1
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
2
|
Yosri N, Alsharif SM, Xiao J, Musharraf SG, Zhao C, Saeed A, Gao R, Said NS, Di Minno A, Daglia M, Guo Z, Khalifa SAM, El-Seedi HR. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed Pharmacother 2023; 158:114104. [PMID: 36516694 DOI: 10.1016/j.biopha.2022.114104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Arctium lappa L. is a medicinal edible homologous plant, commonly known as burdock or bardana, which belongs to the Asteraceae family. It is widely distributed throughout Northern Asia, Europe, and North America and has been utilized for hundreds of years. The roots, fruits, seeds, and leaves of A. lappa have been extensively used in traditional Chinese Medicine (TCM). A. lappa has attracted a great deal of attention due to its possession of highly recognized bioactive metabolites with significant therapeutic potential. Numerous pharmacological effects have been demonstrated in vitro and in vivo by A. lappa and its bioactive metabolites, including antimicrobial, anti-obesity, antioxidant, anticancer, anti-inflammatory, anti-diabetic, anti-allergic, antiviral, gastroprotective, hepatoprotective, and neuroprotective activities. Additionally, A. lappa has demonstrated considerable clinical efficacies and valuable applications in nanomedicine. Collectively, this review covers the properties of A. lappa and its bioactive metabolites, ethnopharmacology aspects, pharmacological effects, clinical trials, and applications in the field of nanomedicine. Hence, a significant attention should be paid to clinical trials and industrial applications of this plant with particular emphasis, on drug discovery and nanotechnology.
Collapse
Affiliation(s)
- Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sultan M Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Syed G Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aamer Saeed
- Chemistry Department, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Noha S Said
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate, Naples 80131, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-GrenInstitute, SE-106 91 Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE 751 24 Uppsala, Sweden; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China.
| |
Collapse
|
3
|
Che Z, Song Y, Zhu L, Liu T, Li X, Huang L. Emerging roles of growth factors in osteonecrosis of the femoral head. Front Genet 2022; 13:1037190. [PMID: 36452155 PMCID: PMC9702520 DOI: 10.3389/fgene.2022.1037190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/24/2022] [Indexed: 12/20/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a potentially disabling orthopedic condition that requires total hip arthroplasty in most late-stage cases. However, mechanisms underlying the development of ONFH remain unknown, and the therapeutic strategies remain limited. Growth factors play a crucial role in different physiological processes, including cell proliferation, invasion, metabolism, apoptosis, and stem cell differentiation. Recent studies have reported that polymorphisms of growth factor-related genes are involved in the pathogenesis of ONFH. Tissue and genetic engineering are attractive strategies for treating early-stage ONFH. In this review, we summarized dysregulated growth factor-related genes and their role in the occurrence and development of ONFH. In addition, we discussed their potential clinical applications in tissue and genetic engineering for the treatment of ONFH.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Song
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liwei Zhu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tengyue Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xudong Li
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lanfeng Huang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Pu Z, Han C, Zhang W, Xu M, Wu Z, Liu Y, Wu M, Sun H, Xie H. Systematic understanding of the mechanism and effects of Arctigenin attenuates inflammation in dextran sulfate sodium-induced acute colitis through suppression of NLRP3 inflammasome by SIRT1. Am J Transl Res 2019; 11:3992-4009. [PMID: 31396314 PMCID: PMC6684881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
Arctigenin (ARC-G) is the main active ingredient extracted from Great Burdock Achene, with extensive pharmacological effects. In addition, ARC-G has been suggested to show excellent efficacy on inflammatory disease. This study aimed to defined that the function of Arctigenin attenuates inflammation in dextran sulfate sodium (DSS)-induced acute colitis, to determine its possible mechanism. Mice was induced by giving 2.0% DSS in the drinking water for DSS-induced acute colitis. Mice of acute colitis were injected intraperitoneally with 20 mg/kg per day of Arctigenin for 7 days. MPO activity levels were measured using MPO activity kits. Western Blot Analysis was used to determine the protein expression. Arctigenin prevents colitis and attenuates inflammation in DSS-induced acute colitis. Arctigenin suppressed NLRP3 inflammasome by SIRT1 in DSS-induced acute colitis. In THP-1 cell by LPS model, Arctigenin suppressed NLRP3, caspase-1 and IL-1β protein expression by SIRT1. Si-NLRP3 increases the effects of Arctigenin on inflammation in THP-1 cell by LPS model. Si-SIRT1 decreases the effects of Arctigenin on inflammation in THP-1 cell by LPS model. INF39, NLRP3 inhibitor also increased the effects of Arctigenin on inflammation in DSS-induced acute colitis. SIRT1 inhibitor also decreases the effects of Arctigenin on inflammation in DSS-induced acute colitis. Taken together our results demonstrated that Arctigenin attenuates inflammation in DSS-induced acute colitis through suppression of NLRP3 inflammasome by SIRT1.
Collapse
Affiliation(s)
- Zhichen Pu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical CollegeWuhu 241001, Anhui, China
| | - Chengzheng Han
- Clinic of Integrated Traditional Chinese and Western Medicine, Yijishan Hospital of Wannan Medical CollegeWuhu 241001, Anhui, China
| | - Weiwei Zhang
- Department of Pharmacy, Fourth People’s Hospital of MaanshanMaanshan 243031, Anhui, China
| | - Maodi Xu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical CollegeWuhu 241001, Anhui, China
| | - Zijing Wu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical CollegeWuhu 241001, Anhui, China
| | - Yanhao Liu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical CollegeWuhu 241001, Anhui, China
| | - Min Wu
- Department of Drug Consumption Supply, Wuhu Second People’s HospitalWuhu 241001, Anhui, China
| | - Hui Sun
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical UniversityTongjiaxiang 24, Nanjing 210009, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical CollegeWuhu 241001, Anhui, China
| |
Collapse
|
5
|
Bai Y, Liu Y, Jin S, Su K, Zhang H, Ma S. Expression of microRNA‑27a in a rat model of osteonecrosis of the femoral head and its association with TGF‑β/Smad7 signalling in osteoblasts. Int J Mol Med 2018; 43:850-860. [PMID: 30535438 PMCID: PMC6317694 DOI: 10.3892/ijmm.2018.4007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
The present study assessed whether microRNA (miR)-27a is an influential factor in steroid-induced osteonecrosis of the femoral head (ONFH) and investigated the underlying mechanism of action. The results indicated that serum miR-27a was decreased in a rat model of ONFH compared with that in control rats. It was also observed that increased miR-27a expression promoted osteogenic differentiation and cell proliferation, inhibited caspase-3/9 and B-cell lymphoma-2-associated X protein expression and induced alkaline phosphatase (ALP) activity and bone morphogenetic protein (BMP)-2, runt-related transcription factor (Runx)2 and osteonectin mRNA expression in osteoblastic MC3T3-E1 cells. miR-27a mimics also induced transforming growth factor (TGF)-β and Smad7 protein expression in MC3T3-E1 cells. Furthermore, transfection with TGF-β expression plasmid was able to enhance the effects of miR-27a mimics on osteoblastic differentiation, cell proliferation, ALP activity, BMP-2, Runx2 and osteonectin mRNA expression, and Smad7 protein expression in the MC3T3-E1 cells. Transfection with a TGF-β or Smad7 expression plasmid also enhanced the effects of miR-27a mimics on osteoblastic differentiation, cell proliferation, ALP activity and osteonectin mRNA expression in the MC3T3-E1 cells. Taken together, the results of the present study suggested that the induction of TGF-β/Smad7 signaling in osteoblasts may be a potential mechanism by which miR-27a regulates steroid-induced ONFH.
Collapse
Affiliation(s)
- Yuming Bai
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ying Liu
- Department of Surgery, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shengli Jin
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ke Su
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Haisen Zhang
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shiyun Ma
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
6
|
Chen L, Wang H, Li X, Nie C, Liang T, Xie F, Liu K, Peng X, Xie J. Highly hydrophilic carbon nanoparticles: uptake mechanism by mammalian and plant cells. RSC Adv 2018; 8:35246-35256. [PMID: 35547047 PMCID: PMC9087372 DOI: 10.1039/c8ra06665e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 11/25/2022] Open
Abstract
As one of the carbon based materials, the potential application of carbon nanoparticles (CNPs) has emerged in the promotion of plant growth. However, knowledge on the biological mechanism of how the CNPs interact with plant cells is limited. In this study, nanostructures of CNPs were examined. The particles exhibited particulate morphology and their size distribution was in the range of 18 to 70 nm, with an average size of 30 nm. Hydrophilic groups of COOH and OH were present on the surface of CNPs, and CNPs showed the common feature of graphitic sp2 hybridization carbons. The CNPs were determined to be biocompatible with these two cell lines, mammalian cells (A549 cells) and plant cells (BY-2 cells). The COOH groups on the surface of CNPs were functionalized via covalent binding with a fluorescent dye for improvement of the fluorescence. The fluorescent carbon nanoparticles (FCNPs) were found to cross the cell membrane and enter cells (A549 cells and BY-2 cells) in an energy-dependent manner. Subsequently, the mechanism of FCNPs interaction with the cell membrane was evaluated in the presence of inhibitors that specifically affect different endocytosis membrane proteins. The FCNPs mainly entered A549 cells through caveolin-mediated endocytosis and macropinocytosis, and clathrin-dependent endocytosis was also involved in the transportation of the FCNPs. Clathrin-independent endocytosis mediated in the internalization of FCNPs in BY-2 cells. The way FCNPs entering cells will provide a fundamental understanding of the influence of CNPs on cell membrane.
Collapse
Affiliation(s)
- Lijuan Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116012 China
| | - Hongbo Wang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Cong Nie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Taibo Liang
- Key Laboratory of Ecological Environment and Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116012 China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| |
Collapse
|
7
|
Cui Q, Liu Y, Zhou M, Han Y, Yin C, Bai G. An Optimized MicroPET Imaging Method for the Distribution and Synergies of Natural Products. Front Pharmacol 2018; 9:948. [PMID: 30186178 PMCID: PMC6110851 DOI: 10.3389/fphar.2018.00948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/02/2018] [Indexed: 12/03/2022] Open
Abstract
Purpose: Understanding the distribution and interaction of the Traditional Chinese Medicines (TCMs) is an integral source of herbal drug discovery. An optimized radio-labeled method was explored that could conduct in situ biodistribution studies in animals. We evaluated the feasibility of the method and applied glycyrrhetinic acid and platycodon (PG) polysaccharides as models. Procedures: [18F]-GA is a novel radiotracer which was performed positron emission tomography (PET) studies to assay the biodistribution of GA in mice. In addition, PG polysaccharide was used to intervene the biodistribution and dosimetry of GA. Scanning data were analyzed with professional software. Results: Record the time-activity curves for all organs then use the normalization method to calculate the area under the curve as a dosimetry for each organ. Moreover, the addition of PG polysaccharides can significantly improve the dosimetry of GA in the lungs, and its effect was related to the administration time. Conclusion: MicroPET imaging opens up a new avenue for the application of drug interactions between the TCMs.
Collapse
Affiliation(s)
- Qingxin Cui
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yang Liu
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Mengge Zhou
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yanqi Han
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Chengcheng Yin
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|