1
|
Chen Y, Shokouhi AR, Voelcker NH, Elnathan R. Nanoinjection: A Platform for Innovation in Ex Vivo Cell Engineering. Acc Chem Res 2024; 57:1722-1735. [PMID: 38819691 PMCID: PMC11191407 DOI: 10.1021/acs.accounts.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
ConspectusIn human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.g., DNA, mRNA, and siRNA), peptides, and proteins (e.g., enzymes and antibodies), are tightly constrained to ensure healthy cell function and behavior. This principle is exemplified in the delivery mechanisms of chimeric antigen receptor (CAR)-T cells for ex-vivo immunotherapy. In particular, the clinical success of CAR-T cells has established a new standard of care by curing previously incurable blood cancers. The approach involves the delivery, typically via the use of electroporation (EP) and lentivirus, of therapeutic CAR genes into a patient's own T cells, which are then engineered to express CARs that target and combat their blood cancer. But the key difficulty lies in genetically manipulating these cells without causing irreversible damage or loss of function─all the while minimizing complexities of manufacturing, safety concerns, and costs, and ensuring the efficacy of the final CAR-T cell product.Nanoinjection─the process of intracellular delivery using nanoneedles (NNs)─is an emerging physical delivery route that efficiently negotiates the plasma membrane of many cell types, including primary human T cells. It occurs with minimal perturbation, invasiveness, and toxicity, with high efficiency and throughput at high spatial and temporal resolutions. Nanoinjection promises greatly improved delivery of a broad range of therapeutic cargos with little or no damage to those cargos. A nanoinjection platform allows these cargos to function in the intracellular space as desired. The adaptability of nanoinjection platforms is now bringing major advantages in immunomodulation, mechanotransduction, sampling of cell states (nanobiopsy), controlled intracellular interrogation, and the primary focus of this account─intracellular delivery and its applications in ex vivo cell engineering.Mechanical nanoinjection typically exerts direct mechanical force on the cell membrane, offering a straightforward route to improve membrane perturbation by the NNs and subsequent transport of genetic cargo into targeted cell type (adherent or suspension cells). By contrast, electroactive nanoinjection is controlled by coupling NNs with an electric field─a new route for activating electroporation (EP) at the nanoscale─allowing a dramatic reduction of the applied voltage to a cell and so minimizing post-EP damage to cells and cargo, and overcoming many of the limitations of conventional bulk EP. Nanoinjection transcends mere technique; it is an approach to cell engineering ex vivo, offering the potential to endow cells with new, powerful features such as generating chimeric antigen receptor (CAR)-T cells for future CAR-T cell technologies.We first discuss the manufacturing of NN devices (Section 2), then delve into nanoinjection-mediated cell engineering (Section 3), nanoinjection mechanisms and interfacing methodologies (Section 4), and emerging applications in using nanoinjection to create functional CAR-T cells (Section 5).
Collapse
Affiliation(s)
- Yaping Chen
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), Institute of Aging, Key Laboratory of Alzheimer’s
Disease of Zhejiang Province, Zhejiang Provincial Clinical Research
Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ali-Reza Shokouhi
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Nicolas H. Voelcker
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node of the Australian National
Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Department
of Materials Science and Engineering, Monash
University, 22 Alliance Lane, Clayton, VIC 3168, Australia
| | - Roey Elnathan
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node of the Australian National
Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- School
of Medicine, Faculty of Health, Deakin University, Waurn Ponds, VIC 3216, Australia
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, VIC 3216, Australia
- The
Institute for Mental and Physical Health and Clinical Translation,
School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC 3216, Australia
| |
Collapse
|
2
|
Quek YJ, Tay A. Nanoscale Methods for Longitudinal Extraction of Intracellular Contents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314184. [PMID: 38459829 DOI: 10.1002/adma.202314184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Longitudinal analysis of intracellular contents including gene and protein expression is crucial for deciphering the fundamentally dynamic nature of cells. This offers invaluable insights into complex tissue composition and behavior, and drives progress in disease diagnosis, biomarker discovery, and drug development. Traditional longitudinal analysis workflows, involving the destruction of cells at various timepoints, limit insights to singular moments and fail to account for cellular heterogeneity. Current non-destructive approaches, like temporal modeling with single-cell ribonucleic acid sequencing (RNA-seq) and live-cell fluorescence imaging, either rely on biological assumptions or possess the risk of cellular perturbation. Recent advances in nanoscale technologies for non-destructive intracellular content extraction offer a promising solution to these challenges. These novel methods work at the nanoscale to non-destructively access cellular membranes and can be broadly classified into three mechanisms: tip-facilitated aspiration, membrane-based, and probe-based methods. This perspective focuses on these emerging nanotechnologies for repeated intracellular content extraction. Their potential in longitudinal analysis is discussed, the critical requirements for effective repeated sampling are addressed, and the suitability of each technique for various applications is explored. Furthermore, unresolved challenges in repeated sampling are highlighted to encourage further research in this growing field.
Collapse
Affiliation(s)
- Ying Jie Quek
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Tissue Engineering Programme, National University of Singapore, Singapore, 117510, Singapore
| |
Collapse
|
3
|
Rahamathulla M, Murugesan S, Gowda DV, Alamri AH, Ahmed MM, Osmani RAM, Ramamoorthy S, Veeranna B. The Use of Nanoneedles in Drug Delivery: an Overview of Recent Trends and Applications. AAPS PharmSciTech 2023; 24:216. [PMID: 37857918 DOI: 10.1208/s12249-023-02661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
Nanoneedles (NN) are growing rapidly as a means of navigating biological membranes and delivering therapeutics intracellularly. Nanoneedle arrays (NNA) are among the most potential resources to achieve therapeutic effects by administration of drugs through the skin. Although this is based on well-established approaches, its implementations are rapidly developing as an important pharmaceutical and biological research phenomenon. This study intends to provide a broad overview of current NNA research, with an emphasis on existing approaches, applications, and types of compounds released by these systems. A nanoneedle-based delivery device with great spatial and temporal accuracy, minimal interference, and low toxicity could transfer biomolecules into living organisms. Due to its vast potential, NN has been widely used as a capable transportation system of many therapeutic active substances, from cancer therapy, vaccine delivery, cosmetics, and bio-sensing nanocarrier drugs to genes. The use of nanoneedles for drug delivery offers new opportunities for the rapid, targeted, and exact administration of biomolecules into cell membranes for high-resolution research of biological systems, and it can treat a wide range of biological challenges. As a result, the literature has analyzed existing patents to emphasize the status of NNA in biological applications.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Santhosh Murugesan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| | - Sathish Ramamoorthy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Balamuralidhara Veeranna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
4
|
Jin R, Zhou W, Xu Y, Jiang D, Fang D. Electrochemical Visualization of Membrane Proteins in Single Cells at a Nanoscale Using Scanning Electrochemical Cell Microscopy. Anal Chem 2023. [PMID: 37358933 DOI: 10.1021/acs.analchem.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The electrochemical visualization of proteins in the plasma membrane of single fixed cells was achieved with a spatial resolution of 160 nm using scanning electrochemical cell microscopy. The model protein, the carcinoembryonic antigen (CEA), is linked with a ruthenium complex (Ru(bpy)32+)-tagged antibody, which exhibits redox peaks in its cyclic voltammetry curves after a nanopipette tip contacts the cellular membrane. Based on the potential-resolved oxidation or reduction currents, an uneven distribution of membrane CEAs on the cells is electrochemically visualized, which could only be achieved previously using super-resolution optical microscopy. Compared with current electrochemical microscopy, the single-cell scanning electrochemical cell microscopy (SECCM) strategy not only improves the spatial resolution but also utilizes the potential-resolved current from the antibody-antigen complex to increase electrochemical imaging accuracy. Eventually, the electrochemical visualization of cellular proteins at the nanoscale enables the super-resolution study of cells to provide more biological information.
Collapse
Affiliation(s)
- Rong Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenting Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| |
Collapse
|
5
|
He X, Xiong S, Sun Y, Zhong M, Xiao N, Zhou Z, Wang T, Tang Y, Xie J. Recent Progress of Rational Modified Nanocarriers for Cytosolic Protein Delivery. Pharmaceutics 2023; 15:1610. [PMID: 37376059 DOI: 10.3390/pharmaceutics15061610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Therapeutic proteins garnered significant attention in the field of disease treatment. In comparison to small molecule drugs, protein therapies offer distinct advantages, including high potency, specificity, low toxicity, and reduced carcinogenicity, even at minimal concentrations. However, the full potential of protein therapy is limited by inherent challenges such as large molecular size, delicate tertiary structure, and poor membrane penetration, resulting in inefficient intracellular delivery into target cells. To address these challenges and enhance the clinical applications of protein therapies, various protein-loaded nanocarriers with tailored modifications were developed, including liposomes, exosomes, polymeric nanoparticles, and nanomotors. Despite these advancements, many of these strategies encounter significant issues such as entrapment within endosomes, leading to low therapeutic efficiency. In this review, we extensively discussed diverse strategies for the rational design of nanocarriers, aiming to overcome these limitations. Additionally, we presented a forward-looking viewpoint on the innovative generation of delivery systems specifically tailored for protein-based therapies. Our intention was to offer theoretical and technical support for the development and enhancement of nanocarriers capable of facilitating cytosolic protein delivery.
Collapse
Affiliation(s)
- Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Min Zhong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Wang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
6
|
Yoh HZ, Chen Y, Shokouhi AR, Thissen H, Voelcker NH, Elnathan R. The influence of dysfunctional actin on polystyrene-nanotube-mediated mRNA nanoinjection into mammalian cells. NANOSCALE 2023; 15:7737-7744. [PMID: 37066984 DOI: 10.1039/d3nr01111a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The advancement of nanofabrication technologies has transformed the landscape of engineered nano-bio interfaces, especially with vertically aligned nanoneedles (NNs). This enables scientists to venture into new territories, widening NN applications into increasingly more complex cellular manipulation and interrogation. Specifically, for intracellular delivery application, NNs have been shown to mediate the delivery of various bioactive cargos into a wide range of cells-a physical method termed "nanoinjection". Silicon (Si) nanostructures demonstrated great potential in nanoinjection, whereas the use of polymeric NNs for nanoinjection has rarely been explored. Furthermore, the underlying mechanism of interaction at the cell-NN interface is subtle and multifaceted, and not fully understood-underpinned by the design versatility of the NN biointerface. Recent studies have suggested that actin dynamic plays a pivotal role influencing the delivery efficacy. In this study, we fabricated a new class of NNs-a programmable polymeric nanotubes (NTs)-from polystyrene (PS) cell cultureware, designed to facilitate mRNA delivery into mouse embryonic fibroblast GPE86 cells. The PSNT delivery platform was able to mediate mRNA delivery with high delivery efficiency (∼83%). We also investigated the role of actin cytoskeleton in PSNTs mediated intracellular delivery by introducing two actin inhibitors-cytochalasin D (Cyto D) and jasplakinolide (Jas)-to cause dysfunctional cytoskeleton, via inhibiting actin polymerization and depolymerization, respectively (before and after the establishment of cell-PSNT interface). By inhibiting actin dynamics 12 h before cell-PSNT interfacing (pre-interface treatment), the mRNA delivery efficiencies were significantly reduced to ∼3% for Cyto D-treated samples and ∼1% for Jas-treated sample, as compared to their post-interface (2 h after cell-PSNT interfacing) counterpart (∼46% and ∼68%, respectively). The added flexibility of PSNTs have shown to help withstand mechanical breakage stemming from cytoskeletal forces in contrast to the SiNTs. Such findings will step-change our capacity to use programmable polymeric NTs in fundamental cellular processes related to intracellular delivery.
Collapse
Affiliation(s)
- Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3168, Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia
- Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia
| |
Collapse
|
7
|
Ghani MW, Iqbal A, Ghani H, Bibi S, Wang Z, Pei R. Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. J Mater Chem B 2023. [PMID: 36779580 DOI: 10.1039/d2tb02610d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
CRISPR/Cas systems are novel gene editing tools with tremendous capacity and accuracy for gene editing and hold great potential for therapeutic genetic manipulation. However, the lack of safe and efficient delivery methods for CRISPR/Cas and its guide RNA hinders their wide adoption for therapeutic applications. To this end, there is an increasing demand for safe, efficient, precise, and non-pathogenic delivery approaches, both in vitro and in vivo. With the convergence of nanotechnology and biomedicine, functional nanocomposites have demonstrated unparalleled sophistication to overcome the limits of CRISPR/Cas delivery. The tunability of the physicochemical properties of nanocomposites makes it very easy to conjugate them with different functional substances. The combinatorial application of diverse functional materials in the form of nanocomposites has shown excellent properties for CRISPR/Cas delivery at the target site with therapeutic potential. The recent highlights of selective organ targeting and phase I clinical trials for gene manipulation by CRISPR/Cas after delivery through LNPs are at the brink of making it to routine clinical practice. Here we summarize the recent advances in delivering CRISPR/Cas systems through nanocomposites for targeted delivery and therapeutic genome editing.
Collapse
Affiliation(s)
- Muhammad Waseem Ghani
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Ambreen Iqbal
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Hammad Ghani
- Basic Health Unit Laleka, Primary and Secondary Healthcare Department, Bahawalngar, 62300, Punjab, Pakistan
| | - Sidra Bibi
- Department of Biology, The Islamia University of Bahawalpur, Bahawalnagar Campus 62300, Pakistan
| | - Zixun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| |
Collapse
|
8
|
Chen Y, Yoh HZ, Shokouhi AR, Murayama T, Suu K, Morikawa Y, Voelcker NH, Elnathan R. Role of actin cytoskeleton in cargo delivery mediated by vertically aligned silicon nanotubes. J Nanobiotechnology 2022; 20:406. [PMID: 36076230 PMCID: PMC9461134 DOI: 10.1186/s12951-022-01618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
Nanofabrication technologies have been recently applied to the development of engineered nano–bio interfaces for manipulating complex cellular processes. In particular, vertically configurated nanostructures such as nanoneedles (NNs) have been adopted for a variety of biological applications such as mechanotransduction, biosensing, and intracellular delivery. Despite their success in delivering a diverse range of biomolecules into cells, the mechanisms for NN-mediated cargo transport remain to be elucidated. Recent studies have suggested that cytoskeletal elements are involved in generating a tight and functional cell–NN interface that can influence cargo delivery. In this study, by inhibiting actin dynamics using two drugs—cytochalasin D (Cyto D) and jasplakinolide (Jas), we demonstrate that the actin cytoskeleton plays an important role in mRNA delivery mediated by silicon nanotubes (SiNTs). Specifically, actin inhibition 12 h before SiNT-cellular interfacing (pre-interface treatment) significantly dampens mRNA delivery (with efficiencies dropping to 17.2% for Cyto D and 33.1% for Jas) into mouse fibroblast GPE86 cells, compared to that of untreated controls (86.9%). However, actin inhibition initiated 2 h after the establishment of GPE86 cell–SiNT interface (post-interface treatment), has negligible impact on mRNA transfection, maintaining > 80% efficiency for both Cyto D and Jas treatment groups. The results contribute to understanding potential mechanisms involved in NN-mediated intracellular delivery, providing insights into strategic design of cell–nano interfacing under temporal control for improved effectiveness.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia
| | - Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia. .,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia. .,Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia. .,INM-Leibnitz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia. .,School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia. .,Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Geelong, VIC, 3216, Australia.
| |
Collapse
|
9
|
Mechanical detection of interactions between proteins related to intermediate filament and transcriptional regulation in living cells. Biosens Bioelectron 2022; 216:114603. [DOI: 10.1016/j.bios.2022.114603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
|
10
|
Wang F, Lin S, Yu Z, Wang Y, Zhang D, Cao C, Wang Z, Cui D, Chen D. Recent advances in microfluidic-based electroporation techniques for cell membranes. LAB ON A CHIP 2022; 22:2624-2646. [PMID: 35775630 DOI: 10.1039/d2lc00122e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electroporation is a fundamental technique for applications in biotechnology. To date, the ongoing research on cell membrane electroporation has explored its mechanism, principles and potential applications. Therefore, in this review, we first discuss the primary electroporation mechanism to help establish a clear framework. Within the context of its principles, several critical terms are highlighted to present a better understanding of the theory of aqueous pores. Different degrees of electroporation can be used in different applications. Thus, we discuss the electric factors (shock strength, shock duration, and shock frequency) responsible for the degree of electroporation. In addition, finding an effective electroporation detection method is of great significance to optimize electroporation experiments. Accordingly, we summarize several primary electroporation detection methods in the following sections. Finally, given the development of micro- and nano-technology has greatly promoted the innovation of microfluidic-based electroporation devices, we also present the recent advances in microfluidic-based electroporation devices. Also, the challenges and outlook of the electroporation technique for cell membrane electroporation are presented.
Collapse
Affiliation(s)
- Fei Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Zixian Yu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Yanpu Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Di Zhang
- Centre for Advanced Electronic Materials and Devices (AEMD), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chengxi Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| |
Collapse
|
11
|
Hori K, Yoshimoto S, Yoshino T, Zako T, Hirao G, Fujita S, Nakamura C, Yamagishi A, Kamiya N. Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces. J Biosci Bioeng 2022; 133:195-207. [PMID: 34998688 DOI: 10.1016/j.jbiosc.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Biointerfaces are regions where biomolecules, cells, and organic materials are exposed to environmental media or come in contact with other biomaterials, cells, and inorganic/organic materials. In this review article, six research topics on biointerfaces are described to show examples of state-of-art research approaches. First, biointerface design of nanoparticles for molecular detection is described. Functionalized gold nanoparticles can be used for sensitive detection of various target molecules, including chemical compounds and biomolecules, such as DNA, proteins, cells, and viruses. Second, the interaction between bacterial cell surfaces and material surfaces, including the introduction of advances in analytical methods and theoretical calculations, are explained as well as their applications to bioprocesses. Third, bioconjugation technologies for localizing functional proteins at biointerfaces are introduced, in particular, by focusing the potential of enzymes as a catalytic tool for designing different types of bioconjugates that function at biointerfaces. Forth topics is focusing on lipid-protein interaction in cell membranes as natural biointerfaces. Examples of membrane lipid engineering are introduced, and it is mentioned how their compositional profiles affect membrane protein functions. Fifth topic is the physical method for molecular delivery across the biointerface being developed currently, such as highly efficient nanoinjection, electroporation, and nanoneedle devices, in which the key is how to perforate the cell membrane. Final topic is the chemical design of lipid- or polymer-based RNA delivery carriers and their behavior on the cell interface, which are currently attracting attention as RNA vaccine technologies targeting COVID-19. Finally, future directions of biointerface studies are presented.
Collapse
Affiliation(s)
- Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tamotsu Zako
- Faculty of Science, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Gen Hirao
- Faculty of Science, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Satoshi Fujita
- Photo BIO-OIL, National Institute of Advanced Industrial Science and Technology, Suita, Osaka 565-0871, Japan; Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikashi Nakamura
- DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ayana Yamagishi
- DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Park S, Nguyen DV, Kang L. Immobilized nanoneedle-like structures for intracellular delivery, biosensing and cellular surgery. Nanomedicine (Lond) 2021; 16:335-349. [PMID: 33533658 DOI: 10.2217/nnm-2020-0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid advancements of nanotechnology over the recent years have reformed the methods used for treating human diseases. Nanostructures including nanoneedles, nanorods, nanowires, nanofibers and nanotubes have exhibited their potential roles in drug delivery, biosensing, cancer therapy, regenerative medicine and intracellular surgery. These high aspect ratio structures enhance targeted drug delivery with spatiotemporal control while also demonstrating their role as an efficient intracellular biosensor with minimal invasiveness. This review discusses the history and emergence of these nanostructures and their fabrication methods. This review also provides an overview of the different applications of nanoneedle systems, further highlighting the importance of greater investigation into these nanostructures for future medicine.
Collapse
Affiliation(s)
- Sol Park
- School of Pharmacy, Faculty of Medicine & Health, University of Sydney, NSW 2006, Australia
| | - Duc-Viet Nguyen
- Nusmetics Pte. Ltd, i4 building, 3 Research Link, Singapore 117602, Republic of Singapore
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine & Health, University of Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Sero JE, Stevens MM. Nanoneedle-Based Materials for Intracellular Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:191-219. [PMID: 33543461 DOI: 10.1007/978-3-030-58174-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoneedles, defined as high aspect ratio structures with tip diameters of 5 to approximately 500 nm, are uniquely able to interface with the interior of living cells. Their nanoscale dimensions mean that they are able to penetrate the plasma membrane with minimal disruption of normal cellular functions, allowing researchers to probe the intracellular space and deliver or extract material from individual cells. In the last decade, a variety of strategies have been developed using nanoneedles, either singly or as arrays, to investigate the biology of cancer cells in vitro and in vivo. These include hollow nanoneedles for soluble probe delivery, nanocapillaries for single-cell biopsy, nano-AFM for direct physical measurements of cytosolic proteins, and a wide range of fluorescent and electrochemical nanosensors for analyte detection. Nanofabrication has improved to the point that nanobiosensors can detect individual vesicles inside the cytoplasm, delineate tumor margins based on intracellular enzyme activity, and measure changes in cell metabolism almost in real time. While most of these applications are currently in the proof-of-concept stage, nanoneedle technology is poised to offer cancer biologists a powerful new set of tools for probing cells with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Julia E Sero
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath, UK
| | - Molly M Stevens
- Institute for Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
14
|
Kim H, Hoshi M, Iijima M, Kuroda S, Nakamura C. Development of a universal method for the measurement of binding affinities of antibody drugs towards a living cell based on AFM force spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2922-2927. [PMID: 32930215 DOI: 10.1039/d0ay00788a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A universal method to measure the binding affinities of antibody drugs towards their targets on the surface of living cells was developed based on atomic force microscopy (AFM) analysis. Nivolumab, an antibody drug targeting programmed cell death 1 (PD-1), was mainly used as a model for this evaluation. The surface of a tip-less AFM cantilever was coated with nano-capsules, on which immunoglobulin G-binding ZZ domains of protein A were exposed, and nivolumab molecules were immobilized on the cantilever through binding between the antibody Fc domains and the ZZ domains, which controlled the molecular orientation of the antibodies. Model human T lymphocytes (Jurkat), on which PD-1 molecules were highly expressed, were immobilized on a glass substrate via a lipid bilayer-anchoring reagent. The nivolumab-coated AFM cantilever was moved to approach the T cells, and the rupture forces between nivolumab molecules on the AFM cantilever and PD-1 molecules on the cell surface were measured. The average values of the rupture forces were 0.18 ± 0.10, 0.21 ± 0.18, 0.12 ± 0.07, 0.11 ± 0.06, and 0.12 ± 0.06 nN μm-2 at loading forces of 10, 20, 30, 40, and 50 nN, respectively. Application of significantly higher loading forces decreased the S/N ratio, as confirmed by comparison with control T cells with low PD-1 expression, which suggested that a low loading force of less than 20 nN was sufficient for these measurements. A correlation between the expression levels of PD-1 and the rupture force values was confirmed using immunofluorescence. A similar assay was performed by using an antibody drug targeting epidermal growth factor receptor (EGFR) and a model cancer cell expressing EGFR molecules (A431) to evaluate the universal application of the developed method for various antibody drugs, and the same conclusions as that in nivolumab's case were obtained. This method can be applied to living cells without any chemical treatment, which allows the present method to compare the affinities of various antibody drugs towards the same single cell. These results indicated that the present method is useful for selecting the most effective candidates from various antibody drugs from the point of view of binding forces between antibodies and living cells.
Collapse
Affiliation(s)
- Hyonchol Kim
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan.
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan
| | - Masamichi Hoshi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan.
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan
| | - Masumi Iijima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan
| | - Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan.
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan
| |
Collapse
|
15
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
16
|
Kumar SS, Baker MS, Okandan M, Muthuswamy J. Engineering microscale systems for fully autonomous intracellular neural interfaces. MICROSYSTEMS & NANOENGINEERING 2020; 6:1. [PMID: 34567658 PMCID: PMC8433365 DOI: 10.1038/s41378-019-0121-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 05/08/2023]
Abstract
Conventional electrodes and associated positioning systems for intracellular recording from single neurons in vitro and in vivo are large and bulky, which has largely limited their scalability. Further, acquiring successful intracellular recordings is very tedious, requiring a high degree of skill not readily achieved in a typical laboratory. We report here a robotic, MEMS-based intracellular recording system to overcome the above limitations associated with form factor, scalability, and highly skilled and tedious manual operations required for intracellular recordings. This system combines three distinct technologies: (1) novel microscale, glass-polysilicon penetrating electrode for intracellular recording; (2) electrothermal microactuators for precise microscale movement of each electrode; and (3) closed-loop control algorithm for autonomous positioning of electrode inside single neurons. Here we demonstrate the novel, fully integrated system of glass-polysilicon microelectrode, microscale actuators, and controller for autonomous intracellular recordings from single neurons in the abdominal ganglion of Aplysia californica (n = 5 cells). Consistent resting potentials (<-35 mV) and action potentials (>60 mV) were recorded after each successful penetration attempt with the controller and microactuated glass-polysilicon microelectrodes. The success rate of penetration and quality of intracellular recordings achieved using electrothermal microactuators were comparable to that of conventional positioning systems. Preliminary data from in vivo experiments in anesthetized rats show successful intracellular recordings. The MEMS-based system offers significant advantages: (1) reduction in overall size for potential use in behaving animals, (2) scalable approach to potentially realize multi-channel recordings, and (3) a viable method to fully automate measurement of intracellular recordings. This system will be evaluated in vivo in future rodent studies.
Collapse
Affiliation(s)
- Swathy Sampath Kumar
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Michael S. Baker
- Mechanical Engineering, Sandia National laboratories, Albuquerque, NM USA
| | | | - Jit Muthuswamy
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
17
|
Dipalo M, Caprettini V, Bruno G, Caliendo F, Garma LD, Melle G, Dukhinova M, Siciliano V, Santoro F, De Angelis F. Membrane Poration Mechanisms at the Cell-Nanostructure Interface. ACTA ACUST UNITED AC 2019; 3:e1900148. [PMID: 32648684 DOI: 10.1002/adbi.201900148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/21/2019] [Indexed: 01/27/2023]
Abstract
3D vertical nanostructures have become one of the most significant methods for interfacing cells and the nanoscale and for accessing significant intracellular functionalities such as membrane potential. As this intracellular access can be induced by means of diverse cellular membrane poration mechanisms, it is important to investigate in detail the cell condition after membrane rupture for assessing the real effects of the poration techniques on the biological environment. Indeed, differences of the membrane dynamics and reshaping have not been observed yet when the membrane-nanostructure system is locally perturbed by, for instance, diverse membrane breakage events. In this work, new insights are provided into the membrane dynamics in case of two different poration approaches, optoacoustic- and electro-poration, both mediated by the same 3D nanostructures. The experimental results offer a detailed overview on the different poration processes in terms of electrical recordings and membrane conformation.
Collapse
Affiliation(s)
| | | | - Giulia Bruno
- Istituto Italiano di Tecnologia, Genoa, 16163, Italy
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi. DIBRIS, Università degli Studi di Genova, Genova, 16126, Italy
| | - Fabio Caliendo
- Center for Advacend Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Leonardo D Garma
- Center for Advacend Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Giovanni Melle
- Istituto Italiano di Tecnologia, Genoa, 16163, Italy
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi. DIBRIS, Università degli Studi di Genova, Genova, 16126, Italy
| | - Marina Dukhinova
- Center for Advacend Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Velia Siciliano
- Center for Advacend Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Francesca Santoro
- Center for Advacend Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | | |
Collapse
|
18
|
Chen Y, Aslanoglou S, Gervinskas G, Abdelmaksoud H, Voelcker NH, Elnathan R. Cellular Deformations Induced by Conical Silicon Nanowire Arrays Facilitate Gene Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904819. [PMID: 31599099 DOI: 10.1002/smll.201904819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Engineered cell-nanostructured interfaces generated by vertically aligned silicon nanowire (SiNW) arrays have become a promising platform for orchestrating cell behavior, function, and fate. However, the underlying mechanism in SiNW-mediated intracellular access and delivery is still poorly understood. This study demonstrates the development of a gene delivery platform based on conical SiNW arrays for mechanical cell transfection, assisted by centrifugal force, for both adherent and nonadherent cells in vitro. Cells form focal adhesions on SiNWs within 6 h, and maintain high viability and motility. Such a functional and dynamic cell-SiNW interface features conformational changes in the plasma membrane and in some cases the nucleus, promoting both direct penetration and endocytosis; this synergistically facilitates SiNW-mediated delivery of nucleic acids into immortalized cell lines, and into difficult-to-transfect primary immune T cells without pre-activation. Moreover, transfected cells retrieved from SiNWs retain the capacity to proliferate-crucial to future biomedical applications. The results indicate that SiNW-mediated intracellular delivery holds great promise for developing increasingly sophisticated investigative and therapeutic tools.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Gediminas Gervinskas
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Hazem Abdelmaksoud
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| |
Collapse
|
19
|
Yamagishi A, Susaki M, Takano Y, Mizusawa M, Mishima M, Iijima M, Kuroda S, Okada T, Nakamura C. The Structural Function of Nestin in Cell Body Softening is Correlated with Cancer Cell Metastasis. Int J Biol Sci 2019; 15:1546-1556. [PMID: 31337983 PMCID: PMC6643143 DOI: 10.7150/ijbs.33423] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
Intermediate filaments play significant roles in governing cell stiffness and invasive ability. Nestin is a type VI intermediate filament protein that is highly expressed in several high-metastatic cancer cells. Although inhibition of nestin expression was shown to reduce the metastatic capacity of tumor cells, the relationship between this protein and the mechanism of cancer cell metastasis remains unclear. Here, we show that nestin softens the cell body of the highly metastatic mouse breast cancer cell line FP10SC2, thereby enhancing the metastasis capacity. Proximity ligation assay demonstrated increased binding between actin and vimentin in nestin knockout cells. Because nestin copolymerizes with vimentin and nestin has an extremely long tail domain in its C-terminal region, we hypothesized that the tail domain functions as a steric inhibitor of the vimentin-actin interaction and suppresses association of vimentin filaments with the cortical actin cytoskeleton, leading to reduced cell stiffness. To demonstrate this function, we mechanically pulled vimentin filaments in living cells using a nanoneedle modified with vimentin-specific antibodies under manipulation by atomic force microscopy (AFM). The tensile test revealed that mobility of vimentin filaments was increased by nestin expression in FP10SC2 cells.
Collapse
Affiliation(s)
- Ayana Yamagishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Moe Susaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yuta Takano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mei Mizusawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mari Mishima
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Masumi Iijima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- ✉ Corresponding author: Chikashi Nakamura. Tel.: +81-29-861-2445; fax: +81-29-861-3048; E-mail address:
| |
Collapse
|
20
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
21
|
Fan N, Jiang H, Ye Z, Wu G, Kang Y, Wang Q, Ran X, Guo J, Zhang G, Wang G, Peng B. The Insertion Mechanism of a Living Cell Determined by the Stress Segmentation Effect of the Cell Membrane during the Tip-Cell Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703868. [PMID: 29717805 DOI: 10.1002/smll.201703868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy probes are proved to be powerful tools to measure and manipulate the individual cell, providing potential applications for the controlled drug/protein delivery. However, the measured insertion efficiency varies dramatically from 20 to 80%, in some cases, the nanotip can never penetrate the cell membrane no matter how much force is applied to it. Thus, the insertion mechanism of a living cell during the tip-cell interaction must be thoroughly investigated before this technology comes into practical applications. In this work, a multistructural cell model is established to study the tip-membrane interaction. The simulation results show that the stress of the cell membrane can be divided into two stages by the stress segmentation point S. After point S, the stress of the cell membrane increases slightly and most of the indentation force is allocated to the cytoskeleton. This phenomenon is called "stress segmentation effect of the cell membrane," which confirms the hypothesis based on the experimental studies. Moreover, according to the experimental and numerical studies, the hypothesis of the stress segmentation effect also explains the reason that modifying the cell membrane or using the manmade sharpened nanotip can increase the insertion efficiency.
Collapse
Affiliation(s)
- Na Fan
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Guiyong Wu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Yuejun Kang
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
| | - Qun Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Xiaolin Ran
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jian Guo
- School of Mechanical Engineering, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Guocheng Zhang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Bei Peng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| |
Collapse
|
22
|
Kawamura R, Miyazaki M, Shimizu K, Matsumoto Y, Silberberg YR, Sathuluri RR, Iijima M, Kuroda S, Iwata F, Kobayashi T, Nakamura C. A New Cell Separation Method Based on Antibody-Immobilized Nanoneedle Arrays for the Detection of Intracellular Markers. NANO LETTERS 2017; 17:7117-7124. [PMID: 29047282 DOI: 10.1021/acs.nanolett.7b03918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.
Collapse
Affiliation(s)
- Ryuzo Kawamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Minami Miyazaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keita Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yuta Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yaron R Silberberg
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ramachandra Rao Sathuluri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masumi Iijima
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research (ISIR-Sanken), Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research (ISIR-Sanken), Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Futoshi Iwata
- Department of Mechanical Engineering, Shizuoka University , 3-5-1 Johoku, Hamamatsu 432-8561, Japan
| | - Takeshi Kobayashi
- Research Center for Ubiquitous MEMS and Micro Engineering, AIST , 1-2-1, Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
23
|
Abstract
Nanoneedles are high aspect ratio nanostructures with a unique biointerface. Thanks to their peculiar yet poorly understood interaction with cells, they very effectively sense intracellular conditions, typically with lower toxicity and perturbation than traditionally available probes. Through long-term, reversible interfacing with cells, nanoneedles can monitor biological functions over the course of several days. Their nanoscale dimension and the assembly into large-scale, ordered, dense arrays enable monitoring the functions of large cell populations, to provide functional maps with submicron spatial resolution. Intracellularly, they sense electrical activity of complex excitable networks, as well as concentration, function, and interaction of biomolecules in situ, while extracellularly they can measure the forces exerted by cells with piconewton detection limits, or efficiently sort rare cells based on their membrane receptors. Nanoneedles can investigate the function of many biological systems, ranging from cells, to biological fluids, to tissues and living organisms. This review examines the devices, strategies, and workflows developed to use nanoneedles for sensing in biological systems.
Collapse
Affiliation(s)
- Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London , SE1 9RT, London, United Kingdom
| |
Collapse
|
24
|
Shende P, Sardesai M, Gaud RS. Micro to nanoneedles: a trend of modernized transepidermal drug delivery system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:19-25. [DOI: 10.1080/21691401.2017.1304409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS University, Mumbai, India
| | - Mrunmayi Sardesai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS University, Mumbai, India
| | - R. S. Gaud
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS University, Mumbai, India
| |
Collapse
|