1
|
Wang J, Guan J, Jia F, Tian Z, Song L, Xie L, Han P, Lin H, Qiao H, Zhang X, Huang Y. Phase-transformed lactoferrin/strontium-doped nanocoatings enhance antibacterial, anti-inflammatory and vascularised osteogenesis of titanium. Int J Biol Macromol 2025; 287:138608. [PMID: 39662560 DOI: 10.1016/j.ijbiomac.2024.138608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/12/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Failure of orthopedic implants due to localized bacterial infections, inflammation and insufficient blood supply is always problematic. In this study, strontium-doped titanium dioxide nanotubes (STN) were firstly prepared on titanium surface, and then lactoferrin (LF) was loaded into strontium-doped nanotubes (STN) by the phase transition method, eventually the LF/TCEP-STN composite coating was successfully prepared. With the innate antimicrobial properties of LF, LF/TCEP-STN was effected against E. coli and S. aureus. Cellular assays showed that RAW264.7 (immune), HUVEC (angiogenic) and MC3T3-E1 (osteogenic) exhibited good adhesion and proliferative activity on the surface of LF/TCEP-STN. At the molecular level, LF/TCEP-STN modulated RAW264.7 polarization toward M2-type while promoting MC3T3-E1 differentiation toward osteogenesis. Meanwhile LF/TCEP-STN coating effectively promoted angiogenesis. The results of the bone defect model with or without infection demonstrated that the LF/TCEP-STN material had good anti-inflammatory, antibacterial, and vascularization-promoting osteogenesis. In addition, LF/TCEP-STN offered excellent blood compatibility and biosafety. As a multifunctional coating on implant surfaces, the study's results highlighted the viability of LF/TCEP-STN and offered fresh concepts for the clinical design of next-generation artificial bone implants with antibacterial, anti-inflammatory, and osteogenic properties.
Collapse
Affiliation(s)
- Jiali Wang
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Jiaxin Guan
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Fengzhen Jia
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Zitong Tian
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Lili Song
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Pengde Han
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Haixia Qiao
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China.
| | - Xuejiao Zhang
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China.
| | - Yong Huang
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
2
|
Soe ZC, Wahyudi R, Mattheos N, Lertpimonchai A, Everts V, Tompkins KA, Osathanon T, Limjeerajarus CN, Limjeerajarus N. Application of nanoparticles as surface modifiers of dental implants for revascularization/regeneration of bone. BMC Oral Health 2024; 24:1175. [PMID: 39367468 PMCID: PMC11451240 DOI: 10.1186/s12903-024-04966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Osseointegrated dental implants are widely established as a first-choice treatment for the replacement of missing teeth. Clinical outcomes are however often compromised by short or longer-term biological complications and pathologies. Nanoparticle-coated materials represent a very active research area with the potential to enhance clinical outcomes and reduce complications of implant therapy. This scoping review aimed to summarize current research on various types of nanoparticles (NPs) used as surface modifiers of dental implants and their potential to promote biological and clinical outcomes. METHODS A systematic electronic search was conducted in SCOPUS, PubMed and Google Scholar aiming to identify in vivo, in situ, or in vitro studies published between 2014 and 2024. Inclusion and exclusion criteria were determined and were described in the methods section. RESULTS A total of 169 articles (44 original papers from Scopus and PubMed, and 125 articles from Google Scholar) were identified by the electronic search. Finally, 30 studies fit the inclusion criteria and were further used in this review. The findings from the selected papers suggest that nanoparticle-coated dental implants show promising results in enhancing bone regeneration and promoting angiogenesis around the implant site. These effects are due to the unique physicochemical properties of nanoparticle-coated implants and the controlled release of bioactive molecules from nanoparticle-modified surfaces. CONCLUSION Nanoscale modifications displayed unique properties which could significantly enhance the properties of dental implants and further accelerate revascularization, and osseointegration while facilitating early implant loading. Yet, since many of these findings were based on in-vitro/in-situ systems, further research is required before such technology reaches clinical application.
Collapse
Affiliation(s)
- Zar Chi Soe
- Faculty of Dentistry, Graduate Program in Oral Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rahman Wahyudi
- Faculty of Dentistry, Graduate Program in Oral Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nikos Mattheos
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Attawood Lertpimonchai
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
- Office of Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kevin A Tompkins
- Office of Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | | |
Collapse
|
3
|
Shi Z, Yang F, Hu Y, Pang Q, Shi L, Du T, Cao Y, Song B, Yu X, Cao Z, Ye Z, Liu C, Yu R, Chen X, Zhu Y, Pang Q. An oxidized dextran-composite self-healing coated magnesium scaffold reduces apoptosis to induce bone regeneration. Carbohydr Polym 2024; 327:121666. [PMID: 38171658 DOI: 10.1016/j.carbpol.2023.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Self-healing coatings have shown promise in controlling the degradation of scaffolds and addressing coating detachment issues. However, developing a self-healing coating for magnesium (Mg) possessing multiple biological functions in infectious environments remains a significant challenge. In this study, a self-healing coating was developed for magnesium scaffolds using oxidized dextran (OD), 3-aminopropyltriethoxysilane (APTES), and nano-hydroxyapatite (nHA) doped micro-arc oxidation (MHA), named OD-MHA/Mg. The results demonstrated that the OD-MHA coating effectively addresses coating detachment issues and controls the degradation of Mg in an infectious environment through self-healing mechanisms. Furthermore, the OD-MHA/Mg scaffold exhibits antibacterial, antioxidant, and anti-apoptotic properties, it also promotes bone repair by upregulating the expression of osteogenesis genes and proteins. The findings of this study indicate that the OD-MHA coated Mg scaffold possessing multiple biological functions presents a promising approach for addressing infectious bone defects. Additionally, the study showcases the potential of polysaccharides with multiple biological functions in facilitating tissue healing even in challenging environments.
Collapse
Affiliation(s)
- Zewen Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China; Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lin Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yuhao Cao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Baiyang Song
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xueqiang Yu
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Zhaoxun Cao
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhewei Ye
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Liu
- Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo 315100, China
| | - Rongyao Yu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianjun Chen
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Qingjiang Pang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Liu L, Wu J, Lv S, Xu D, Li S, Hou W, Wang C, Yu D. Synergistic effect of hierarchical topographic structure on 3D-printed Titanium scaffold for enhanced coupling of osteogenesis and angiogenesis. Mater Today Bio 2023; 23:100866. [PMID: 38149019 PMCID: PMC10750103 DOI: 10.1016/j.mtbio.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 12/28/2023] Open
Abstract
The significance of the osteogenesis-angiogenesis relationship in the healing process of bone defects has been increasingly emphasized in recent academic research. Surface topography plays a crucial role in guiding cellular behaviors. Metal-organic framework (MOF) is an innovative biomaterial with nanoscale structural and topological features, enabling the modulation of scaffold physicochemical properties. This study involved the loading of varying quantities of UiO-66 nanocrystals onto alkali-heat treated 3D-printed titanium scaffolds, resulting in the formation of hierarchical micro/nano topography named UiO-66/AHTs. The physicochemical properties of these scaffolds were subsequently characterized. Furthermore, the impact of these scaffolds on the osteogenic potential of BMSCs, the angiogenic potential of HUVECs, and their intercellular communication were investigated. The findings of this study indicated that 1/2UiO-66/AHT outperformed other groups in terms of osteogenic and angiogenic induction, as well as in promoting intercellular crosstalk by enhancing paracrine effects. These results suggest a promising biomimetic hierarchical topography design that facilitates the coupling of osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Leyi Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shiyu Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Duoling Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chao Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| |
Collapse
|
5
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
6
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
7
|
Erdogan Y, Ercan B. Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties. ACS Biomater Sci Eng 2023; 9:693-704. [PMID: 36692948 PMCID: PMC9930089 DOI: 10.1021/acsbiomaterials.2c01072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Poor osseointegration and infection are among the major challenges of 316L stainless steel (SS) implants in orthopedic applications. Surface modifications to obtain a nanostructured topography seem to be a promising method to enhance cellular interactions of 316L SS implants. In this study, arrays of nanodimples (NDs) having controlled feature sizes between 25 and 250 nm were obtained on 316L SS surfaces by anodic oxidation (anodization). Results demonstrated that the fabrication of NDs increased the surface area and, at the same time, altered the surface chemistry of 316L SS to provide chromium oxide- and hydroxide-rich surface oxide layers. In vitro experiments showed that ND surfaces promoted up to a 68% higher osteoblast viability on the fifth day of culture. Immunofluorescence images confirmed a well-spread cytoskeleton organization on the ND surfaces. In addition, higher alkaline phosphate activity and calcium mineral synthesis were observed on the ND surfaces compared to non-anodized 316L SS. Furthermore, a 71% reduction in Staphylococcus aureus (S. aureus) and a 58% reduction in Pseudomonas aeruginosa (P. aeruginosa) colonies were observed on the ND surfaces having a 200 nm feature size compared to non-anodized surfaces at 24 h of culture. Cumulatively, the results showed that a ND surface topography fabricated on 316L SS via anodization upregulated the osteoblast viability and functions while preventing S. aureus and P. aeruginosa biofilm synthesis.
Collapse
Affiliation(s)
- Yasar
Kemal Erdogan
- Biomedical
Engineering Program, Middle East Technical
University, Ankara 06800, Turkey,Department
of Biomedical Engineering, Isparta University
of Applied Science, Isparta 32260, Turkey
| | - Batur Ercan
- Biomedical
Engineering Program, Middle East Technical
University, Ankara 06800, Turkey,Department
of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey,BIOMATEN,
METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800, Turkey,. Phone: +90 (312) 210-2513
| |
Collapse
|
8
|
Beltrán-Partida E, Valdez-Salas B, García-López Portillo M, Gutierrez-Perez C, Castillo-Uribe S, Salvador-Carlos J, Alcocer-Cañez J, Cheng N. Atherosclerotic-Derived Endothelial Cell Response Conducted by Titanium Oxide Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:794. [PMID: 36676534 PMCID: PMC9865858 DOI: 10.3390/ma16020794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Atherosclerosis lesions are described as the formation of an occlusive wall-vessel plaque that can exacerbate infarctions, strokes, and even death. Furthermore, atherosclerosis damages the endothelium integrity, avoiding proper regeneration after stent implantation. Therefore, we investigate the beneficial effects of TiO2 nanotubes (NTs) in promoting the initial response of detrimental human atherosclerotic-derived endothelial cells (AThEC). We synthesized and characterized NTs on Ti6Al4V by anodization. We isolated AThEC and tested the adhesion long-lasting proliferation activity, and the modulation of focal adhesions conducted on the materials. Moreover, ultrastructural cell-surface contact at the nanoscale and membrane roughness were evaluated to explain the results. Our findings depicted improved filopodia and focal adhesions stimulated by the NTs. Similarly, the NTs harbored long-lasting proliferative metabolism after 5 days, explained by overcoming cell-contact interactions at the nanoscale. Furthermore, the senescent activity detected in the AThEC could be mitigated by the modified membrane roughness and cellular stretch orchestrated by the NTs. Importantly, the NTs stimulate the initial endothelial anchorage and metabolic recovery required to regenerate the endothelial monolayer. Despite the dysfunctional status of the AThEC, our study brings new evidence for the potential application of nano-configured biomaterials for innovation in stent technologies.
Collapse
Affiliation(s)
- Ernesto Beltrán-Partida
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - Benjamín Valdez-Salas
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - Martha García-López Portillo
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - Claudia Gutierrez-Perez
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - Sandra Castillo-Uribe
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - Jorge Salvador-Carlos
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - José Alcocer-Cañez
- Coordinación Clínica de Cirugía, Hospital General de Zona No. 30, Instituto Mexicano del Seguro Social (IMSS), Av. Lerdo de Tejada s/n, Mexicali C.P. 21100, Baja California, Mexico
| | - Nelson Cheng
- Magna International Pte Ltd., 10 H Enterprise Road, Singapore 629834, Singapore
| |
Collapse
|
9
|
Guan H, Liu J, Liu D, Ding C, Zhan J, Hu X, Zhang P, Wang L, Lan Q, Qiu X. Elastic and Conductive Melanin/Poly(Vinyl Alcohol) Composite Hydrogel for Enhancing Repair Effect on Myocardial Infarction. Macromol Biosci 2022; 22:e2200223. [PMID: 36116010 DOI: 10.1002/mabi.202200223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/28/2022] [Indexed: 01/15/2023]
Abstract
Heart failure caused by acute myocardial infarction (MI) still remains the main cause of death worldwide. Development of conductive hydrogels provided a promising approach for the treatment of myocardial infarction. However, the therapeutic potential of these hydrogels is still limited by material toxicity or low conductivity. The latter directly affects the coupling and the propagation of electrical signals between cells. Here, a functional conductive hydrogel by combining hydrophilic and biocompatible poly(vinyl alcohol) (PVA) with conductive melanin nanoparticles under physical crosslinking conditions is prepared. The composite hydrogels prepared by a facile fabrication process of five freeze/thaw cycles possessed satisfying mechanical properties and conductivity close to those of the natural heart. The physical properties and biocompatibility are evaluated in vitro experiments, showing that the introduction of melanin particles successfully improved the elasticity, conductivity, and cell adhesion of PVA hydrogel. In vivo, the composite hydrogels can enhance the cardiac repair effect by reducing MI area, slowing down ventricular wall thinning, and promoting the vascularization of infarct area in MI rat model. It is believed that the melanin/PVA composite hydrogel may be a suitable candidate material for MI repair.
Collapse
Affiliation(s)
- Haien Guan
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jianing Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Dan Liu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Chengbin Ding
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jiamian Zhan
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China
| | - Xiaofang Hu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Qiaofeng Lan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
10
|
Valdez-Salas B, Castillo-Uribe S, Beltran-Partida E, Curiel-Alvarez M, Perez-Landeros O, Guerra-Balcazar M, Cheng N, Gonzalez-Mendoza D, Flores-Peñaloza O. Recovering Osteoblast Functionality on TiO2 Nanotube Surfaces Under Diabetic Conditions. Int J Nanomedicine 2022; 17:5469-5488. [PMID: 36426372 PMCID: PMC9680990 DOI: 10.2147/ijn.s387386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Titanium (Ti) and its alloys (eg, Ti6Al4V) are exceptional treatments for replacing or repairing bones and damaged surrounding tissues. Although Ti-based implants exhibit excellent osteoconductive performance under healthy conditions, the effectiveness and successful clinical achievements are negatively altered in diabetic patients. Concernedly, diabetes mellitus (DM) contributes to osteoblastic dysfunctionality, altering efficient osseointegration. This work investigates the beneficial osteogenic activity conducted by nanostructured TiO2 under detrimental microenvironment conditions, simulated by human diabetic serum. Methods We evaluated the bone-forming functional properties of osteoblasts on synthesized TiO2 nanotubes (NTs) by anodization and Ti6Al4V non-modified alloy surfaces under detrimental diabetic conditions. To simulate the detrimental environment, MC3T3E-1 preosteoblasts were cultured under human diabetic serum (DS) of two diagnosed and metabolically controlled patients. Normal human serum (HS) was used to mimic health conditions and fetal bovine serum (FBS) as the control culture environment. We characterized the matrix mineralization under the detrimental conditions on the control alloy and the NTs. Moreover, we applied immunofluorescence of osteoblasts differentiation markers on the NTs to understand the bone-expression stimulated by the biochemical medium conditions. Results The diabetic conditions depressed the initial osteoblast growth ability, as evidenced by altered early cell adhesion and reduced proliferation. Nonetheless, after three days, the diabetic damage was suppressed by the NTs, enhancing the osteoblast activity. Therefore, the osteogenic markers of bone formation and the differentiation of osteoblasts were reactivated by the nanoconfigured surfaces. Far more importantly, collagen secretion and bone-matrix mineralization were stimulated and conducted to levels similar to those of the control of FBS conditions, in comparison to the control alloy, which was not able to reach similar levels of bone functionality than the NTs. Conclusion Our study brings knowledge for the potential application of nanostructured biomaterials to work as an integrative platform under the detrimental metabolic status present in diabetic conditions.
Collapse
Affiliation(s)
- Benjamin Valdez-Salas
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Sandra Castillo-Uribe
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Ernesto Beltran-Partida
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
- Correspondence: Ernesto Beltran-Partida, Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal, Mexicali, Baja California, C.P. 21280, México, Email
| | - Mario Curiel-Alvarez
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Oscar Perez-Landeros
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Minerva Guerra-Balcazar
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, Querétaro, México
| | | | - Daniel Gonzalez-Mendoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Olivia Flores-Peñaloza
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| |
Collapse
|
11
|
Wu B, Tang Y, Wang K, Zhou X, Xiang L. Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO 2 NTAs. Int J Nanomedicine 2022; 17:1865-1879. [PMID: 35518451 PMCID: PMC9064067 DOI: 10.2147/ijn.s362720] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Titanium implants have been widely applied in dentistry and orthopedics due to their biocompatibility and resistance to mechanical fatigue. TiO2 nanotube arrays (TiO2 NTAs) on titanium implant surfaces have exhibited excellent biocompatibility, bioactivity, and adjustability, which can significantly promote osseointegration and participate in its entire path. In this review, to give a comprehensive understanding of the osseointegration process, four stages have been divided according to pivotal biological processes, including protein adsorption, inflammatory cell adhesion/inflammatory response, additional relevant cell adhesion and angiogenesis/osteogenesis. The impact of TiO2 NTAs on osseointegration is clarified in detail from the four stages. The nanotubular layer can manipulate the quantity, the species and the conformation of adsorbed protein. For inflammatory cells adhesion and inflammatory response, TiO2 NTAs improve macrophage adhesion on the surface and induce M2-polarization. TiO2 NTAs also facilitate the repairment-related cells adhesion and filopodia formation for additional relevant cells adhesion. In the angiogenesis and osteogenesis stage, TiO2 NTAs show the ability to induce osteogenic differentiation and the potential for blood vessel formation. In the end, we propose the multi-dimensional regulation of TiO2 NTAs on titanium implants to achieve highly efficient manipulation of osseointegration, which may provide views on the rational design and development of titanium implants.
Collapse
Affiliation(s)
- Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Xu Z, Jiang X. Osteogenic TiO2 composite nano-porous arrays: A favorable platform based on titanium alloys applied in artificial implants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Dynamics of Endothelial Engagement and Filopodia Formation in Complex 3D Microscaffolds. Int J Mol Sci 2022; 23:ijms23052415. [PMID: 35269558 PMCID: PMC8910162 DOI: 10.3390/ijms23052415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022] Open
Abstract
The understanding of endothelium–extracellular matrix interactions during the initiation of new blood vessels is of great medical importance; however, the mechanobiological principles governing endothelial protrusive behaviours in 3D microtopographies remain imperfectly understood. In blood capillaries submitted to angiogenic factors (such as vascular endothelial growth factor, VEGF), endothelial cells can transiently transdifferentiate in filopodia-rich cells, named tip cells, from which angiogenesis processes are locally initiated. This protrusive state based on filopodia dynamics contrasts with the lamellipodia-based endothelial cell migration on 2D substrates. Using two-photon polymerization, we generated 3D microstructures triggering endothelial phenotypes evocative of tip cell behaviour. Hexagonal lattices on pillars (“open”), but not “closed” hexagonal lattices, induced engagement from the endothelial monolayer with the generation of numerous filopodia. The development of image analysis tools for filopodia tracking allowed to probe the influence of the microtopography (pore size, regular vs. elongated structures, role of the pillars) on orientations, engagement and filopodia dynamics, and to identify MLCK (myosin light-chain kinase) as a key player for filopodia-based protrusive mode. Importantly, these events occurred independently of VEGF treatment, suggesting that the observed phenotype was induced through microtopography. These microstructures are proposed as a model research tool for understanding endothelial cell behaviour in 3D fibrillary networks.
Collapse
|
14
|
Gardin C, Ferroni L, Erdoğan YK, Zanotti F, De Francesco F, Trentini M, Brunello G, Ercan B, Zavan B. Nanostructured Modifications of Titanium Surfaces Improve Vascular Regenerative Properties of Exosomes Derived from Mesenchymal Stem Cells: Preliminary In Vitro Results. NANOMATERIALS 2021; 11:nano11123452. [PMID: 34947800 PMCID: PMC8707709 DOI: 10.3390/nano11123452] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023]
Abstract
(1) Background: Implantation of metal-based scaffolds is a common procedure for treating several diseases. However, the success of the long-term application is limited by an insufficient endothelialization of the material surface. Nanostructured modifications of metal scaffolds represent a promising approach to faster biomaterial osteointegration through increasing of endothelial commitment of the mesenchymal stem cells (MSC). (2) Methods: Three different nanotubular Ti surfaces (TNs manufactured by electrochemical anodization with diameters of 25, 80, or 140 nm) were seeded with human MSCs (hMSCs) and their exosomes were isolated and tested with human umbilical vein endothelial cells (HUVECs) to assess whether TNs can influence the secretory functions of hMSCs and whether these in turn affect endothelial and osteogenic cell activities in vitro. (3) Results: The hMSCs adhered on all TNs and significantly expressed angiogenic-related factors after 7 days of culture when compared to untreated Ti substrates. Nanomodifications of Ti surfaces significantly improved the release of hMSCs exosomes, having dimensions below 100 nm and expressing CD63 and CD81 surface markers. These hMSC-derived exosomes were efficiently internalized by HUVECs, promoting their migration and differentiation. In addition, they selectively released a panel of miRNAs directly or indirectly related to angiogenesis. (4) Conclusions: Preconditioning of hMSCs on TNs induced elevated exosomes secretion that stimulated in vitro endothelial and cell activity, which might improve in vivo angiogenesis, supporting faster scaffold integration.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (C.G.); (L.F.)
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (C.G.); (L.F.)
| | - Yaşar Kemal Erdoğan
- Biomedical Engineering Program, Middle East Technical University, Ankara 06800, Turkey; (Y.K.E.); (B.E.)
- Department of Biomedical Engineering, Isparta University of Applied Science, Isparta 32260, Turkey
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.)
| | - Francesco De Francesco
- Department of Plastic and Reconstructive Surgery-Hand Surgery Unit, Azienda ‘Ospedali Riuniti’, 60126 Ancona, Italy;
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.)
| | - Giulia Brunello
- Department of Neurosciences, Dentistry Section, University of Padova, 35128 Padova, Italy;
- Department of Oral Surgery, University Clinic Düsseldorf, 40225 Dusseldorf, Germany
| | - Batur Ercan
- Biomedical Engineering Program, Middle East Technical University, Ankara 06800, Turkey; (Y.K.E.); (B.E.)
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800, Turkey
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.)
- Correspondence: ; Tel.: +39-0532455502
| |
Collapse
|
15
|
Li T, Zhang T. The Application of Nanomaterials in Angiogenesis. Curr Stem Cell Res Ther 2021; 16:74-82. [PMID: 32066364 DOI: 10.2174/1574888x15666200211102203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
Induction of angiogenesis has enormous potential in the treatment of ischemic diseases and
the promotion of bulk tissue regeneration. However, the poor activity of angiogenic cells and proangiogenic
factors after transplantation is the main problem that imposes its wide applications. Recent
studies have found that the development of nanomaterials has solved this problem to some extent.
Nanomaterials can be mainly classified into inorganic nanomaterials represented by metals, metal oxides
and metal hydroxides, and organic nanomaterials including DNA tetrahedrons, graphene, graphene
oxide, and carbon nanotubes. These nanomaterials can induce the release of angiogenic factors
either directly or indirectly, thereby initiating a series of signaling pathways to induce angiogenesis.
Moreover, appropriate surface modifications of nanomaterial facilitate a variety of functions, such as
enhancing its biocompatibility and biostability. In clinical applications, nanomaterials can promote the
proliferation and differentiation of endothelial cells or mesenchymal stem cells, thereby promoting the
migration of hemangioblast cells to form new blood vessels. This review outlines the role of nanomaterials
in angiogenesis and is intended to provide new insights into the clinical treatment of systemic
and ischemic diseases.
Collapse
Affiliation(s)
- Tianle Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Kandel R, Jang SR, Shrestha S, Lee SY, Shrestha BK, Park CH, Kim CS. Biomimetic Cell-Substrate of Chitosan-Cross-linked Polyaniline Patterning on TiO 2 Nanotubes Enables hBM-MSCs to Differentiate the Osteoblast Cell Type. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47100-47117. [PMID: 34579527 DOI: 10.1021/acsami.1c09778] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium-based substrates are widely used in orthopedic treatments and hard tissue engineering. However, many of these titanium (Ti) substrates fail to interact properly between the cell-to-implant interface, which can lead to loosening and dislocation from the implant site. As a result, scaffold implant-associated complications and the need for multiple surgeries lead to an increased clinical burden. To address these challenges, we engineered osteoconductive and osteoinductive biosubstrates of chitosan (CS)-cross-linked polyaniline (PANI) nanonets coated on titanium nanotubes (TiO2NTs) in an attempt to mimic bone tissue's major extracellular matrix. Inspired by the architectural and tunable mechanical properties of such tissue, the TiO2NTs-PANI@CS-based biofilm conferred strong anticorrosion, the ability to nucleate hydroxyapatite nanoparticles, and excellent biocompatibility with human bone marrow-derived mesenchymal stem cells (hBM-MSCs). An in vitro study showed that the substrate-supported cell activities induced greater cell proliferation and differentiation compared to cell-TiO2NTs alone. Notably, the bone-related genes (collagen-I, OPN, OCN, and RUNX 2) were highly expressed within TiO2NTs-PANI@CS over a period of 14 days, indicating greater bone cell differentiation. These findings demonstrate that the in vitro functionality of the cells on the osteoinductive-like platform of TiO2NTs-PANI@CS improves the efficiency for osteoblastic cell regeneration and that the substrate potentially has utility in bone tissue engineering applications.
Collapse
Affiliation(s)
- Rupesh Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Se Rim Jang
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Sita Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Seo Yeon Lee
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bishnu Kumar Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Regional Leading Research Center for Nanocarbon-Based Energy Materials and Application Technology, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
17
|
Sarraf M, Nasiri-Tabrizi B, Yeong CH, Madaah Hosseini HR, Saber-Samandari S, Basirun WJ, Tsuzuki T. Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future? CERAMICS INTERNATIONAL 2021; 47:2917-2948. [PMID: 32994658 PMCID: PMC7513735 DOI: 10.1016/j.ceramint.2020.09.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide nanotubes (MONs) and their potential applications, especially in biomedical applications are still in the early stages of development. This review aims to establish a credible platform for the current and future roles of MONs in nanomedicine, particularly in advanced orthopedic implants. We first introduce the concept of MONs and then discuss the preparation strategies. This is followed by a review of the recent advancement of MONs in biomedical applications, including mineralization abilities, biocompatibility, antibacterial activity, cell culture, and animal testing, as well as clinical possibilities. To conclude, we propose that the combination of nanotubular surface modification with incorporating sensor allows clinicians to precisely record patient data as a critical contributor to evidence-based medicine.
Collapse
Key Words
- ALP, Alkaline Phosphatase
- APH, Anodization-Cyclic Precalcification-Heat Treatment
- Ag2O NPs, Silver Oxide Nanoparticles
- AgNPs, Silver Nanoparticles
- Anodization
- BIC, Bone-Implant Contact
- Bioassays
- CAGR, Compound Annual Growth Rate
- CT, Computed Tomography
- DMF, Dimethylformamide
- DMSO, Dimethyl Sulfoxide
- DRI, Drug-Releasing Implants
- E. Coli, Escherichia Coli
- ECs, Endothelial Cells
- EG, Ethylene Glycol
- Electrochemistry
- FA, Formamide
- Fe2+, Ferrous Ion
- Fe3+, Ferric Ion
- Fe3O4, Magnetite
- GEP, Gene Expression Programming
- GO, Graphene Oxide
- HA, Hydroxyapatite
- HObs, Human Osteoblasts
- HfO2 NTs, Hafnium Oxide Nanotubes
- IMCs, Intermetallic Compounds
- LEDs, Light emitting diodes
- MEMS, Microelectromechanical Systems
- MONs, Mixed Oxide Nanotubes
- MOPSO, Multi-Objective Particle Swarm Optimization
- MSCs, Mesenchymal Stem Cells
- Mixed oxide nanotubes
- NMF, N-methylformamide
- Nanomedicine
- OPC1, Osteo-Precursor Cell Line
- PSIs, Patient-Specific Implants
- PVD, Physical Vapor Deposition
- RF, Radio-Frequency
- ROS, Radical Oxygen Species
- S. aureus, Staphylococcus Aureus
- S. epidermidis, Staphylococcus Epidermidis
- SBF, Simulated Body Fluid
- TiO2 NTs, Titanium Dioxide Nanotubes
- V2O5, Vanadium Pentoxide
- VSMCs, Vascular Smooth Muscle Cells
- XPS, X-ray Photoelectron Spectroscopy
- ZrO2 NTs, Zirconium Dioxide Nanotubes
- hASCs, Human Adipose-Derived Stem Cells
Collapse
Affiliation(s)
- Masoud Sarraf
- Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | - Bahman Nasiri-Tabrizi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Hamid Reza Madaah Hosseini
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | | | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Takuya Tsuzuki
- Research School of Electrical Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
18
|
Nogueira RP, Deuzimar Uchoa J, Hilario F, Santana-Melo GDF, de Vasconcellos LMR, Marciano FR, Roche V, Moreira Jorge Junior A, Lobo AO. Characterization of Optimized TiO 2 Nanotubes Morphology for Medical Implants: Biological Activity and Corrosion Resistance. Int J Nanomedicine 2021; 16:667-682. [PMID: 33531806 PMCID: PMC7847373 DOI: 10.2147/ijn.s285805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
Background Nanostructured surface modifications of Ti-based biomaterials are moving up from a highly-promising to a successfully-implemented approach to developing safe and reliable implants. Methods The study’s main objective is to help consolidate the knowledge and identify the more suitable experimental strategies related to TiO2 nanotubes-modified surfaces. In this sense, it proposes the thorough investigation of two optimized nanotubes morphologies in terms of their biological activity (cell cytotoxicity, alkaline phosphatase activity, alizarin red mineralization test, and cellular adhesion) and their electrochemical behavior in simulated body fluid (SBF) electrolyte. Layers of small-short and large-long nanotubes were prepared and investigated in their amorphous and crystallized states and compared to non-anodized samples. Results Results show that much more than the surface area development associated with the nanotubes’ growth; it is the heat treatment-induced change from amorphous to crystalline anatase-rutile structures that ensure enhanced biological activity coupled to high corrosion resistance. Conclusion Compared to both non-anodized and amorphous nanotubes layers, the crystallized nano-structures’ outstanding bioactivity was related to the remarkable increase in their hydrophilic behavior, while the enhanced electrochemical stability was ascribed to the thickening of the dense rutile barrier layer at the Ti surface beneath the nanotubes.
Collapse
Affiliation(s)
- Ricardo Pereira Nogueira
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.,Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France
| | - Jose Deuzimar Uchoa
- Federal Institute of Education, Science and Technology of Piauí, Teresina 64053-390, Brazil.,Interdisciplinary Laboratory for Advanced Materials, BioMatLab Group, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina 64049-550 Brazil
| | - Fanny Hilario
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France
| | - Gabriela de Fátima Santana-Melo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao José dos Campos 12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao José dos Campos 12245-000, Brazil
| | | | - Virginie Roche
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France
| | - Alberto Moreira Jorge Junior
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France.,Department of Materials Engineering, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab Group, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina 64049-550 Brazil
| |
Collapse
|
19
|
Pacheco VN, Nolde J, de Quevedo AS, Visioli F, Ponzoni D. Improvement in the chemical structure and biological activity of surface titanium after exposure to UVC light. Odontology 2020; 109:271-278. [PMID: 32978637 DOI: 10.1007/s10266-020-00540-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/09/2020] [Indexed: 11/25/2022]
Abstract
Ultraviolet (UV) irradiation has been proposed as a method to reverse the aging process of titanium. However, the intensity, exposure time and wavelength that provide the best results have not yet been determined. The objective of this study was to evaluate the effects of photocatalysis by ultraviolet C light on the time-dependent aging of titanium and to analyze the irradiated titanium for changes in structure and in vitro biological activity, with regard to different exposure times. A titanium photofunctionalization device was developed with characteristics different from those on the market. The sample was composed of titanium disks irradiated for different times of exposure to ultraviolet C light (0, 15, 30 and 60 min). The disks were tested for surface wettability (water contact angle), topography (scanning electron microscopy-SEM) and chemical composition (X-ray photoelectron spectroscopy), and effects on cell adhesion (cell culture and SEM) and cell viability by sulforhodamine B (SRB). Ultraviolet C treatment caused changes in titanium surface characteristics, such as increased wettability and removal of hydrocarbons from the surface after 15 min of exposure in the chamber developed. The biological characteristics of the material also appear to have changed, with improved cell adhesion and viability. Photofunctionalization of titanium proved to be effective for the treatment of aged surfaces, with significant modifications in the surface chemical structure and biological activity of the material.
Collapse
Affiliation(s)
- Viviane Neves Pacheco
- Department of Surgery and Orthopedics, Dentistry College, Federal University of Rio Grande Do Sul (UFRGS), Ramiro Barcelos, Porto Alegre, 90035-003, Brazil.
| | - Josué Nolde
- Department of Surgery and Orthopedics, Dentistry College, Federal University of Rio Grande Do Sul (UFRGS), Ramiro Barcelos, Porto Alegre, 90035-003, Brazil
| | - Alexandre Silva de Quevedo
- Department of Surgery and Orthopedics, Dentistry College, Federal University of Rio Grande Do Sul (UFRGS), Ramiro Barcelos, Porto Alegre, 90035-003, Brazil
| | - Fernanda Visioli
- Department of Conservative Dentistry, Dentistry College, Federal University of Rio Grande Do Sul (UFRGS), Ramiro Barcelos, Porto Alegre, 90035-003, Brazil
| | - Deise Ponzoni
- Department of Surgery and Orthopedics, Dentistry College, Federal University of Rio Grande Do Sul (UFRGS), Ramiro Barcelos, Porto Alegre, 90035-003, Brazil
| |
Collapse
|
20
|
Marconi GD, Diomede F, Pizzicannella J, Fonticoli L, Merciaro I, Pierdomenico SD, Mazzon E, Piattelli A, Trubiani O. Enhanced VEGF/VEGF-R and RUNX2 Expression in Human Periodontal Ligament Stem Cells Cultured on Sandblasted/Etched Titanium Disk. Front Cell Dev Biol 2020; 8:315. [PMID: 32478069 PMCID: PMC7240029 DOI: 10.3389/fcell.2020.00315] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bone formation, in skeletal development or in osseointegration processes, is the result of interaction between angiogenesis and osteogenesis. To establish osseointegration, cells must attach to the implant in a direct way without any deposition of soft tissue. Structural design and surface topography of dental implants enhance the cell attachment and can affect the biological response. The aim of the study was to evaluate the cytocompatibility, osteogenic and angiogenic markers involved in bone differentiation of human periodontal ligament stem cells (hPDLSCs) on different titanium disks surfaces. The hPDLSCs were cultured on pure titanium surfaces modified with two different procedures, sandblasted (Control—CTRL) and sandblasted/etched (Test—TEST) as experimental titanium surfaces. After 1 and 8 weeks of culture VEGF, VEGF-R, and RUNX2 expression was evaluated under confocal laser scanning microscopy. To confirm the obtained data, RT-PCR and WB analyses were performed in order to evaluate the best implant surface performance. TEST surfaces compared to CTRL titanium surfaces enhanced cell adhesion and increased VEGF and RUNX2 expression. Moreover, titanium TEST surfaces showed a different topographic morphology that promoted cell adhesion, proliferation, and osteogenic/angiogenic commitment. To conclude, TEST surfaces performed more efficiently than CTRL surfaces; furthermore, TEST surface results showed them to be more biocompatible, better tolerated, and appropriate for allowing hPDLSC growth and proliferation. This fact could also lead to more rapid bone–titanium integration.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Luigia Fonticoli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sante D Pierdomenico
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
21
|
Ye G, Wen Z, Wen F, Song X, Wang L, Li C, He Y, Prakash S, Qiu X. Mussel-inspired conductive Ti 2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction. Theranostics 2020; 10:2047-2066. [PMID: 32104499 PMCID: PMC7019164 DOI: 10.7150/thno.38876] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Researches on conductive engineering cardiac patch (ECP) for myocardial infarction (MI) treatment have achieved some progress in the animal while the availability of traditional conductive materials in ECP is still limited because of their controversial cytotoxicity. Here we aim to introduce a novel hydrophilic biocompatible conductive material: MXene Ti2C and mussel-inspired dopamine into PEGDA-GelMA cryogel to construct a bio-functional ECP of which the property closes to natural heart for the repair of MI. Method: MXene Ti2C was etched from MAX Ti2AlC, then uniformly dispersed into the prepolymer composed with dopamine-N′, N′-methylene-bisacrylamide, methacrylate-gelatin, and poly (ethylene glycol) diacrylate by simple water bath sonication. The resilient conductive Ti2C-cryogel was fabricated by chemical cryogelation. The conductive ECP was evaluated in vitro and transplanted to the MI rat model for MI treatment. Results: In vitro, the 3D vessels-shape framework was observed in Ti2C-8-cryogel which was seeded with rats aortic endothelial cells. When the Ti2C-cryogels were cocultured with CMs, remarkably aligned sarcomere and the primitive intercalated disc between the mature CMs were formed on day 7. The as-prepared Ti2C-8-cryogel ECP also demonstrated rapid calcium transients and synchronous tissue-like beating. When transplanted into the infarcted heart of the MI rat model, the Ti2C-8-cryogel ECP could improve the cardiac function, reduce the infarct size, and inhibit the inflammatory response. Obvious vasculation especially newly formed arteriole was also found. Conclusion: A novel conductive Ti2C-embedded cardiac patch with suitable conductivity and the mechanical property was developed and could be served as an ideal candidate for MI repair.
Collapse
|
22
|
Augustine R, Hasan A, Patan NK, Augustine A, Dalvi YB, Varghese R, Unni RN, Kalarikkal N, Al Moustafa AE, Thomas S. Titanium Nanorods Loaded PCL Meshes with Enhanced Blood Vessel Formation and Cell Migration for Wound Dressing Applications. Macromol Biosci 2019; 19:e1900058. [PMID: 31183959 DOI: 10.1002/mabi.201900058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/28/2019] [Indexed: 12/20/2022]
Abstract
Proper management of nonhealing wounds is an imperative clinical challenge. For the effective healing of chronic wounds, suitable wound coverage materials with the capability to accelerate cell migration, cell proliferation, angiogenesis, and wound healing are required to protect the healing wound bed. Biodegradable polymeric meshes are utilized as effective wound coverage materials to protect the wounds from the external environment and prevent infections. Among them, electrospun biopolymeric meshes have got much attention due to their extracellular matrix mimicking morphology, ability to support cell adhesion, and cell proliferation. Herein, electrospun nanocomposite meshes based on polycaprolactone (PCL) and titanium dioxide nanorods (TNR) are developed. TNR incorporated PCL meshes are fabricated by electrospinning technique and characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy (FTIR) analysis, and X-Ray diffraction (XRD) analysis. In vitro cell culture studies, in ovo angiogenesis assay, in vivo implantation study, and in vivo wound healing study are performed. Interestingly, obtained in vitro and in vivo results demonstrated that the presence of TNR in the PCL meshes greatly improved the cell migration, proliferation, angiogenesis, and wound healing. Owing to the above superior properties, they can be used as excellent biomaterials in wound healing and tissue regeneration applications.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.,Biomedical Research Centre (BRC), Qatar University, P. O. Box 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.,Biomedical Research Centre (BRC), Qatar University, P. O. Box 2713, Doha, Qatar
| | - Noorunnisa Khanam Patan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Anitha Augustine
- International & Inter University Centre for Nanoscience & Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.,Department of Chemistry, Bishop Kurialacherry College for Women, Amalagiri, Kottayam, Kerala, 686561, India
| | - Yogesh B Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala, 689101, India
| | - Ruby Varghese
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala, 689101, India
| | | | - Nandakumar Kalarikkal
- International & Inter University Centre for Nanoscience & Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Ala-Eddin Al Moustafa
- Biomedical Research Centre (BRC), Qatar University, P. O. Box 2713, Doha, Qatar.,College of Medicine, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Sabu Thomas
- International & Inter University Centre for Nanoscience & Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| |
Collapse
|
23
|
Duvvuru MK, Han W, Chowdhury PR, Vahabzadeh S, Sciammarella F, Elsawa SF. Bone marrow stromal cells interaction with titanium; Effects of composition and surface modification. PLoS One 2019; 14:e0216087. [PMID: 31116747 PMCID: PMC6530826 DOI: 10.1371/journal.pone.0216087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 01/12/2023] Open
Abstract
Inflammation and implant loosening are major concerns when using titanium implants for hard tissue engineering applications. Surface modification is one of the promising tools to enhance tissue-material integration in metallic implants. Here, we used anodization technique to modify the surface of commercially pure titanium (CP-Ti) and titanium alloy (Ti-6Al-4V) samples. Our results show that electrolyte composition, anodization time and voltage dictated the formation of well-organized nanotubes. Although electrolyte containing HF in water resulted in nanotube formation on Ti, the presence of NH4F and ethylene glycol was necessary for successful nanotube formation on Ti-6Al-4V. Upon examination of the interaction of bone marrow stromal cells (BMSCs) with the modified samples, we found that Ti-6Al-4V without nanotubes induced cell proliferation and cluster of differentiation 40 ligand (CD40L) expression which facilitates B-cell activation to promote early bone healing. However, the expression of glioma associated protein 2 (GLI2), which regulates CD40L, was reduced in Ti-6Al-4V and the presence of nanotubes further reduced its expression. The inflammatory cytokine interleukin-6 (IL-6) expression was reduced by nanotube presence on Ti. These results suggest that Ti-6Al-4V with nanotubes may be suitable implants because they have no effect on BMSC growth and inflammation.
Collapse
Affiliation(s)
- Murali Krishna Duvvuru
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Weiguo Han
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Prantik Roy Chowdhury
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Sahar Vahabzadeh
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, Illinois, United States of America
- * E-mail: (SE); (SV)
| | - Federico Sciammarella
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Sherine F. Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
- * E-mail: (SE); (SV)
| |
Collapse
|
24
|
Singhatanadgit W, Toso M, Pratheepsawangwong B, Pimpin A, Srituravanich W. Titanium dioxide nanotubes of defined diameter enhance mesenchymal stem cell proliferation via JNK- and ERK-dependent up-regulation of fibroblast growth factor-2 by T lymphocytes. J Biomater Appl 2019; 33:997-1010. [PMID: 30757966 DOI: 10.1177/0885328218816565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Long-term clinical success of a titanium implant not only depends upon osseointegration between implant and bone surface but also on the response of host immune cells. Following implantation of biomaterials, an inflammatory response, including T lymphocyte response, is ostensibly initiated by implant-cell interaction. However, little is known about the responses of T lymphocytes to titanium dioxide nanotubes. The present study aimed to explore the effect of titanium dioxide nanotubes on T lymphocytes in vitro and its biological consequences. The results of the present study showed that titanium dioxide nanotubes with diameter of 30-105 nm were non-cytotoxic to T lymphocytes, and the 105 nm titanium dioxide nanotube surface specifically possessed an ability to activate T lymphocytes, thus increasing DNA synthesis and cell proliferation. In addition, the 105 nm titanium dioxide nanotubes significantly activated the expression of FGF-2 gene and protein in T lymphocytes although smaller nanotubes (i.e. those with diameters of approximately 30 and 70 nm) had little effect on this. The present study investigated the mechanism by which 105 nm nanotubes stimulated FGF-2 expression in T lymphocytes by blocking key MAPK pathways. The inhibitors of JNK1/2/3 and ERK1/2 significantly inhibited 105 nm titanium dioxide nanotubes-induced FGF-2 expression. Corresponding to the increased expression of FGF-2, only the supernatant from T lymphocytes cultured on 105 nm nanotubes stimulated human mesenchymal stem cell proliferation. FGF-2 blocking antibody partially reversed the increased proliferation of human mesenchymal stem cells, supporting the role of T lymphocyte-derived FGF-2 in enhanced human mesenchymal stem cell proliferation. This suggests a significant role of T lymphocyte-titanium dioxide nanotube interaction in the proliferation of human mesenchymal stem cells, which is pivotal to the formation of new bone following implant placement.
Collapse
Affiliation(s)
| | - Montree Toso
- 1 Craniofacial Reconstruction Cluster, Faculty of Dentistry, Thammasat University, Thailand
| | | | - Alongkorn Pimpin
- 2 Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand
| | - Werayut Srituravanich
- 2 Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand
| |
Collapse
|
25
|
Enhanced osteogenic differentiation of human mesenchymal stem cells on Ti surfaces with electrochemical nanopattern formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1174-1181. [PMID: 30889651 DOI: 10.1016/j.msec.2019.02.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/03/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Titanium (Ti) and its alloys are mainly used for dental and orthopedic applications due to their excellent biocompatibility and mechanical properties. However, their intrinsic bioinertness often quotes as a common complaint for biomedical applications. Herein, we produced nanopattern Ti surfaces with 10 nm nanopores in 120 nm dimples by electrochemical nanopattern formation (ENF), and evaluated the osteogenic differentiation of human mesenchymal stem cells (hMSCs) on the nanopattern Ti surfaces. The ENF surfaces were obtained by removing the TiO2 nanotube (NT) layers prepared by an anodization process. To determine the in vitro effects of the ENF surface, cell proliferation assay, alkaline phosphatase activity assay, alizarin red staining, western blotting, and immunocytochemistry were performed. Atomic force microscopy and scanning electron microscopy analysis show that the ENF surface has an ultrafine surface roughness with highly aligned nanoporous morphology. hMSCs on ENF surfaces exhibit increased proliferation and enhanced osteogenic differentiation as compared to the ordered TiO2 nanotubular and compact TiO2 surfaces. Surface modification with the ENF process is a promising technique for fabricating osteointegrative implant materials with a highly bioactive, rigid and purified nano surfaces.
Collapse
|
26
|
Xu WC, Dong X, Ding JL, Liu JC, Xu JJ, Tang YH, Yi YP, Lu C, Yang W, Yang JS, Gong Y, Zhou JL. Nanotubular TiO 2 regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways. Int J Nanomedicine 2019; 14:441-455. [PMID: 30666106 PMCID: PMC6330985 DOI: 10.2147/ijn.s188439] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Macrophages play important roles in the immune response to, and successful implantation of, biomaterials. Titanium nanotubes are considered promising heart valve stent materials owing to their effects on modulation of macrophage behavior. However, the effects of nanotube-regulated macrophages on endothelial cells, which are essential for stent endothelialization, are unknown. Therefore, in this study we evaluated the inflammatory responses of endothelial cells to titanium nanotubes prepared at different voltages. Methods and results In this study we used three different voltages (20, 40, and 60 V) to produce titania nanotubes with three different diameters by anodic oxidation. The state of macrophages on the samples was assessed, and the supernatants were collected as conditioned media (CM) to stimulate human umbilical vein endothelial cells (HUVECs), with pure titanium as a control group. The results indicated that titanium dioxide (TiO2) nanotubes induced macrophage polarization toward the anti-inflammatory M2 state and increased the expression of arginase-1, mannose receptor, and interleukin 10. Further mechanistic analysis revealed that M2 macrophage polarization controlled by the TiO2 nanotube surface activated the phosphatidylinositol 3-kinase/AKT and extracellular signal-regulated kinase 1/2 pathways through release of vascular endothelial growth factor to influence endothelialization. Conclusion Our findings expanded our understanding of the complex influence of nanotubes in implants and the macrophage inflammatory response. Furthermore, CM generated from culture on the TiO2 nanotube surface may represent an integrated research model for studying the interactions of two different cell types and may be a promising approach for accelerating stent endothelialization through immunoregulation.
Collapse
Affiliation(s)
- Wei-Chang Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jing-Li Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jian-Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Yan-Hua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Ying-Ping Yi
- Department of Science and Education, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jue-Sheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jian-Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| |
Collapse
|
27
|
Shahmoradi S, Golzar H, Hashemi M, Mansouri V, Omidi M, Yazdian F, Yadegari A, Tayebi L. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. NANOTECHNOLOGY 2018; 29:475101. [PMID: 30179859 DOI: 10.1088/1361-6528/aadedc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, we introduce a novel graphene oxide/silver/arginine (GO/Ag/Arg) nanohybrid structure, which can act as an angiogenesis promoter and provide antibacterial nanostructure for improving the wound healing process. GO/Ag nanostructure has been optimized in terms of the GO/Ag mass ratio and pH values using central composite design and the response surface method to increase the Ag loading efficiency. Then, Arg was chemically introduced to the surface of GO/Ag nanostructure. Electrospun polycaprolactone (PCL)-GO/Ag/Arg nanocomposite was successfully fabricated and characterized. The synthesized nanocomposite demonstrated not only a great antibacterial effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial species, but appropriate biocompatibility against L929 fibroblastic cell lines. The results demonstrated that the preparation of the PCL-GO/Ag/Arg nanocomposite at a concentration of 1.0 wt% GO/Ag/Arg possessed the best biological and mechanical features. In vivo experiments also revealed that the use of optimized PCL-GO/Ag/Arg nanocomposite, after 12 d of treatment, led to significant increase in the healing process and also regeneration of the wound via reconstruction of a thickened epidermis layer on the wound surface, which was confirmed by histological analysis. In conclusion, the proposed approach can introduce a novel notion for preparing antibacterial material that significantly promotes angiogenesis.
Collapse
Affiliation(s)
- Saleheh Shahmoradi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Cardiovascular complications are leading causes of most fatalities. Coronary artery disease and surgical failures contribute to the death of the majority of patients. Advanced research in the field of medical devices like stents has efficiently resolved these problems. Clinically, drug-eluting stents have proven their efficacy and safety compared to bare metal stents, which have problems of in-stent restenosis. However, drug-loaded stents coated with polymers have shown adverse effects related to the stability and deterioration of the polymer coating over time. This results in late stent thrombosis and immunogenicity. These reasons laid the foundation for the development of non-polymeric drug-eluting stents. This review focuses on non-polymer drug-eluting stents loaded with different drugs like anti-inflammatory agents, anti-thrombotic, anti-platelet agents, immune suppressants and others. Surface modification techniques on stents like crystalline coating; microporous, macroporous, and nanoporous coatings; and chemically modified self-assembled monolayers are described in detail. There is also an update on clinically approved products and those under development.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Raju Saka
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
29
|
Khosravi N, Maeda A, DaCosta RS, Davies JE. Nanosurfaces modulate the mechanism of peri-implant endosseous healing by regulating neovascular morphogenesis. Commun Biol 2018; 1:72. [PMID: 30271953 PMCID: PMC6123776 DOI: 10.1038/s42003-018-0074-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Nanosurfaces have improved clinical osseointegration by increasing bone/implant contact. Neovascularization is considered an essential prerequisite to osteogenesis, but no previous reports to our knowledge have examined the effect of surface topography on the spatio-temporal pattern of neovascularization during peri-implant healing. We have developed a cranial window model to study peri-implant healing intravitally over clinically relevant time scales as a function of implant topography. Quantitative intravital confocal imaging reveals that changing the topography (but not chemical composition) of an implant profoundly affects the pattern of peri-implant neovascularization. New vessels develop proximal to the implant and the vascular network matures sooner in the presence of an implant nanosurface. Accelerated angiogenesis can lead to earlier osseointegration through the delivery of osteogenic precursors to, and direct formation of bone on, the implant surface. This study highlights a critical aspect of peri-implant healing, but also informs the biological rationale for the surface design of putative endosseous implant materials.
Collapse
Affiliation(s)
- Niloufar Khosravi
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5G 1G6, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Azusa Maeda
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ralph S DaCosta
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
- Techna Institute, University Health Network, Toronto, ON, M5G 1L5, Canada.
| | - John E Davies
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5G 1G6, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
30
|
Nethi SK, P NAA, Rico-Oller B, Rodríguez-Diéguez A, Gómez-Ruiz S, Patra CR. Design, synthesis and characterization of doped-titanium oxide nanomaterials with environmental and angiogenic applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1263-1274. [PMID: 28525935 DOI: 10.1016/j.scitotenv.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Since the last decade, the metal composite nanostructures have evolved as promising candidates in regard to their wide applications in the fields of science and engineering. Recently, several investigators identified the titanium based nanomaterials as excellent agents for multifunctional environmental and biomedical applications. In this perspective, we have developed a series of zinc-doped (2 and 5%) titanium oxide-based nanomaterials using various reaction conditions and calcination temperatures (TZ1-TZ3: calcined at 500°C, TZ4-TZ6: calcined at 600°C and TZ7-TZ9: calcined at 700°C). The calcined materials (TZ1 to TZ9) were thoroughly analyzed by several physico-chemical characterization methods. The increase of the calcination temperature results in significant changes of the textural properties of the nanostructured materials. In addition, the increase of the calcination temperature leads to the formation of anatase/rutile mixtures with higher quantity of rutile. Furthermore, incorporation of zinc changes the morphology of the obtained nanoparticles. The materials were studied in the photodegradation of methylene blue observing that materials calcined at lower temperatures (TZ1-TZ3) have higher photocatalytic activity than those of the materials calcined at 600°C (TZ4-TZ6), rutile-based systems TZ7-TZ9 are not active. Based on the background literature of titanium and zinc based nanostructures in therapeutic angiogenesis, we have explored the pro-angiogenic properties of these materials using various in vitro and in vivo assays. The zinc-doped titanium dioxide nanostructures (TZ5 and TZ6) exhibited increased cell viability, proliferation, enhanced S-phase cell population, increased pro-angiogenic messengers (ROS: reactive oxygen species and NO: nitric oxide) production and promoted in vivo blood vessel formation in a plausible mechanistic p38/STAT3 dependent signaling cascade. Altogether, the results of the present study showcase these zinc doped-titanium oxide nanoparticles as promising candidates for environmental (water-remediation) and therapeutic angiogenic applications.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Neeraja Aparna Anand P
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Beatriz Rico-Oller
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Santiago Gómez-Ruiz
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain.
| | - Chitta Ranjan Patra
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India.
| |
Collapse
|
31
|
Valdez-Salas B, Beltrán-Partida E, Castillo-Uribe S, Curiel-Álvarez M, Zlatev R, Stoytcheva M, Montero-Alpírez G, Vargas-Osuna L. In Vitro Assessment of Early Bacterial Activity on Micro/Nanostructured Ti6Al4V Surfaces. Molecules 2017; 22:E832. [PMID: 28524087 PMCID: PMC6154628 DOI: 10.3390/molecules22050832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022] Open
Abstract
It is imperative to understand and systematically compare the initial interactions between bacteria genre and surface properties. Thus, we fabricated a flat, anodized with 80 nm TiO₂ nanotubes (NTs), and a rough Ti6Al4V surface. The materials were characterized using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We cultured in vitro Staphylococcus epidermidis (S. epidermidis) and Pseudomonas aeruginosa (P. aeruginosa) to evaluate the bacterial-surface behavior by FE-SEM and viability calculation. In addition, the initial effects of human osteoblasts were tested on the materials. Gram-negative bacteria showed promoted adherence and viability over the flat and rough surface, while NTs displayed opposite activity with altered morphology. Gram-positive bacteria illustrated similar cellular architecture over the surfaces but with promoted surface adhesion bonds on the flat alloy. Rough surfaces supported S. epidermidis viability, whilst NTs exhibited lower vitality. NTs advocated promoted better osteoblast organization with enhanced vitality. Gram-positive bacteria suggested preferred adhesion capability over flat and carbon-rich surfaces. Gram-negative bacteria were strongly disturbed by NTs but largely stimulated by flat and rough materials. Our work proposed that the chemical profile of the material surface and the bacterial cell wall characteristics might play an important role in the bacteria-surface interactions.
Collapse
Affiliation(s)
- Benjamin Valdez-Salas
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Ernesto Beltrán-Partida
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Av. Zotoluca y Chinampas, s/n, Mexicali C.P., 21280 Baja California, Mexico.
| | - Sandra Castillo-Uribe
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Mario Curiel-Álvarez
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Roumen Zlatev
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Margarita Stoytcheva
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Gisela Montero-Alpírez
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Lidia Vargas-Osuna
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| |
Collapse
|
32
|
Beltrán-Partida E, Valdez-Salas B, Curiel-Álvarez M, Castillo-Uribe S, Escamilla A, Nedev N. Enhanced antifungal activity by disinfected titanium dioxide nanotubes via reduced nano-adhesion bonds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:59-65. [PMID: 28482568 DOI: 10.1016/j.msec.2017.02.153] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 11/26/2022]
Abstract
We have provided evidence that the beneficial effect of super-oxidized water (SOW) disinfected Ti6Al4V-TiO2 nanotubes (NTs) can reduce bacterial adhesion and biofilm formation. However, the need of antifungal nanostructured surfaces with osteoactive capabilities is an important goal that has been arising for dental implants (DI) applications. Thus, in the present study we isolated and tested the effects of Candida albicans (C. albicans) on disinfected, wetter and nanoroughness NTs compared to a non-modified control. Moreover, we elucidated part of the fungal adhesion mechanism by studying and relating the mycotic adhesion kinetics and the formation of fungal nanoadhesion bonds among the experimental materials, to gain new insight of the fungal-material-interface. Similarly, the initial behavior of human alveolar bone osteoblasts (HAOb) was microscopically evaluated. NTs significantly reduced the yeasts adhesion and viability with non-outcomes of biofilm than the non-modified surface. Cross-sectioning of the fungal cells revealed promoted nano-contact bonds with superior fungal spread on the control alloy interface; meanwhile NTs evidenced decreased tendency along time; suggesting, down-regulation by the nanostructured morphology and the SOW treatment. Importantly, the initial performance of HAOb demonstrated strikingly promoted anchorage with effects of filopodia formation and increased vital cell on NTs with SOW. The present study proposes SOW treatment as an active protocol for synthesis and disinfection of NTs with potent antifungal capability, acting in part by the reduction of nano-adhesion bonds at the surface-fungal interface; opening up a novel route for the investigation of mycotic-adhesion processes at the nanoscale for bone implants applications.
Collapse
Affiliation(s)
- Ernesto Beltrán-Partida
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico; Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California, Mexico.
| | - Benjamín Valdez-Salas
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico.
| | - Mario Curiel-Álvarez
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| | - Sandra Castillo-Uribe
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico; Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California, Mexico
| | - Alan Escamilla
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| | - Nicola Nedev
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| |
Collapse
|