selenium nanoparticles and melatonin was more effective than either of the single treatments. In addition, the levels of superoxide dismutase (43-130%), catalase (14-43%), ascorbate peroxidase (44-79%), peroxidase (25-149%), and mRNA in melon leaves treated with combined selenium nanoparticles and melatonin were higher than in controls. The results contribute to our understanding of selenium nanoparticles and melatonin as bio-stimulants that improve the melon seedlings' growth by regulating carbohydrate, polyamine, and antioxidant capacities.
Collapse
Affiliation(s)
- Lu Kang
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.K.)
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yujiao Jia
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.K.)
| | - Yangliu Wu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hejiang Liu
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Duoyong Zhao
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yanjun Ju
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Canping Pan
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.K.)
| | - Jiefei Mao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
3
|
Ahmad I, Mashwani ZUR, Younas Z, Yousaf T. LCMS Based Untargeted Metabolic Profiling Revealed a Strong Association of Nanoselenium Treated Sesame (Sesamum indicum) Seed Bioactive Compounds as Novel Potential Disease Targets- A Nano-bioinformatics Approach. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04976-6. [PMID: 38884854 DOI: 10.1007/s12010-024-04976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The convergence of nanotechnology with bioinformatics and the study of plant secondary metabolites hold remarkable potential for transformative scientific breakthroughs. Synergy enables a deeper understanding of the biosynthesis and functions of plant secondary metabolites, unlocking avenues to engineer novel applications in areas like pharmaceuticals, agriculture, and sustainable materials. The present study was conducted to check the effect of plant-mediated selenium nanoparticles to improve the bioactive compounds in sesame. Three varieties of sesame (TS-5, TH-6, and Till-18) were sown and got treated with different concentration of selenium nanoparticles. On the basis of antioxidant, biochemical, and physiological parameters, best performing seed samples from crop were selected and subjected to UHPLC analysis. From all 276 identified metabolites, the top 20 differentially expressed bioactive, medicinally important compounds were subjected to Swiss target prediction, KEGG, and Metascape analysis to reveal drug targets, gene targets, cell targets, and disease targets. Swiss target prediction revealed that most of the drug targets had kinases as the highest target in all the bioactive metabolites, followed by nuclear transporters, cytochrome P450, and proteins associated with electrochemical channels. Metascape analysis revealed that most of the compounds had highest enrichment in non-canonical activation of NOTCH3 followed by regulation of hormone levels. Furthermore, DisGeNET analysis revealed that most of the metabolites had strong association with impaired glucose tolerance followed by myocardial ischemia and neuralgia. Tissue and cell accumulation analysis by PaGeneBase revealed the highest accumulation in the small intestine, colon, ovary, and DRG cells. The study concluded that selenium nanoparticles has an ability to improve certain medicinally important metabolites in sesame, coupled with bioinformatics tools which revealed a great insight into the potential of those compounds, and the information can further be used in future studies.
Collapse
Affiliation(s)
- Ilyas Ahmad
- Department of Botany, PMAS Arid Agriculture University, Murree Road, ShamsabadRawalpindi, 46300, Pakistan.
- Department of Food Science and Nutrition,, College of Food, Agriculture and Natural Resources, Twin CitiesUniversity of Minnesota, Minneapolis, USA.
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Murree Road, ShamsabadRawalpindi, 46300, Pakistan.
- Pakistan Academy of Sciences, 44010, Islamabad, Pakistan.
| | - Zohaib Younas
- Department of Botany, PMAS Arid Agriculture University, Murree Road, ShamsabadRawalpindi, 46300, Pakistan
| | - Tayyaba Yousaf
- Department of Botany, PMAS Arid Agriculture University, Murree Road, ShamsabadRawalpindi, 46300, Pakistan
| |
Collapse
|
4
|
Mhammedsharif RM, Jalil PJ, Piro N, Salih Mohammed A, Aspoukeh PK. Myco-generated and analysis of magnetite (Fe3O4) nanoparticles using Aspergillus elegans extract: A comparative evaluation with a traditional chemical approach. Heliyon 2024; 10:e31352. [PMID: 38828346 PMCID: PMC11140620 DOI: 10.1016/j.heliyon.2024.e31352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
In the past few years, nanotechnology has emerged as one of the most interesting and cutting-edge research areas across all disciplines. Nanotechnology allows progress in all science fields to make novel materials and industry-different devices. Generally, nanoparticle synthesis methods are chemical, physical, and biological. The chemical and physical techniques use potentially harmful compounds, and the expense of these processes renders them unsuitable for nanoparticle synthesis. In light of this, it needs development strategies that are sustainable, economical, and eco-friendly viable. Through, biosynthesis, nanoparticles can overcome these disadvantages. One of the biological strategies is the myco-synthesis method, which connects the fields of mycology and nanotechnology. In this study, magnetite (Fe3O4) NPs have been synthesized using a myco-synthesis method by selecting Aspergillus elegans as a fungal species. Two extracts were used, growth medium and an aqueous extract. A comparative analysis between nanoparticles synthesized through myco-synthesis and those produced using conventional chemical methods has been conducted to substantiate the significance of the biological approach. The results of this study unequivocally establish that myco-synthesized nanoparticles exhibit superior and enhanced characteristics compared to those synthesized through chemical means, as ascertained through a comprehensive array of characterization techniques employed throughout the investigation. This contrast is observable in terms of the aggregation state, the existence of capping and stabilizing agents enveloping the nanoparticles, their magnetic and thermal attributes, and the enduring stability of these nanoparticles. These results highlight the significant promise of employing phytochemicals extracted from Aspergillus elegans as a highly suitable option for the biofabrication of Fe3O4 nanoparticles.
Collapse
Affiliation(s)
| | - Parwin Jalal Jalil
- Scientific Research Centre, Soran University, Soran, Kurdistan Region, Iraq
| | - Nzar Piro
- Civil Engineering Department, Faculty of Engineering, Soran University, Soran, Kurdistan Region, Iraq
| | - Ahmed Salih Mohammed
- Civil Engineering Department, College of Engineering, University of Sulaimani, Kurdistan Region, Iraq
| | - Peyman K. Aspoukeh
- Scientific Research Centre, Soran University, Soran, Kurdistan Region, Iraq
| |
Collapse
|
5
|
Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review. Int J Nanomedicine 2024; 19:3187-3215. [PMID: 38590511 PMCID: PMC10999736 DOI: 10.2147/ijn.s453775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Green synthesis of silver (Ag) and gold (Au) nanoparticles (NPs) has acquired huge popularity owing to their potential applications in various fields. A large number of research articles exist in the literature describing the green synthesis of Ag and Au NPs for biomedical applications. However, these findings are scattered, making it time-consuming for researchers to locate promising advancements in Ag and Au NPs synthesis and their unexplored biomedical applications. Unlike other review articles, this systematic study not only highlights recent advancements in the green synthesis of Ag and Au NPs but also explores their potential unexplored biomedical applications. The article discusses the various synthesis approaches for the green synthesis of Ag and Au NPs highlighting the emerging developments and novel strategies. Then, the article reviews the important biomedical applications of green synthesized Ag and Au NPs by critically evaluating the expected advantages. To expose future research direction in the field, the article describes the unexplored biomedical applications of the NPs. Finally, the articles discuss the challenges and limitations in the green synthesis of Ag and Au NPs and their biomedical applications. This article will serve as a valuable reference for researchers, working on green synthesis of Ag and Au NPs for biomedical applications.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Muhammad Esa
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
6
|
Zahran E, Elbahnaswy S, Ahmed F, Risha E, Mansour AT, Alqahtani AS, Awadin W, Sebaei MGE. Dietary microalgal-fabricated selenium nanoparticles improve Nile tilapia biochemical indices, immune-related gene expression, and intestinal immunity. BMC Vet Res 2024; 20:107. [PMID: 38500172 PMCID: PMC10946125 DOI: 10.1186/s12917-024-03966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Feed supplements, including essential trace elements are believed to play an important role in augmenting fish immune response. In this context, selenium nanoparticles (SeNPs) in fish diets via a green biosynthesis strategy have attracted considerable interest. In this investigation, selenium nanoparticles (SeNPs, 79.26 nm) synthesized from the green microalga Pediastrum boryanum were incorporated into Nile tilapia diets to explore its beneficial effects on the immune defense and intestinal integrity, in comparison with control basal diets containing inorganic Se source. Nile tilapia (No. 180, 54-57 g) were fed on three formulated diets at concentrations of 0, 0.75, and 1.5 mg/kg of SeNPs for 8 weeks. After the trial completion, tissue bioaccumulation, biochemical indices, antioxidant and pro-inflammatory cytokine-related genes, and intestinal histological examination were analyzed. RESULTS Our finding revealed that dietary SeNPs significantly decreased (P < 0.05) serum alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and cholesterol, while increasing (P < 0.05) high-density lipoproteins (HDL). The Se concentration in the muscle tissues showed a dose-dependent increase. SeNPs at a dose of 1.5 mg/kg significantly upregulated intestinal interleukin 8 (IL-8) and interleukin 1 beta (IL-1β) gene transcription compared with the control diet. Glutathione reductase (GSR) and glutathione synthetase (GSS) genes were significantly upregulated in both SeNPs-supplemented groups compared with the control. No apoptotic changes or cell damages were observed as indicated by proliferating cell nuclear antigen (PCNA) and caspase-3 gene expression and evidenced histopathologically. SeNPs supplementation positively affects mucin-producing goblet cells (GCs), particularly at dose of 1.5 mg/kg. CONCLUSION Therefore, these results suggest that Green synthesized SeNPs supplementation has promising effects on enhancing Nile tilapia immunity and maintaining their intestinal health.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Samia Elbahnaswy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma Ahmed
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Engy Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box, Riyadh, 9095011623, Saudi Arabia
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud G El Sebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Liang S, Yu J, Zhao M, Chen S, Lu X, Ye F, Chen J, Zhao G, Lei L. In vitro digestion and fecal fermentation of selenocompounds: impact on gut microbiota, antioxidant activity, and short-chain fatty acids. Food Res Int 2024; 180:114089. [PMID: 38395585 DOI: 10.1016/j.foodres.2024.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Selenium bioavailability is critically influenced by gut microbiota, yet the interaction dynamics with selenocompounds remain unexplored. Our study found that L-Selenomethionine (SeMet) and Se-(Methyl)seleno-L-cysteine (MeSeCys) maintained stability during in vitro gastrointestinal digestion. In contrast, Selenite and L-Selenocystine (SeCys2) were degraded by approximately 13% and 35%. Intriguingly, gut microflora transformed MeSeCys, SeCys2, and Selenite into SeMet. Moreover, when SeCys2 and Selenite incubated with gut microbiota, they produced red selenium nanoparticles with diameters ranging between 100 and 400 nm and boosted glutathione peroxidase activity. These changes were positively associated with an increased relative abundance of unclassified_g__Blautia (Family Lachnospiraceae), Erysipelotrichaceae_UCG-003 (Family Erysipelatoclostridiaceae), and uncultured_bacterium_g__Subdoligranulum (Family Ruminococcaceae). Our findings implied that differential microbial sensitivities to selenocompounds, potentially attributable to their distinct mechanisms governing selenium uptake, storage, utilization, and excretion.
Collapse
Affiliation(s)
- Shuojia Liang
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| | - Junlei Yu
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang, Jiangxi 330046, PR China.
| | - Meng Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Sha Chen
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang, Jiangxi 330046, PR China
| | - Xiang Lu
- Beijing Shiji Chuangzhan Food Technology Co., Ltd., Beijing 100068, PR China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Baluken P, Kamiloglu A, Kutlu N. Green Synthesis of Selenium Nanoparticles using Green Coffee Beans: An Optimization Study. Chem Biodivers 2024; 21:e202301250. [PMID: 38359016 DOI: 10.1002/cbdv.202301250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
In this study, ultrasonication extraction of some bioactive compounds from green coffee beans was optimized with the response surface method using Box-Behnken experimental design. The best condition was selected as 90.90 W ultrasonic power, 33.63 min sonication time and 30 % solid concentration. The responses obtained under optimum conditions had TPC, DPPH and CUPRAC values identified as 6603.33±2025.94 ppm GAE, 9638.31±372.17 ppm TE and 98.83 mmol, respectively. Microwave-assisted selenium nanoparticle production was carried out using the extract obtained under optimized conditions. The produced selenium nanoparticles showed absorbance between 350-400 nm. The surface morphology and size of the nanoparticles were determined by transmission electron microscopy (TEM) and spherical nanoparticles of about 100 nm were produced. Functional groups affecting the reduction were determined by FTIR analysis. In addition, the produced selenium nanoparticles had amorphous (non-uniform) structure and could maintain their stability at high temperatures.
Collapse
Affiliation(s)
- Pınar Baluken
- Department of Food Engineering, Bayburt University, Bayburt, 69000, Turkiye
| | - Aybike Kamiloglu
- Department of Food Engineering, Bayburt University, Bayburt, 69000, Turkiye
| | - Naciye Kutlu
- Department of Food Processing, Bayburt University, Aydintepe, Bayburt, 69500, Turkiye
| |
Collapse
|
9
|
Azmoonfar R, Moslehi M, Shahbazi-Gahrouei D. Radioprotective Effect of Selenium Nanoparticles: A Mini Review. IET Nanobiotechnol 2024; 2024:5538107. [PMID: 38863968 PMCID: PMC11095073 DOI: 10.1049/2024/5538107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 06/13/2024] Open
Abstract
Materials and Methods This study followed the PRISMA reporting guidelines to present the results. A comprehensive search was performed on electronic databases such as PubMed, Scopus, Web of Sciences, and Science Direct. Initially, 413 articles were retrieved. After removing duplicates and applying specific inclusion and exclusion criteria, 10 articles were finally included in this systematic review. Results The reviewed studies showed that selenium nanoparticles had anti-inflammatory and antioxidant properties. They effectively protected the kidneys, liver, and testicles from damage. Furthermore, there was evidence of efficient radioprotection for the organs examined without significant side effects. Conclusions This systematic review emphasizes the potential advantages of using selenium nanoparticles to prevent the negative effects of ionizing radiation. Importantly, these protective effects were achieved without causing noticeable side effects. These findings suggest the potential role of selenium nanoparticles as radioprotective agents, offering possible therapeutic applications to reduce the risks related to ionizing radiation exposure in medical imaging and radiotherapy procedures.
Collapse
Affiliation(s)
- Rasool Azmoonfar
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
10
|
Moulick D, Mukherjee A, Das A, Roy A, Majumdar A, Dhar A, Pattanaik BK, Chowardhara B, Ghosh D, Upadhyay MK, Yadav P, Hazra S, Sarkar S, Mahanta S, Santra SC, Choudhury S, Maitra S, Mishra UN, Bhutia KL, Skalicky M, Obročník O, Bárek V, Brestic M, Hossain A. Selenium - An environmentally friendly micronutrient in agroecosystem in the modern era: An overview of 50-year findings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115832. [PMID: 38141336 DOI: 10.1016/j.ecoenv.2023.115832] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Agricultural productivity is constantly being forced to maintain yield stability to feed the enormously growing world population. However, shrinking arable and nutrient-deprived soil and abiotic and biotic stressor (s) in different magnitudes put additional challenges to achieving global food security. Though well-defined, the concept of macro, micronutrients, and beneficial elements is from a plant nutritional perspective. Among various micronutrients, selenium (Se) is essential in small amounts for the life cycle of organisms, including crops. Selenium has the potential to improve soil health, leading to the improvement of productivity and crop quality. However, Se possesses an immense encouraging phenomenon when supplied within the threshold limit, also having wide variations. The supplementation of Se has exhibited promising outcomes in lessening biotic and abiotic stress in various crops. Besides, bulk form, nano-Se, and biogenic-Se also revealed some merits and limitations. Literature suggests that the possibilities of biogenic-Se in stress alleviation and fortifying foods are encouraging. In this article, apart from adopting a combination of a conventional extensive review of the literature and bibliometric analysis, the authors have assessed the journey of Se in the "soil to spoon" perspective in a diverse agroecosystem to highlight the research gap area. There is no doubt that the time has come to seriously consider the tag of beneficial elements associated with Se, especially in the drastic global climate change era.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India; Plant Stress Biology and Metabolomics Laboratory, Department of Life Science & Bioinformatics, H.G. Khorana School of Life Sciences, Assam University, Silchar 788011, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Anupam Das
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, India.
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Anannya Dhar
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Binaya Kumar Pattanaik
- Institute of Environment Education and Research, Bharati Vidyapeeth (Deemed to be University), Pune 411043, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies NH-52, Knowledge City, District- Namsai, Arunachal Pradesh 792103, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, UP 201310, India.
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Subrata Mahanta
- Department of Chemistry, National Institute of Technology Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | - S C Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science & Bioinformatics, H.G. Khorana School of Life Sciences, Assam University, Silchar 788011, India.
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Odisha 761211, India.
| | - Udit Nandan Mishra
- Department of Crop Physiology & Biochemistry, Faculty of Agriculture, Sri Sri University, Sri Sri Vihar, Bidyadharpur Arilo, Ward No-03, Cuttack, Odisha 754006, India.
| | - Karma L Bhutia
- Department of Agricultural Biotechnology & Molecular Biology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa (Samastipur), Bihar 848 125, India.
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czechia.
| | - Oliver Obročník
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| | - Viliam Bárek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czechia; Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovak.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| |
Collapse
|
11
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
12
|
Setty J, Samant SB, Yadav MK, Manjubala M, Pandurangam V. Beneficial effects of bio-fabricated selenium nanoparticles as seed nanopriming agent on seed germination in rice (Oryza sativa L.). Sci Rep 2023; 13:22349. [PMID: 38102184 PMCID: PMC10724239 DOI: 10.1038/s41598-023-49621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
Climate change and increasing population pressure have put the agriculture sector in an arduous situation. With increasing demand for agricultural production overuse of inputs have accentuated the negative impact on environment. Hence, sustainable agriculture is gaining prominence in recent times with an emphasis on judicious and optimum use of resources. The field of nanotechnology can immensely help in achieving sustainability in agriculture at various levels. Use of nutrients and plant protection chemicals in nano-form can increase their efficacy even at reduced doses thus decreasing their pernicious impact. Seed priming is one of the important agronomic practices with widely reported positive impacts on germination, seedling growth and pathogen resistance. In the current study, the effect and efficacy of selenium nanoparticles synthesized using phyto-extracts as a seed priming agent is studied. This nanopriming enhanced the germination, hastened the seedling emergence and growth with an increase in seedling vigour and nutrient status. This eco-friendly and economical method of synthesizing nanoparticles of various nutrient minerals can optimize the resource use thus helping in sustainable agriculture by reducing environment damage without compromising on efficacy.
Collapse
Affiliation(s)
- Jyotsna Setty
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Sanjib Bal Samant
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Mayank Kumar Yadav
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia
| | - M Manjubala
- Department of Farm Engineering and Agricultural Statistics, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Vijai Pandurangam
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
13
|
Hariharan S, Chauhan S, Velu K, Dharmaraj S, C M VK, Ganesan S. Biological Activities of Selenium Nanoparticles Synthesized from Camellia sinensis (L) Kuntze Leaves. Appl Biochem Biotechnol 2023; 195:5823-5837. [PMID: 36708493 DOI: 10.1007/s12010-023-04348-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
Selenium in the form of selenoproteins is formed through a unique translocation recoding pathway and plays a vital role in human metabolism. Selenium nanoparticles (SeNPs) when synthesized using green synthesis from plant extract offer more advantages than physical and chemical methods. Previous studies have synthesized selenium nanoparticles from green tea and white tea; here, we report the synthesis of selenium nanoparticles from Camillia sinensis (L) Kuntze leaves (black tea) by green synthesis. Moreover, we have tested the antimicrobial and antioxidant activity of the plant extract, SeNPs, and combination of plant extract and SeNPs which have not been previously studied. The antimicrobial efficacy of SeNPs was tested against Klebsiella pneumonia, Candida albicans, and Staphylococcus aureus. They showed inhibitory effects against these organisms individually and in combination with Camellia sinensis leaf extract. The antioxidant properties of SeNPs were checked using FRAP and DPPH assays, where high radical scavenging activity was exhibited by SeNPs and in combination with the plant extract. Furthermore, synthesized SeNPs were examined for cytotoxicity tolerance against Vero cells and their IC50 values determine that plant-mediated SeNPs showed high cytotoxicity at minimal concentrations. If explored further, the reducing, capping, and stabilizing capabilities of SeNPs may demonstrate other inhibitory effects and could be explored for understanding the role of selenium in cellular metabolism.
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India
| | - Smarika Chauhan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India
| | - Karthick Velu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, India
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| | - Selvakumar Dharmaraj
- Department of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research (Ooty off-campus), Karnataka, Mysuru, India
| | - Vineeth Kumar C M
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, India
| | - Swamynathan Ganesan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India.
| |
Collapse
|
14
|
Nowruzi B, Jalil BS, Metcalf JS. Antifungal screening of selenium nanoparticles biosynthesized by microcystin-producing Desmonostoc alborizicum. BMC Biotechnol 2023; 23:41. [PMID: 37759248 PMCID: PMC10538242 DOI: 10.1186/s12896-023-00807-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Metal nanoparticles exhibit excellent antifungal abilities and are seen as a good substitute for controlling different kinds of fungi. Of all known taxa, cyanobacteria have received significant consideration as nanobiofactories, as a result of the cellular assimilation of heavy metals from the environment. The cellular bioactive enzymes, polysaccharides and pigments can be used as reducers and coatings during biosynthesis. The probability of the antifungal activity of selenium nanoparticles (SeNPs) to prevent plant fungi that can affect humans was evaluated and a toxic Iranian cyanobacterial strain of Desmonostoc alborizicum was used to study the biotechnology of SeNP synthesis for the first time. Characterization of nanoparticles with a UV-Vis spectrophotometer showed the formation of SeNPs in the range of 271-275 nm with the appearance of an orange color. Morphological examination of nanoparticles with Transmission Electron Microscopy (TEM), revealed the spherical shape of nanoparticles. The results of X-Ray Diffraction (XRD) showed 7 peaks and a hexagonal structure of average crystal size equal to 58.8 nm. The dispersion index of SeNPs was reported as 0.635, which indicated the homogeneity of the nanoparticle droplet size. The zeta potential of the nanoparticles was + 22.7. Fourier-transform infrared spectroscopy (FTIR) analysis exhibited a sharp and intense peak located at the wave number of 404 cm- 1, related to the SeNPs synthesized in this research. The results of the antifungal activity of SeNPs showed among the investigated fungi, Pythium ultimum had the highest resistance to SeNPs (14.66 ± 0.52 µg/ml), while Alternaria alternata showed the highest sensitivity (9.66 ± 0.51 µg/ml) (p < 0.05). To the best of our knowledge this is the first report concerning the characterization and antifungal screening of SeNPs biosynthesized by Iranian cyanobacteria, which could be used as effective candidates in medical applications.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran city, Iran.
| | - Bilal Saad Jalil
- Iraqi ministry of higher education and scientific research, Karbala University, Karbala city, Iraq
| | - James S Metcalf
- Department of Biological Sciences, Bowling Green State University, Bowling Green city, OH, 43403, USA
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001 city, USA
| |
Collapse
|
15
|
Sun Y, Liang L, Yi Y, Meng Y, Peng K, Jiang X, Wang H. Synthesis, characterization and anti-inflammatory activity of selenium nanoparticles stabilized by aminated yeast glucan. Int J Biol Macromol 2023; 245:125187. [PMID: 37276905 DOI: 10.1016/j.ijbiomac.2023.125187] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Improving the dispersed stability of selenium nanoparticles (SeNPs) is the key to its application. In this study, yeast glucan with different degrees of amination (BNs) were used as stabilizers and capping agent to prepare dispersed SeNPs. The size, storage stability, and morphology of BNs/SeNPs were characterized. Results show that BNs/SeNPs presented positive potential and spherical morphologies with average particle size about 100-300 nm and kept stable at room temperature for a long time. The CCK-8 assay showed that BNs/SeNPs had significantly lower toxicity to RAW264.7 cells than SeNPs. Moreover, BNs/SeNPs could inhibit the generation of NO, IL-1β and IL-6 effectively in RAW 264.7 macrophages induced by LPS, and down-regulate the mRNA transcription of iNOS, IL-1β, IL-6 and chemokines (CCL2 and CCL5), indicating that BNs/SeNPs had good anti-inflammatory activity. Therefore, aminated yeast glucan could improve the stability and bioactivity of SeNPs simultaneously, which is a promising stabilizer for SeNPs.
Collapse
Affiliation(s)
- Ying Sun
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lishi Liang
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kaidi Peng
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xueyu Jiang
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
16
|
Stabnikova O, Khonkiv M, Kovshar I, Stabnikov V. Biosynthesis of selenium nanoparticles by lactic acid bacteria and areas of their possible applications. World J Microbiol Biotechnol 2023; 39:230. [PMID: 37341841 DOI: 10.1007/s11274-023-03673-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Lactic acid bacteria, being generally recognized as safe, are the preferred choice among other microbial producers of selenium nanoparticles. For successful production of SeNPs, it is necessary to take into account the physiological properties of the bacterium used as a biotransformer of inorganic forms of selenium in Se0. The antimicrobial and antioxidant activity of SeNPs allows to use them in the form of pure nanoparticles or biomass of lactic acid bacteria enriched with selenium in preparation of food, in agriculture, aquaculture, medicine, veterinary, and manufacturing of packing materials for food products. To attract attention to the promising new directions of lactic acid bacteria applications and to accelerate their implementation, the examples of the use of SeNPs synthesized by lactic acid bacteria in the mentioned above areas of human activity are described.
Collapse
Affiliation(s)
- Olena Stabnikova
- Advanced Research Laboratory, National University of Food Technologies, Kiev, Ukraine.
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine.
| | - Myroslav Khonkiv
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine
| | - Iryna Kovshar
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine
| | - Viktor Stabnikov
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine
| |
Collapse
|
17
|
Karbalaei Akbari M, Siraj Lopa N, Zhuiykov S. Sonochemistry of Liquid-Metal Galinstan toward the Synthesis of Two-Dimensional and Multilayered Gallium-Based Metal-Oxide Photonic Semiconductors. MICROMACHINES 2023; 14:1214. [PMID: 37374799 DOI: 10.3390/mi14061214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
The scientific field of two-dimensional (2D) nanostructures has witnessed tremendous development during the last decade. To date, different synthesis approaches have been developed; therefore, various exceptional properties of this family of advanced materials have been discovered. It has recently been found that the natural surface oxide films of room-temperature liquid metals is an emerging platform for the synthesis of novel types of 2D nanostructures with numerous functional applications. However, most of the developed synthesis techniques for these materials are based on the direct mechanical exfoliation of 2D materials as research targets. This paper reports a facile and functional sonochemical-assisted approach for the synthesis of 2D hybrid and complex multilayered nanostructures with tunable characteristics. In this method, the intense interaction of acoustic waves with microfluidic gallium-based room-temperature liquid galinstan alloy provides the activation energy for synthesis of hybrid 2D nanostructures. The microstructural characterizations reveal the impact of sonochemical synthesis parameters, including the processing time and composition of the ionic synthesis environment, on the growth of GaxOy/Se 2D hybrid structures and InGaxOy/Se multilayered crystalline structures with tunable photonic characteristics. This technique shows promising potential for synthesis of various types of 2D and layered semiconductor nanostructures with tunable photonic characteristics.
Collapse
Affiliation(s)
- Mohammad Karbalaei Akbari
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Yeonsu-Gu, Incheon 21985, Republic of Korea
| | - Nasrin Siraj Lopa
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Yeonsu-Gu, Incheon 21985, Republic of Korea
| | - Serge Zhuiykov
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Yeonsu-Gu, Incheon 21985, Republic of Korea
| |
Collapse
|
18
|
Karbalaei Akbari M, Siraj Lopa N, Park J, Zhuiykov S. Plasmonic Nanodomains Decorated on Two-Dimensional Oxide Semiconductors for Photonic-Assisted CO 2 Conversion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103675. [PMID: 37241301 DOI: 10.3390/ma16103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Plasmonic nanostructures ensure the reception and harvesting of visible lights for novel photonic applications. In this area, plasmonic crystalline nanodomains decorated on the surface of two-dimensional (2D) semiconductor materials represent a new class of hybrid nanostructures. These plasmonic nanodomains activate supplementary mechanisms at material heterointerfaces, enabling the transfer of photogenerated charge carriers from plasmonic antennae into adjacent 2D semiconductors and therefore activate a wide range of visible-light assisted applications. Here, the controlled growth of crystalline plasmonic nanodomains on 2D Ga2O3 nanosheets was achieved by sonochemical-assisted synthesis. In this technique, Ag and Se nanodomains grew on 2D surface oxide films of gallium-based alloy. The multiple contribution of plasmonic nanodomains enabled the visible-light-assisted hot-electron generation at 2D plasmonic hybrid interfaces, and therefore considerably altered the photonic properties of the 2D Ga2O3 nanosheets. Specifically, the multiple contribution of semiconductor-plasmonic hybrid 2D heterointerfaces enabled efficient CO2 conversion through combined photocatalysis and triboelectric-activated catalysis. The solar-powered acoustic-activated conversion approach of the present study enabled us to achieve the CO2 conversion efficiency of more than 94% in the reaction chambers containing 2D Ga2O3-Ag nanosheets.
Collapse
Affiliation(s)
- Mohammad Karbalaei Akbari
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Nasrin Siraj Lopa
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Jihae Park
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium
| | - Serge Zhuiykov
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| |
Collapse
|
19
|
Liu S, Wei W, Wang J, Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology 2023; 21:96. [PMID: 36935493 PMCID: PMC10026460 DOI: 10.1186/s12951-023-01825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 03/21/2023] Open
Abstract
The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.
Collapse
Affiliation(s)
- Shaowei Liu
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weifeng Wei
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Nie X, Yang X, He J, Liu P, Shi H, Wang T, Zhang D. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: A review. Front Bioeng Biotechnol 2023; 11:1167123. [PMID: 36994362 PMCID: PMC10042385 DOI: 10.3389/fbioe.2023.1167123] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, microbial conversion of inorganic selenium into an efficient and low-toxic form of selenium has attracted much attention. With the improvement of scientific awareness and the continuous progress of nanotechnology, selenium nanoparticles can not only play the unique functions of organic selenium and inorganic selenium but also have higher safety, absorption and biological activity than other selenium forms. Therefore, the focus of attention has gradually shifted beyond the level of selenium enrichment in yeast to the combination of biosynthetic selenium nanoparticles (BioSeNPs). This paper primarily reviews inorganic selenium and its conversion to less toxic organic selenium and BioSeNPs by microbes. The synthesis method and potential mechanism of organic selenium and BioSeNPs are also introduced, which provide a basis for the production of specific forms of selenium. The methods to characterize selenium in different forms are discussed to understand the morphology, size and other characteristics of selenium. In general, to obtain safer and higher selenium content products, it is necessary to develop yeast resources with higher selenium conversion and accumulation.
Collapse
Affiliation(s)
- Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Xurui Yang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Junyi He
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Pei Liu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
- *Correspondence: Hao Shi, , ; Tao Wang, ; Daihui Zhang,
| | - Tao Wang
- Department of Microbiology, The University of Georgia, Athens, GA, United States
- *Correspondence: Hao Shi, , ; Tao Wang, ; Daihui Zhang,
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Product, Chinese Academy of Forestry, Nanjing, Jiangsu, China
- *Correspondence: Hao Shi, , ; Tao Wang, ; Daihui Zhang,
| |
Collapse
|
21
|
Xu M, Zhu S, Wang Q, Chen L, Li Y, Xu S, Gu Z, Shi G, Ding Z. Pivotal biological processes and proteins for selenite reduction and methylation in Ganoderma lucidum. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130409. [PMID: 36435045 DOI: 10.1016/j.jhazmat.2022.130409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Microbial transformations, especially the reduction and methylation of Se oxyanion, have gained significance in recent years as effective detoxification methods. Ganoderma lucidum is a typical Se enrichment resource that can reduce selenite to elemental Se and volatile Se metabolites under high selenite conditions. However, the detailed biological processes and reduction mechanisms are unclear. In this study, G. lucidum reduced selenite to elemental Se and further aggregated it into Se nanoparticles with a diameter of < 200 nm, simultaneously accompanied by the production of pungent, odorous, and volatile methyl-selenium metabolites. Tandem mass tag-based quantitative proteomic analysis revealed thioredoxin 1, thioredoxin reductase (NADPH), glutathione reductase, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, and cystathionine gamma-lyase as proteins involved in selenite reduction and methylation. Furthermore, the high expression of proteins associated with cell structures that prompted cell lysis may have facilitated Se release. The upregulation of proteins involved in the defense reactions was also detected, reflecting their roles in the self-defense mechanism. This study provides novel insights into the vital role of G. lucidum in mediating Se transformation in the biogeochemical Se cycle and contributes to the application of fungi in Se bioremediation.
Collapse
Affiliation(s)
- Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
22
|
Safdar M, Aslam S, Akram M, Khaliq A, Ahsan S, Liaqat A, Mirza M, Waqas M, Qureshi WA. Bombax ceiba flower extract mediated synthesis of Se nanoparticles for antibacterial activity and urea detection. World J Microbiol Biotechnol 2023; 39:80. [PMID: 36646906 DOI: 10.1007/s11274-022-03513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023]
Abstract
Plant mediated synthesis of metallic nanomaterials has emerged as a non-toxic and economical approach to their applications in diverse fields especially in biomedical sciences. Herein, this study first time reporting the use of Bombax ceiba flower extract for synthesis of selenium nanoparticles (SeNPs). Initially, SeNPs were confirmed by turning the color of reaction mixtures from light yellow to brick-red. Scanning electron microscope (SEM) and Transmission electron microscopy (TEM) images showed spherical shaped nanoparticles with smooth surface, size ranges between 30 and 150 nm. Dynamic light scattering (DLS) showed 100-150 nm for the distribution of particle size. X-ray diffraction (XRD) analysis revealed SeNPs crystallinity and confirmed by matching with selenium JCPD card No. 06-362. Energy-dispersive X-ray (EDX) spectra showed presence of pure Se peaks that corroborate the conversion of selenium ions into its elemental form by bio-reduction. Fourier-transform infrared spectroscopy (FTIR) spectra demonstrated that involvement of -OH, C-H, C=C, and C=O functional groups for SeNPs formation. Raman Spectra peaks at 250 cm-1 represent asymmetric trigonal selenium (t-Se). Ultraviolet-visible spectrophotometer (UV-Vis) peaks at 296 and 306 nm which is an indication of surface plasmon resonance (SPR). Moreover, maximum antibacterial activity of SeNPs were observed against Staphylococcus aureus- a gram positive bacteria that possess zone of inhibition (ZOI) 20 mm and Klebsiella pneumonia and Pseudomonas aeruginosa-gram negative bacteria with ZOI 28 mm, respectively, at concentration 100 µg/ml. In addition, the surface functionalities induced through extract components adhere over Se binds with urea and give its detection up to 1mM in milk sample. Conclusively, synthesized SeNPs may function as a potential antibacterial pharmaceutical candidate.
Collapse
Affiliation(s)
- Muhammad Safdar
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Pakistan
| | - Sidra Aslam
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Pakistan
| | - Misbah Akram
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Pakistan
| | - Adnan Khaliq
- Department of food sciences and engineering, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Pakistan
| | - Samreen Ahsan
- Department of food sciences and engineering, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Pakistan
| | - Atif Liaqat
- Department of food sciences and engineering, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Pakistan
| | - Misbah Mirza
- Department of Physics, The Women University Multan, Multan, Pakistan
| | - Muhammad Waqas
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Pakistan
| | - Waseem Akhtar Qureshi
- Cholistan Institute of Desert Studies (CIDS), Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
23
|
Cruz DM, Mostafavi E, Vernet-Crua A, O’Connell CP, Barabadi H, Mobini S, Cholula-Díaz JL, Guisbiers G, García-Martín JM, Webster TJ. Green nanotechnology and nanoselenium for biomedical applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
24
|
Li Z, Wang Q, Dai F, Li H. Reduction of selenite to selenium nanospheres by Se(IV)-resistant Lactobacillus paralimentarius JZ07. Food Chem 2022; 393:133385. [PMID: 35751225 DOI: 10.1016/j.foodchem.2022.133385] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Elemental selenium nanosphere is considered to exhibit high bioavailability compared to its salts. In this study, a Se(IV)-resistant Lactobacillus paralimentarius strain JZ07 with great selenium biotransformation ability was screened and the red elemental selenium biosynthesized by it was characterized. The results indicated that Se(0) occurred as major accumulated species and the S atom content of the cells increased significantly in the presence of selenite. The reduced amorphous selenium nanospheres (150 to 300 nm in diameter) deposited in the extracellular space of JZ07 and the cells exhibited altered morphology under selenium stress. The macromolecules containing carboxylate bands and amide groups played an important role in Se(IV) bioaccumulation. The findings of present study indicate that JZ07 can be a promising SeNPs producing probiotic LAB and has the potential to be explored as an alternative source of Se supplements for human or animal consumption.
Collapse
Affiliation(s)
- ZhiJian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - QingQing Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - FuJuan Dai
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - HaiFeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
25
|
Ramakrishnan M, Arivalagan J, Satish L, Mohan M, Samuel Selvan Christyraj JR, Chandran SA, Ju HJ, John L A, Ramesh T, Ignacimuthu S, Kalishwaralal K. Selenium: a potent regulator of ferroptosis and biomass production. CHEMOSPHERE 2022; 306:135531. [PMID: 35780987 DOI: 10.1016/j.chemosphere.2022.135531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Emerging evidence supports the notion that selenium (Se) plays a beneficial role in plant development for modern crop production and is considered an essential micronutrient and the predominant source of plants. However, the essential role of selenium in plant metabolism remains unclear. When used in moderate concentrations, selenium promotes plant physiological processes such as enhancing plant growth, increasing antioxidant capacity, reducing reactive oxygen species and lipid peroxidation and offering stress resistance by preventing ferroptosis cell death. Ferroptosis, a recently discovered mechanism of regulated cell death (RCD) with unique features such as iron-dependant accumulation of lipid peroxides, is distinctly different from other known forms of cell death. Glutathione peroxidase (GPX) activity plays a significant role in scavenging the toxic by-products of lipid peroxidation in plants. A low level of GPX activity in plants causes high oxidative stress, which leads to ferroptosis. An integrated view of ferroptosis and selenium in plants and the selenium-mediated nanofertilizers (SeNPs) have been discussed in more recent studies. For instance, selenium supplementation enhanced GPX4 expression and increased TFH cell (Follicular helper T) numbers and the gene transcriptional program, which prevent lipid peroxidase and protect cells from ferroptosis. However, though ferroptosis in plants is similar to that in animals, only few studies have focused on plant-specific ferroptosis; the research on ferroptosis in plants is still in its infancy. Understanding the implication of selenium with relevance to ferroptosis is indispensable for plant bioresource technology. In this review, we hypothesize that blocking ferroptosis cell death improves plant immunity and protects plants from abiotic and biotic stresses. We also examine how SeNPs can be the basis for emerging unconventional and advanced technologies for algae/bamboo biomass production. For instance, algae treated with SeNPs accumulate high lipid profile in algal cells that could thence be used for biodiesel production. We also suggest that further studies in the field of SeNPs are essential for the successful application of this technology for the large-scale production of plant biomass.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jaison Arivalagan
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, GA, USA; VAXIGEN International Research Center Private Limited, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401 India
| | - Ho-Jong Ju
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Anoopa John L
- The Dale View College of Pharmacy and Research Centre, Thiruvananthapuram, Kerala, India
| | - Thiyagarajan Ramesh
- Deapartment of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University,P.O.Box:173, AI-Kharaj 11942,Saudi Arabia
| | | | - Kalimuthu Kalishwaralal
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
26
|
Miola M, Multari C, Vernè E. Iron Oxide-Au Magneto-Plasmonic Heterostructures: Advances in Their Eco-Friendly Synthesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7036. [PMID: 36234377 PMCID: PMC9573543 DOI: 10.3390/ma15197036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In recent years, nanotechnologies have attracted considerable interest, especially in the biomedical field. Among the most investigated particles, magnetic based on iron oxides and Au nanoparticles gained huge interest for their magnetic and plasmonic properties, respectively. These nanoparticles are usually produced starting from processes and reagents that can be the cause of potential human health and environmental concerns. For this reason, there is a need to develop simple, green, low-cost, and non-toxic synthesis methods and reagents. This review aims at providing an overview of the most recently developed processes to produce iron oxide magnetic nanoparticles, Au nanoparticles, and their magneto-plasmonic heterostructures using eco-friendly approaches, focusing the attention on the microorganisms and plant-assisted syntheses and showing the first results of the development of magneto-plasmonic heterostructures.
Collapse
|
27
|
Comprehensive Approaches of Nanoparticles for Growth Performance and Health Benefits in Poultry: An Update on the Current Scenario. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9539908. [PMID: 36164441 PMCID: PMC9509231 DOI: 10.1155/2022/9539908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Currently, providing nutritious food to all people is one of the greatest challenges due to rapid human population growth. The global poultry industry is a part of the agrifood sector playing an essential role in food insecurity by providing nutritious meat and egg sources. However, limited meat production with less nutritional value is not fulfilling the higher market demands worldwide. Researchers are focusing on nanobiotechnology by employing phytosynthesized mineral nanomaterials to improve the growth performance and nutritional status of broilers as these mineral nanoparticles are usually absorbed in greater amounts from the gastrointestinal tract and exert enhanced biological effects in the target tissues of animals with greater tissue accumulation. These mineral nanoparticles are efficiently absorbed through the gastrointestinal tract and reach essential organs via blood. As a result, it enhances growth performance and nutritional value with less toxicity and tremendous bioavailability properties. In this review, the research work conducted in the recent past, on the different aspects of nanotechnology including supplementation of mineral nanoparticle in diet and their potential role in the poultry industry, has been concisely discussed.
Collapse
|
28
|
Waqas M, Aslam S, Akram M, Khaliq A, Ahsan S, Liaqat A, Mirza M, Safdar M, Qureshi WA. Bombax Ceiba Flower Extract Induced Surface Groups on Se Nanoparticles to Enhance Antibacterial Activity and Urea Detection.. [DOI: 10.21203/rs.3.rs-2026172/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Abstract
Biosynthesis of metallic-nanomaterials has emerged as a non-toxic and economical approach to their applications in diverse fields especially in biomedical sciences. Herein, this study first time reporting the use of Bombax ceiba flower extract for synthesis of selenium nanoparticles (SeNPs). Initially, SeNPs were confirmed by turning the color of reaction mixtures from light yellow to red-brick. Scanning electron microscope (SEM) and Transmission electron microscopy (TEM) images showed spherical shaped nanoparticles with smooth surface, size ranges between 30–150 nm. Dynamic light scattering (DLS) showed 100–150 nm for the distribution of particle size. X-ray diffraction (XRD) analysis revealed SeNPs crystallinity and confirmed by matching with selenium JCPD card No. 06-362. Energy-dispersive X-ray (EDX) spectra showed presence of pure Se peaks that corroborate the conversion of selenium ions into its elemental form by bio-reduction. Fourier-transform infrared spectroscopy (FTIR) spectra demonstrated that involvement of -OH, C-H, C = C, and C = O functional groups for SeNPs formation. Raman Spectra peaks at 250 cm− 1 represent asymmetric trigonal selenium (t-Se). Ultraviolet-visible spectrophotometer (UV-Vis) peaks at 296 and 306 nm which is an indication of surface plasmon resonance (SPR). Moreover, maximum antibacterial activity of SeNPs were observed against Staphylococcus aureus- a gram positive bacteria that possess zone of inhibition (ZOI) 20 mm and Klebsiella pneumonia and Pseudomonas aeruginosa-gram negative bacterias with ZOI 28 mm, respectively, at concentration 100 µg/ ml. In addition, the surface functionalities induced through extract components adhere over Se binds with urea and give its detection up to 1mM in milk sample. Conclusively, synthesized SeNPs may act as a potent potential antibacterial pharmaceutical candidate.
Collapse
Affiliation(s)
- Muhammad Waqas
- Khwaja Fareed University of Engineering and Information Technology
| | - Sidra Aslam
- Khwaja Fareed University of Engineering and Information Technology
| | - Misbah Akram
- Khwaja Fareed University of Engineering and Information Technology
| | - Adnan Khaliq
- Khwaja Fareed University of Engineering and Information Technology
| | - Samreen Ahsan
- Khwaja Fareed University of Engineering and Information Technology
| | - Atif Liaqat
- Khwaja Fareed University of Engineering and Information Technology
| | | | - Muhammad Safdar
- Khwaja Fareed University of Engineering and Information Technology
| | | |
Collapse
|
29
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
30
|
Beleneva IA, Kharchenko UV, Kukhlevsky AD, Boroda AV, Izotov NV, Gnedenkov AS, Egorkin VS. Biogenic synthesis of selenium and tellurium nanoparticles by marine bacteria and their biological activity. World J Microbiol Biotechnol 2022; 38:188. [PMID: 35972591 DOI: 10.1007/s11274-022-03374-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Selenium (SeNPs) and tellurium nanoparticles (TeNPs) were synthesized by green technology using the three new bacterial marine isolates (strains PL 2476, AF 2469 and G 2451). Isolates were classified as Pseudoalteromonas shioyasakiensis according to 16S rRNA sequence analysis, morphological characteristics, and biochemical reactions. The bioreduction processes of isolates were studied in comparison with the previously described Alteromonas macleodii (strain 2328). All strains exhibited significant tolerance to selenite and tellurite up to 1000 µg/mL. A comparative analysis of the bioreduction processes of the isolates demonstrated that the strains have a high rate of reduction processes. Characterization of biogenic red SeNPs and black TeNPs using scanning electron microscopy (SEM), EDX analysis, Dynamic Light Scattering, and micro-Raman Spectroscopy revealed that all the isolates form stable spherical selenium and tellurium nanoparticles whose size as well as elemental composition depend on the producer strain. Nanoparticles of the smallest size (up to 100 nm) were observed only for strain PL 2476. Biogenic SeNPs and TeNPs were also characterized and tested for their antimicrobial, antifouling and cytotoxic activities. Significant antimicrobial activity was shown for nanoparticles at relatively high concentrations (500 and 1000 µg/mL), with the antimicrobial activity of TeNPs being more significant than SeNPs. In contrast, against cell cultures (breast cancer cells (SkBr3) and human dermal fibroblasts (HDF) SeNPs showed greater toxicity than tellurium nanoparticles. Studies have demonstrated the high antifouling effectiveness of selenium and tellurium nanoparticles when introduced into self-polishing coatings. According to the results obtained, the use of SeNPs and TeNPs as antifouling additives can reduce the concentration of leachable biocides used in coatings, reducing the pressure on the environment.
Collapse
Affiliation(s)
- I A Beleneva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok, Russia, 690041.
| | - U V Kharchenko
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letiya Vladivostoka, 159, Vladivostok, Russia, 690022
| | - A D Kukhlevsky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok, Russia, 690041
| | - A V Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok, Russia, 690041
| | - N V Izotov
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letiya Vladivostoka, 159, Vladivostok, Russia, 690022
| | - A S Gnedenkov
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letiya Vladivostoka, 159, Vladivostok, Russia, 690022
| | - V S Egorkin
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letiya Vladivostoka, 159, Vladivostok, Russia, 690022
| |
Collapse
|
31
|
Sefi M, Chaâbane M, Bejaoui S, Elwej A, Marrekchi R, Jamoussi K, Gouiaa N, Sellami TB, El Cafsi M, Zeghal N. Antioxidant role of selenium against maneb-induced cardiotoxicity in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54827-54841. [PMID: 35312919 DOI: 10.1007/s11356-022-19497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The current study was conducted to assess the beneficial effect of selenium (Se) on maneb-induced cardiotoxicity and fatty acid alterations in adult mice. Swiss albino male mice were assigned into four experimental groups. The first group consisted of negative controls. The second group represented the positive controls where mice received daily, via the diet, sodium selenite at a dose of 0.2 mg/kg. For the third group, mice were subjected to intraperitoneal injections of maneb (30 mg/kg BW). The fourth group (MB+Se) received daily the same dose of maneb as group 3 along with sodium selenite at the same dose as group 2. Mice exposure to maneb caused cardiotoxicity as indicated by an increase in malondialdehyde, hydrogen peroxide, and protein carbonyl levels, and an alteration of the antioxidant defense system (catalase, glutathione peroxidase, superoxide dismutase, glutathione, and vitamin C). Plasma lactate dehydrogenase activity and total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels increased, while high-density lipoprotein cholesterol level decreased. Results showed also a decrease in the amount of n-3 PUFA, docosahexaenoic, docosapentaenoic, and eicosapentaenoic acids. However, an increase in the levels of MUFA, cis-vaccenic, and palmitoleic acids was observed. Co-administration of Se restored the parameters indicated above to near control values. The histopathological findings confirmed the biochemical results. Selenium could be a useful and efficient agent against maneb-induced cardiotoxicity.
Collapse
Affiliation(s)
- Mediha Sefi
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia.
- Ecology, Biology and Physiology Laboratory of Aquatic Organisms, Department of Biological Sciences, Sciences Faculty of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Mariem Chaâbane
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Safa Bejaoui
- Ecology, Biology and Physiology Laboratory of Aquatic Organisms, Department of Biological Sciences, Sciences Faculty of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Awatef Elwej
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Rim Marrekchi
- Biochemistry Laboratory, Department of Biochemistry, CHU Hedi Chaker, University of Sfax, 3029, Sfax, Tunisia
| | - Kamel Jamoussi
- Biochemistry Laboratory, Department of Biochemistry, CHU Hedi Chaker, University of Sfax, 3029, Sfax, Tunisia
| | - Naourez Gouiaa
- Histopathology Laboratory, Department of Anatomo-pathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Tahia Boudawara Sellami
- Histopathology Laboratory, Department of Anatomo-pathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - M'hamed El Cafsi
- Ecology, Biology and Physiology Laboratory of Aquatic Organisms, Department of Biological Sciences, Sciences Faculty of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
32
|
Martínez-Esquivias F, Guzmán-Flores JM, Perez-Larios A. Antimicrobial activity of green synthesized Se nanoparticles using ginger and onion extract: a laboratory and in silico analysis. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2088432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Alejandro Perez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingenierías, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| |
Collapse
|
33
|
Insights into Nanopesticides for Ticks: The Superbugs of Livestock. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7411481. [PMID: 35720185 PMCID: PMC9200545 DOI: 10.1155/2022/7411481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022]
Abstract
Livestock is an integral part of agriculture countries where ticks play significant role as potent pests causing considerable losses to economy and health. Drug resistance has made these pests supersede conventional therapies and control programs Nanotechnology here comes as an advancing and significant candidate alternatively able to reverse drug resistance. Nanoparticles, hence, against ticks may better be considered as nanopesticides that act in ways other than conventional drug efficacies. The methods of nanoparticles production include green synthesis, chemical synthesis, and arthropod-based synthesis. Pros and cons of these nanopesticides are by no means neglectable. Studies are fewer than needed to comprehensively discuss nanopesticides. Current review thus systematically covers aspects of ticks as livestock pests, their drug resistance, advent of nanotechnology against pests, their production methodologies, mechanisms of actions of ticks, and current limitations. This review opens several avenues for further research on nanoparticles as nanopesticides against ticks.
Collapse
|
34
|
Youssef DM, Alshubaily FA, Tayel AA, Alghuthaymi MA, Al-Saman MA. Application of Nanocomposites from Bees Products and Nano-Selenium in Edible Coating for Catfish Fillets Biopreservation. Polymers (Basel) 2022; 14:polym14122378. [PMID: 35745953 PMCID: PMC9229794 DOI: 10.3390/polym14122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Bee products, e.g., chitosan and propolis (Pro), have extraordinary importance in many disciplines including food biopreservation. Fish meat is highly susceptible to vast spoilage, especially catfish (Clarias gariepinus) products. The current work involved the extraction of bees’ chitosan nanoparticles (BCht), Pro, Pro-mediated SeNPs and their composites, to evaluate them as potential antimicrobial and preservative nano-compounds, for the preservation of catfish fillets and augment their quality. BCht was extracted from bees (Apis mellifera) corpses and had a 151.9 nm mean particle diameter. The Pro was used for biosynthesis of SeNPs, which had 11.2 nm mean diameters. The entire compounds/composites exhibited powerful antibacterial acts against Escherichia coli, Staphylococcus aureus and Salmonella typhimurium, where S aureus had the uppermost resistance. BCht/Pro/SeNPs were the most forceful toward all bacterial strains. The constructed edible coatings (ECs) from produced compounds/composites (BCht, Pro, Pro/SeNPs, Pro/BCht and BCht/Pro/SeNPs) had elevated efficiency for preserving catfish fillets during cold storages for 7 days. The microbiological (total counts, psychrophilic bacteria, yeast and molds), spoilage chemical parameters (TVB-N, TBARS) and sensorial attributes (appearance, odor, color, overall quality) of ECs-treated fillets indicated the nanocomposite’s efficiency for protecting the fish from microbial growth, the progress of chemical spoilage indicators and maintaining the sensorial quality of treated stored fillets. The most effective nanocomposite for maintaining the entire fillet’s quality was the BCht/Pro/SeNP. The based ECs on BNCt, Pro/SeNPs and their nanocomposites could be endorsed for prospective employment in the biopreservation of various seafoods.
Collapse
Affiliation(s)
- Dareen M. Youssef
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Correspondence: (A.A.T.); (M.A.A.)
| | - Mousa A. Alghuthaymi
- Department of Biology, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia
- Correspondence: (A.A.T.); (M.A.A.)
| | - Mahmoud A. Al-Saman
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City 32897, Egypt;
| |
Collapse
|
35
|
Freire BM, Cavalcanti YT, Lange CN, Pieretti JC, Pereira RM, Gonçalves MC, Nakazato G, Seabra AB, Batista BL. Evaluation of collision/reaction gases in single-particle ICP-MS for sizing selenium nanoparticles and assessment of their antibacterial activity. NANOTECHNOLOGY 2022; 33:355702. [PMID: 35605588 DOI: 10.1088/1361-6528/ac723e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Selenium nanoparticles (SeNPs) have recently attracted attention because they combine the benefits of Se and lower toxicity compared to other chemical forms of this element. In this study, SeNPs were synthesized by a green method using ascorbic acid as the reducing agent and polyvinyl alcohol as stabilizer. The nanoparticles were widely characterized. To determine the total concentration of Se by ICP-MS, several isotopes and the use of He as collision gas were evaluated, which was effective in minimizing interferences. A method for sizing SeNPs by single particle ICP-MS (SP-ICP-MS) was developed. For this purpose, He and H2were evaluated as collision/reaction gases, and the second one showed promising results, providing an average diameter of 48 nm for the SeNPs. These results agree with those obtained by TEM (50.1 nm). Therefore, the SP-ICP-MS can be implemented for characterizing SeNPs in terms of size and size distribution, being an important analytical tool for Se and other widely studied nanoparticles (e.g. Ag, Au, Ce, Cu, Fe, Zn). Finally, the antibacterial activity of SeNPs was assessed. The SeNPs showed bacteriostatic activity against three strains of Gram-positive bacteria and were particularly efficient in inhibiting the growthE. faecaliseven at very low concentrations (MIC < 1.4 mg l-1). In addition, a bactericidal activity of SeNPs againstS. aureuswas observed. These nanoparticles may have potential application in pharmaceutical industry, biomedicine and agriculture.
Collapse
Affiliation(s)
- Bruna Moreira Freire
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Yasmin Tavares Cavalcanti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Camila Neves Lange
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Rodrigo Mendes Pereira
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | - Gerson Nakazato
- Department of Microbiology, State University of Londrina, Londrina, PR, Brazil
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bruno Lemos Batista
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| |
Collapse
|
36
|
Saravanakumar K, Sathiyaseelan A, Zhang X, Park S, Wang MH. Purinoceptor Targeted Cytotoxicity of Adenosine Triphosphate-Conjugated Biogenic Selenium Nanoparticles in Human Colon Cancer Cells. Pharmaceuticals (Basel) 2022; 15:582. [PMID: 35631408 PMCID: PMC9143145 DOI: 10.3390/ph15050582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The adenosine triphosphate (ATP)-conjugated biogenic selenium nanoparticles (SeNPs) for P2 (purinoceptors) receptor-targeted anti-colon cancer activity were developed in this study. First, the SeNPs were synthesized using Trichoderma extracts (TE) and then conjugated with ATP to enhance their anticancer activity. The developed SeNPs had an oval crystalline structure with an average diameter size of 26.45 ± 1.71 d. nm, while the ATP-SeNPs were 78.6 ± 2.91 d. nm. The SeNPs contain Se, and less persistence of P while the ATP-SeNPs have high level of P, and Se in the energy-dispersive spectroscopy (EDS). Further, both nanoparticles exhibited larger sizes in the dynamic light scattering (DLS) analysis than in the transmission electron microscopy (TEM) analysis. The DLS and Fourier transform infrared spectroscopy (FTIR) results provide evidence that the amine group (-NH2) of ATP might bind with the negatively charged SeNPs through covalent bonding. The IC50 concentration was 17.25 ± 1.16 µg/mL for ATP-SeNPs and 61.24 ± 2.08 µg/mL against the caco-2 cell line. The IC50 results evidenced the higher cytotoxicity of ATP-SeNPs in the caco-2 cell line than in HEK293 cells. ATP-SeNPs trigger the anticancer activity in the caco-2 cell line through the induction of mitochondrial membrane potential (MMP) loss and nucleus damage. The biocompatibility test of hemolysis and the egg CAM assay confirmed the non-toxicity of these nanoparticles. Overall, the results proved that the newly developed ATP-SeNPs exhibited higher cytotoxicity in the caco-2 cell line than SeNPs. However, further molecular and in vivo experiments are required to develop the ATP-SeNPs as a candidate drug for cancer-targeted therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (X.Z.); (S.P.)
| |
Collapse
|
37
|
Sentkowska A, Pyrzyńska K. The Influence of Synthesis Conditions on the Antioxidant Activity of Selenium Nanoparticles. Molecules 2022; 27:molecules27082486. [PMID: 35458683 PMCID: PMC9026813 DOI: 10.3390/molecules27082486] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have attracted great attention in recent years due to their unique properties and potential bioactivities. While the production of SeNPs has been long reported, there is little news about the influence of reaction conditions and clean-up procedure on their physical properties (e.g., shape, size) as well as their antioxidant activity. This study takes up this issue. SeNPs were synthesized by two methods using cysteine and ascorbic acid as selenium reductants. The reactions were performed with and without the use of polyvinyl alcohol as a stabilizer. After the synthesis, SeNPs were cleaned using various procedures. The antioxidant properties of the obtained SeNPs were investigated using DPPH and hydroxyl radical scavenging assays. It was found that their antioxidant activity does not always depend only on the nanoparticles size but also on their homogeneity. Moreover, the size and morphology of selenium nanoparticles are controlled by the clean-up step.
Collapse
Affiliation(s)
- Aleksandra Sentkowska
- Heavy Ion Laboratory, University of Warsaw, Pasteura 5A, 02-093 Warsaw, Poland
- Correspondence:
| | - Krystyna Pyrzyńska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| |
Collapse
|
38
|
Enhancement of anti-bacterial potential of green synthesized selenium nanoparticles by starch encapsulation. Microb Pathog 2022; 167:105544. [DOI: 10.1016/j.micpath.2022.105544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023]
|
39
|
Lyu L, Wang H, Liu R, Xing W, Li J, Man YB, Wu F. Size-dependent transformation, uptake, and transportation of SeNPs in a wheat-soil system. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127323. [PMID: 34601411 DOI: 10.1016/j.jhazmat.2021.127323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Foliar application of selenium nanoparticles (SeNPs) has been used to enhance Se concentration in winter wheat, but soil application of SeNPs on Se uptake in the crop and their transformation in soil are still limited. This study investigated the effects of varying sizes (50, 100, 200 nm) and concentrations (0, 2, 5, 25, 100 mg kg-1) of chemical synthesized SeNPs in soil on uptake and accumulation of Se in the crop at maturity and related mechanisms. SeNPs not only posed very low toxic to plant growth, except for leaf, but also significantly enhanced grain Se concentration. Regardless of concentration of SeNPs added to soil, the transformation rate of the larger sized SeNPs (200 nm) in soil was significantly (p < 0.05) higher than that of the smaller one, which is mainly due to the latter was more easily adsorbed onto soil organic matter and reluctant to be oxidized. Significantly higher grain Se concentration under the larger sized SeNPs contributed to significantly higher transformation rate of SeNPs and concentration of available Se in soil. The present study showed that the larger sized SeNPs in soil had significant advantages including higher grain Se concentration and Se utilization efficiency for wheat Se biofortification.
Collapse
Affiliation(s)
- Lihui Lyu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hanqi Wang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Wenjing Xing
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
40
|
Bio-fabrication of Selenium Nanoparticles Using Baker’s Yeast Extract and Its Antimicrobial Efficacy on Food Borne Pathogens. Appl Biochem Biotechnol 2022; 194:1898-1910. [DOI: 10.1007/s12010-022-03809-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
|
41
|
El-Saadony MT, Saad AM, Taha TF, Najjar AA, Zabermawi NM, Nader MM, AbuQamar SF, El-Tarabily KA, Salama A. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J Biol Sci 2021; 28:6782-6794. [PMID: 34866977 PMCID: PMC8626219 DOI: 10.1016/j.sjbs.2021.07.059] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
The current study was performed to develop a simple, safe, and cost-effective technique for the biosynthesis of selenium nanoparticles (SeNPs) from lactic acid bacteria (LAB) isolated from human breast milk with antifungal activity against animal pathogenic fungi. The LAB was selected based on their speed of transforming sodium selenite (Na2SeO3) to SeNPs. Out of the four identified LAB isolates, only one strain produced dark red color within 32 h of incubation, indicating that this isolate was the fastest in transforming Na2SeO3 to SeNPs; and was chosen for the biosynthesis of LAB-SeNPs. The superior isolate was further identified as Lactobacillus paracasei HM1 (MW390875) based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and phylogenetic tree analysis of 16S rRNA sequence alignments. The optimum experimental conditions for the biosynthesis of SeNPs by L. paracasei HM1 were found to be pH (6.0), temperature (35˚C), Na2SeO3 (4.0 mM), reaction time (32 h), and agitation speed (160 rpm). The ultraviolet absorbance of L. paracasei-SeNPs was detected at 300 nm, and the transmission electron microscopy (TEM) captured a diameter range between 3.0 and 50.0 nm. The energy-dispersive X-ray spectroscopy (EDX) and the Fourier-transform infrared spectroscopy (FTIR) provided a clear image of the active groups associated with the stability of L. paracasei-SeNPs. The size of L. paracasei-SeNPs using dynamic light scattering technique was 56.91 ± 1.8 nm, and zeta potential value was -20.1 ± 0.6 mV in one peak. The data also revealed that L. paracasei-SeNPs effectively inhibited the growth of Candida and Fusarium species, and this was further confirmed by scanning electron microscopy (SEM). The current study concluded that the SeNPs obtained from L. paracasei HM1 could be used to prepare biological antifungal formulations effective against major animal pathogenic fungi. The antifungal activity of the biologically synthesized SeNPs using L. paracasei HM1 outperforms the chemically produced SeNPs. In vivo studies showing the antagonistic effect of SeNPs on pathogenic fungi are underway to demonstrate the potential of a therapeutic agent to treat animals against major infectious fungal diseases.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Taha F. Taha
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Azhar A. Najjar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nidal M. Zabermawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha M. Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Ali Salama
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
42
|
Ni X, Tian J, Chen C, Huang L, Lei J, Yu X, Wang X. Multiple exposures to high concentrations of selenate significantly improve selenate tolerability, red elemental selenium (Se 0) and selenoprotein biosynthesis in Herbaspirillum camelliae WT00C. World J Microbiol Biotechnol 2021; 38:5. [PMID: 34837115 DOI: 10.1007/s11274-021-03190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Herbaspirillum camelliae WT00C is a gram-negative endophyte isolated from the tea plant. It has an intact selenate metabolism pathway but poor selenate tolerability. In this study, microbiological properties of the strain WT00C were examined and compared with other three strains CT00C, NCT00C and NT00C, which were obtained respectively from four, six and eight rounds of 24-h exposures to 200 mM selenate. The selenate tolerability and the ability to generate red elemental selenium (Se0) and selenoproteins in H. camelliae WT00C has significantly improved by the forced evolution via 4-6 rounds of multiple exposures a high concentration of selenate. The original strain WT00C grew in 200 mM selenate with the lag phase of 12 h and 400 mM selenate with the lag phase of 60 h, whereas the strains CT00C and NCT00C grew in 800 mM selenate and showed a relatively short lag phase when they grew in 50-400 mM selenate. Besides selenate tolerance, the strains CT00C and NCT00C significantly improved the biosynthesis of red elemental selenium (Se0) and selenoproteins. Two strains exhibited more than 30% selenium conversion efficiency and 40% selenoprotein biosynthesis, compared to the original strain WT00C. These characteristics of the strains CT00C and NCT00C make them applicable in pharmaceuticals and feed industries. The strain NT00C obtained from eight rounds of 24-h exposures to 200 mM selenate was unable to grow in ≥ 400 mM selenate. Its selenium conversion efficiency and selenoprotein biosynthesis were similar to the strain WT00C, indicating that too many exposures may cause gene inactivation of some critical enzymes involving selenate metabolism and antioxidative stress. In addition, bacterial cells underwent obviously physiological and morphological changes, including gene activity, cell enlargement and surface-roughness alterations during the process of multiple exposures to high concentrations of selenate.
Collapse
Affiliation(s)
- Xuechen Ni
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Jinbao Tian
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Changmei Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Ling Huang
- Obstetrics and Gynecology Department, Fifth Hospital in Wuhan, Wuhan, China
| | - Jia Lei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Xingguo Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China.
| |
Collapse
|
43
|
Jassim AY, Wang J, Chung KW, Loosli F, Chanda A, Scott GI, Baalousha M. Comparative assessment of the fate and toxicity of chemically and biologically synthesized silver nanoparticles to juvenile clams. Colloids Surf B Biointerfaces 2021; 209:112173. [PMID: 34749192 DOI: 10.1016/j.colsurfb.2021.112173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Nanoparticles (NPs) can be produced via physical, chemical, or biological approaches. Yet, the impact of the synthesis approaches on the environmental fate and effects of NPs is poorly understood. Here, we synthesized AgNPs through chemical and biological approaches (cit-AgNPs and bio-AgNPs), characterized their properties, and toxicities relative to commercially available Ag nanopowder (np-AgNPs) to the clam Mercenaria mercenaria. The chemical synthesis is based on the reduction of ionic silver using sodium borohydride as a reducing agent and trisodium citrate as a capping agent. The biological synthesis is based on the reduction of ionic silver using biomolecules extracted from an atoxigenic strain of a filamentous fungus Aspergillus parasiticus. The properties of AgNPs were determined using UV-vis, dynamic light scattering, laser Doppler electrophoresis, (single particle)-inductively coupled plasma-mass spectroscopy, transmission electron microscopy, and asymmetric flow-field flow fractionation. Both chemical and biological synthesis approaches generated spherical AgNPs. The chemical synthesis produced AgNPs with narrower size distributions than those generated through biological synthesis. The polydispersity of bio-AgNPs decreased with increases in cell free extract (CFE):Ag ratios. The magnitude of the zeta potential of the cit-AgNPs was higher than those of bio-AgNPs. All AgNPs formed aggregates in the test media i.e., natural seawater. Based on the same total Ag concentrations, all AgNPs were less toxic than AgNO3. The toxicity of AgNPs toward the juvenile clam, Mercenaria mercenaria, decreased following the order np-AgNPs > cit-AgNPs > bio-AgNPs. Expressed as a function of dissolved Ag concentrations, the toxicity of Ag decreased following the order cit-AgNPs > bio-AgNPs > AgNO3 ~ np-AgNPs. Therefore, the toxicity of AgNP suspensions can be attributed to a combined effect of dissolved and particulate Ag forms. These results indicate that AgNP synthesis methods determine their environmental and biological behaviors and should be considered for a more comprehensive environmental risk assessment of AgNPs.
Collapse
Affiliation(s)
- Amar Yasser Jassim
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA; Department of Marine Vertebrates, Marine Science Center, University of Basrah, Iraq
| | - Jingjing Wang
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| | - Katy W Chung
- NOAA/National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC 29412, USA
| | - Frédéric Loosli
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| | - Anindya Chanda
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA; Mycologics LLC, Alexandria, VA 22306, USA
| | - Geoffrey I Scott
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| |
Collapse
|
44
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Smart nanomaterial and nanocomposite with advanced agrochemical activities. NANOSCALE RESEARCH LETTERS 2021; 16:156. [PMID: 34664133 PMCID: PMC8523620 DOI: 10.1186/s11671-021-03612-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 05/10/2023]
Abstract
Conventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | |
Collapse
|
45
|
Dev Sarkar R, Singh HB, Chandra Kalita M. Enhanced lipid accumulation in microalgae through nanoparticle-mediated approach, for biodiesel production: A mini-review. Heliyon 2021; 7:e08057. [PMID: 34622062 PMCID: PMC8481968 DOI: 10.1016/j.heliyon.2021.e08057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Nanoparticle application in microalgae for enhanced lipid production is an ongoing work that leads towards the contribution in biodiesel production. During this decade, metal nanoparticles are constantly being reported to have numerous applications in diverse fields, because of their unique optical, electrical, and magnetic properties. They can interact with the biomolecules of cells and thereby alters cellular metabolisms, which in turn reflects their ability to regulate some primary or secondary metabolic pathways. Nanoparticles derived from metals like Fe, Cu, and Se are taking part in redox processes and their presence in many enzymes may modulate algal metabolisms. Besides by upregulating or downregulating the expression of several genes, nanoparticle exposure can alter gene expressions in many organisms. In microalgae such as Chlorella vulgaris, C. pyrenoidosa, Scenedesmus obliquus, S. rubescens, Trachydiscus minut u s, Parachlorella kessleri, and Tetraselmis suecica; metal nanoparticle exposure in different environmental conditions have impacts on various physiological or molecular changes, thereby increasing the growth rate, biomass and lipid production. The present mini-review gives an insight into the various advantages and a future outlook on the application of nanoparticles in microalgae for biofuel production. Also, it can be proposed that nanoparticles could be useful in blocking or deactivating the AGPase enzyme (involved in the glucose to starch conversion pathway), binding to its active site, thereby increasing lipid production in microalgae that could be utilized for enhanced biodiesel production.
Collapse
|
46
|
Varlamova EG, Turovsky EA, Blinova EV. Therapeutic Potential and Main Methods of Obtaining Selenium Nanoparticles. Int J Mol Sci 2021; 22:ijms221910808. [PMID: 34639150 PMCID: PMC8509153 DOI: 10.3390/ijms221910808] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
This review presents the latest data on the importance of selenium nanoparticles in human health, their use in medicine, and the main known methods of their production by various methods. In recent years, a multifaceted study of nanoscale complexes in medicine, including selenium nanoparticles, has become very important in view of a number of positive features that make it possible to create new drugs based on them or significantly improve the properties of existing drugs. It is known that selenium is an essential trace element that is part of key antioxidant enzymes. In mammals, there are 25 selenoproteins, in which selenium is a key component of the active site. The important role of selenium in human health has been repeatedly proven by several hundred works in the past few decades; in recent years, the study of selenium nanocomplexes has become the focus of researchers. A large amount of accumulated data requires generalization and systematization in order to improve understanding of the key mechanisms and prospects for the use of selenium nanoparticles in medicine, which is the purpose of this review.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Ekaterina V. Blinova
- Department of Clinical Anatomy and Operative Surgery, Department of Pharmacological Technology and Pharmacology, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia;
| |
Collapse
|
47
|
Singhal M, Chatterjee S, Kumar A, Syed A, Bahkali AH, Gupta N, Nimesh S. Exploring the Antibacterial and Antibiofilm Efficacy of Silver Nanoparticles Biosynthesized Using Punica granatum Leaves. Molecules 2021; 26:5762. [PMID: 34641304 PMCID: PMC8510064 DOI: 10.3390/molecules26195762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
The current research work illustrates an economical and rapid approach towards the biogenic synthesis of silver nanoparticles using aqueous Punica granatum leaves extract (PGL-AgNPs). The optimization of major parameters involved in the biosynthesis process was done using Box-Behnken Design (BBD). The effects of different independent variables (parameters), namely concentration of AgNO3, temperature and ratio of extract to AgNO3, on response viz. particle size and polydispersity index were analyzed. As a result of experiment designing, 17 reactions were generated, which were further validated experimentally. The statistical and mathematical approaches were employed on these reactions in order to interpret the relationship between the factors and responses. The biosynthesized nanoparticles were initially characterized by UV-vis spectrophotometry followed by physicochemical analysis for determination of particle size, polydispersity index and zeta potential via dynamic light scattering (DLS), SEM and EDX studies. Moreover, the determination of the functional group present in the leaves extract and PGL-AgNPs was done by FTIR. Antibacterial and antibiofilm efficacies of PGL-AgNPs against Gram-positive and Gram-negative bacteria were further determined. The physicochemical studies suggested that PGL-AgNPs were round in shape and of ~37.5 nm in size with uniform distribution. Our studies suggested that PGL-AgNPs exhibit potent antibacterial and antibiofilm properties.
Collapse
Affiliation(s)
- Monisha Singhal
- Department of Biotechnology, IIS (Deemed to be University), Gurukul Marg, SFS, Mansarovar, Jaipur 302020, India; (M.S.); (S.C.)
| | - Sreemoyee Chatterjee
- Department of Biotechnology, IIS (Deemed to be University), Gurukul Marg, SFS, Mansarovar, Jaipur 302020, India; (M.S.); (S.C.)
| | - Ajeet Kumar
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5814, USA;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Nidhi Gupta
- Department of Biotechnology, IIS (Deemed to be University), Gurukul Marg, SFS, Mansarovar, Jaipur 302020, India; (M.S.); (S.C.)
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India
| |
Collapse
|
48
|
Ullah A, Yin X, Wang F, Xu B, Mirani ZA, Xu B, Chan MWH, Ali A, Usman M, Ali N, Naveed M. Biosynthesis of Selenium Nanoparticles (via Bacillus subtilis BSN313), and Their Isolation, Characterization, and Bioactivities. Molecules 2021; 26:5559. [PMID: 34577029 PMCID: PMC8468162 DOI: 10.3390/molecules26185559] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Among the trace elements, selenium (Se) has great demand as a health supplement. Compared to its other forms, selenium nanoparticles have minor toxicity, superior reactivity, and excellent bioavailability. The present study was conducted to produce selenium nanoparticles (SeNPs) via a biosynthetic approach using probiotic Bacillus subtilis BSN313 in an economical and easy manner. The BSN313 exhibited a gradual increase in Se reduction and production of SeNPs up to 5-200 µg/mL of its environmental Se. However, the capability was decreased beyond that concentration. The capacity for extracellular SeNP production was evidenced by the emergence of red color, then confirmed by a microscopic approach. Produced SeNPs were purified, freeze-dried, and subsequently characterized systematically using UV-Vis spectroscopy, FTIR, Zetasizer, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. With an average particle size of 530 nm, SeNPs were shown to have a -26.9 (mV) zeta potential and -2.11 µm cm/Vs electrophoretic mobility in water. SeNPs produced during both the 24 and 48 h incubation periods showed good antioxidant activity in terms of DPPH and ABST scavenging action at a concentration of 150 µg/mL with no significant differences (p > 0.05). Moreover, 200 µg/mL of SeNPs showed antibacterial reactivity against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 9027, and Pseudomonas aeruginosa ATCC 25923. In the future, this work will be helpful to produce biogenic SeNPs using probiotic Bacillus subtilis BSN313 as biofactories, with the potential for safe use in biomedical and nutritional applications.
Collapse
Affiliation(s)
- Asad Ullah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi 75280, Pakistan;
| | - Xian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bo Xu
- McIntire School of Commerce, University of Virginia, Charlottesville, VA 22903, USA
| | - Zulfiqar Ali Mirani
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi 75280, Pakistan;
| | - Baocai Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Malik Wajid Hussain Chan
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan; (M.W.H.C.); (A.A.)
| | - Amjad Ali
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan; (M.W.H.C.); (A.A.)
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
| | - Nawazish Ali
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Muhammad Naveed
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
49
|
Green synthesis of silver nanoparticles (AgNPs) by filamentous algae extract: comprehensive evaluation of antimicrobial and anti-biofilm effects against nosocomial pathogens. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00808-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Han HW, Patel KD, Kwak JH, Jun SK, Jang TS, Lee SH, Knowles JC, Kim HW, Lee HH, Lee JH. Selenium Nanoparticles as Candidates for Antibacterial Substitutes and Supplements against Multidrug-Resistant Bacteria. Biomolecules 2021; 11:1028. [PMID: 34356651 PMCID: PMC8301847 DOI: 10.3390/biom11071028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, multidrug-resistant (MDR) bacteria have increased rapidly, representing a major threat to human health. This problem has created an urgent need to identify alternatives for the treatment of MDR bacteria. The aim of this study was to identify the antibacterial activity of selenium nanoparticles (SeNPs) and selenium nanowires (SeNWs) against MDR bacteria and assess the potential synergistic effects when combined with a conventional antibiotic (linezolid). SeNPs and SeNWs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), zeta potential, and UV-visible analysis. The antibacterial effects of SeNPs and SeNWs were confirmed by the macro-dilution minimum inhibitory concentration (MIC) test. SeNPs showed MIC values against methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-resistant enterococci (VRE) at concentrations of 20, 80, 320, and >320 μg/mL, respectively. On the other hand, SeNWs showed a MIC value of >320 μg/mL against all tested bacteria. Therefore, MSSA, MRSA, and VRSA were selected for the bacteria to be tested, and SeNPs were selected as the antimicrobial agent for the following experiments. In the time-kill assay, SeNPs at a concentration of 4X MIC (80 and 320 μg/mL) showed bactericidal effects against MSSA and MRSA, respectively. At a concentration of 2X MIC (40 and 160 μg/mL), SeNPs showed bacteriostatic effects against MSSA and bactericidal effects against MRSA, respectively. In the synergy test, SeNPs showed a synergistic effect with linezolid (LZD) through protein degradation against MSSA and MRSA. In conclusion, these results suggest that SeNPs can be candidates for antibacterial substitutes and supplements against MDR bacteria for topical use, such as dressings. However, for use in clinical situations, additional experiments such as toxicity and synergistic mechanism tests of SeNPs are needed.
Collapse
Affiliation(s)
- Hee-Won Han
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Jin-Hwan Kwak
- Department of Life Science, Handong Global University, Pohang 37554, Korea;
| | - Soo-Kyung Jun
- Department of Dental Hygiene, Hanseo University, Seosan 31962, Korea;
| | - Tae-Su Jang
- Department of Pre-Medi, College of Medicine, Dankook University, Cheonan 31116, Korea;
| | - Sung-Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University, Cheonan 31116, Korea;
| | - Jonathan Campbell Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.-W.H.); (K.D.P.); (J.C.K.); (H.-W.K.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| |
Collapse
|