1
|
Luo Z, Li Q, He S, Liu S, Lei R, Kong Q, Wang R, Liu X, Wu J. Berberine sensitizes immune checkpoint blockade therapy in melanoma by NQO1 inhibition and ROS activation. Int Immunopharmacol 2024; 142:113031. [PMID: 39217888 DOI: 10.1016/j.intimp.2024.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Unprecedented progress in immune checkpoint blockade (ICB) therapy has been made in cancer treatment. However, the response to ICB therapy is limited to a small subset of patients. The development of ICB sensitizers to improve cancer immunotherapy outcomes is urgently needed. Berberine (BBR), a well-known phytochemical compound isolated from many kinds of medicinal plants such as Berberis aristata, Coptis chinensis, and Phellondendron chinense Schneid, has shown the ability to inhibit the proliferation, invasion and metastasis of cancer cells. In this study, we investigated whether BBR can enhance the therapeutic benefit of ICB for melanoma, and explored the underlying mechanisms involved. The results showed that BBR could sensitize ICB to inhibit tumor growth and increased the survival rate of mice. Moreover, BBR stimulated intracellular ROS production partially by inhibiting NQO1 activity, which induced immunogenic cell death (ICD) in melanoma, elevated the levels of damage-associated molecular patterns (DAMPs), and subsequently activated DC cells and CD8 + T cells in vitro and in vivo. In conclusion, BBR is a novel ICD inducer. BBR could enhance the therapeutic benefit of ICB for melanoma. These effects were partially mediated through the inhibition of NQO1 and ROS activation.
Collapse
Affiliation(s)
- Zhuyu Luo
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiao Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shan He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Suqing Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Rui Lei
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Kong
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ruilong Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
2
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Jia Y, Sun C, Chen T, Zhu H, Wang T, Ye Y, Luo X, Zeng X, Yang Y, Zeng H, Zou Q, Liu E, Li J, Sun H. Recent advance in phytonanomedicine and mineral nanomedicine delivery system of the treatment for acute myeloid leukemia. J Nanobiotechnology 2023; 21:240. [PMID: 37491290 PMCID: PMC10369765 DOI: 10.1186/s12951-023-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/25/2023] [Indexed: 07/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is an invasive hematopoietic malignancy caused by excessive proliferation of myeloblasts. Classical chemotherapies and cell transplantation therapies have remarkable efficacy in AML treatment; however, 30-40% of patients relapsed or had refractory disease. The resistance of AML is closely related to its inherent cytogenetics or various gene mutations. Recently, phytonanomedicine are found to be effective against resistant AML cells and have become a research focus for nanotechnology development to improve their properties, such as increasing solubility, improving absorption, enhancing bioavailability, and maintaining sustained release and targeting. These novel phytonanomedicine and mineral nanomedicine, including nanocrystals, nanoemulsion, nanoparticles, nanoliposome, and nanomicelles, offer many advantages, such as flexible dosages or forms, multiple routes of administration, and curative effects. Therefore, we reviewed the application and progress of phytomedicine in AML treatment and discussed the limitations and future prospects. This review may provide a solid reference to guide future research on AML treatment.
Collapse
Affiliation(s)
- Yimin Jia
- Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Cun Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ting Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hui Zhu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Tianrui Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yan Ye
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xing Luo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoqiang Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yun Yang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Enqiang Liu
- Department of Hematology and Oncology, Qianjiang Central Hospital of Chongqing Municipality, Qian Jiang, Chonqing, 409000, China.
| | - Jieping Li
- Chongqing University Cancer Hospital, Chongqing, 400030, China.
- Department of Hematology and Oncology, Qianjiang Central Hospital of Chongqing Municipality, Qian Jiang, Chonqing, 409000, China.
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Luo X, Song Z, Zeng X, Ye Y, Zheng H, Cai D, Yuan Q, Li H, Tong Y, Lu D, Liu Y, Zeng H, Yang Y, Sun H, Zou Q. A promising self-nanoemulsifying adjuvant with plant-derived saponin D boosts immune response and exerts an anti-tumor effect. Front Immunol 2023; 14:1154836. [PMID: 37415983 PMCID: PMC10319991 DOI: 10.3389/fimmu.2023.1154836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Objectives The low immunogenicity of tumor antigens and unacceptable toxicity of adjuvants has hindered the application and development of tumor vaccines. Hence, we designed a novel anti-tumor vaccine composed of a plant-derived immunostimulant molecular nanoadjuvant (a self-nanoemulsifying system, SND) and the antigen OVA, to reinvigorate the immune response and inhibit tumor progression. Methods In this study, this novel nanoadjuvant with Saponin D (SND) was designed and prepared by low-energy emulsification methods. Several important characteristics of the SND, including morphology, size, polymer dispersity index (PDI), zeta potential, and stability, were estimated, and the cytotoxicity of the SND was evaluated by MTT assay. Additionally, the immune response in terms of antibody titer levels and cellular immunity were evaluated in vivo after immunization with the vaccine, and the preventative and therapeutic effects of this novel vaccine against tumors were estimated. Finally, the antigen release profile was determined by IVIS imaging and by in vivo assay. Results This SND nanoadjuvant had good characteristics including the average particle size of 26.35 ± 0.225 nm, narrow distribution of 0.221 ± 1.76, and stability zeta potential of -12.9 ± 0.83 mV. And also, it had good stability (size, PDI, zeta potential, antigen stability) and low toxicity in vitro and in vivo, and delayed antigen release in vivo. The humoral immune response (IgG, IgG1, IgG2a, and IgG2b) and cellular immune level (cytokines of splenocytes including IFN-γ, IL-4, IL-1β andIL-17A) were both improved greatly after injected immunization at 0, 14, 28 days with the novel nanoadjuvant and antigen OVA. Importantly, this novel nanoadjuvant combined with OVA might lead to the induction of the prevent and treatment efficacy in the E.G7-OVA tumor-bearing mice. Conclusions These results suggested that this novel nanoadjuvant encapsulated natural plant immunostimulant molecular OPD could be a good candidate of tumor vaccine adjuvant for reinvigorating the immune response and powerfully inhibiting tumor growth effect.
Collapse
Affiliation(s)
- Xing Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Clinical Laboratory, The 954 Army Hospital, Shannan, Tibet, China
| | - Xiaogqiang Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yan Ye
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hailin Zheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Dingyi Cai
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qingpeng Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Haibo Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yanan Tong
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hongwu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Murakami T, Bodor E, Bodor N. Approaching strategy to increase the oral bioavailability of berberine, a quaternary ammonium isoquinoline alkaloid: Part 2. Development of oral dosage formulations. Expert Opin Drug Metab Toxicol 2023; 19:139-148. [PMID: 37060323 DOI: 10.1080/17425255.2023.2203858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
INTRODUCTION Berberine (BBR) possesses a wide variety of pharmacological activities. However, the oral bioavailability of BBR is low due to extensive intestinal first-pass metabolism by cytochrome P450s (CYPs), insufficient absorption due to low solubility and P-glycoprotein (P-gp)-mediated efflux transport, and hepatic first-pass metabolism in rats. AREAS COVERED Various dosage formulations were developed to increase the oral bioavailability of BBR by overcoming the reducing factors. This article provides the developing strategy of oral dosage formulations of BBR based on the physicochemical (low solubility, formation of salts/ion-pair complex) and pharmacokinetic properties (substrate of P-gp/CYPs, extensive intestinal first-pass metabolism). Literature was searched by using PubMed. EXPERT OPINION Here, formulations increasing the dissolution rates/solubility; formulations containing a P-gp inhibitor; formulations containing solubilizer exhibiting P-gp and/or CYPs inhibitors; formulations containing absorption enhancers; gastro/duodenal retentive formulations; lipid-based formulations; formulations targeting lymphatic transport; and physicochemical modifications increasing lipophilicity were reviewed. Among these formulations, formulations that can reduce intestinal first-pass metabolisms such as formulations containing CYPs inhibitor(s) and formulations containing absorption enhancer(s) significantly increased the oral bioavailability of BBR. Further studies on other dosing routes that can avoid first-pass metabolism such as the rectal route would also be important to increase the bioavailability of BBR.
Collapse
Affiliation(s)
| | - Erik Bodor
- Bodor Laboratories Inc, Miami, Florida33137, USA
| | - Nicholas Bodor
- Bodor Laboratories Inc, Miami, Florida33137, USA
- College of Pharmacy, University of Florida, Gainesville, Florida32611, USA
| |
Collapse
|
6
|
Liu Y, Wei Y, Wang X, Ma L, Li X, Sun Y, Wu Y, Zhang L, Wang J, Li M, Zhang K, Wei M, Yang G, Yang C. Discovery of novel and bioavailable histone deacetylases and cyclin-dependent kinases dual inhibitor to impair the stemness of leukemia cells. Eur J Med Chem 2023; 249:115140. [PMID: 36736154 DOI: 10.1016/j.ejmech.2023.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Acute myeloid leukemia (AML) has been confirmed as one of the most lethal heterogeneous clonal diseases. In addition to being essential for the development and progression of leukemia, leukemic stem cells (LSCs), a subpopulation of leukemia cells with stem cell characteristics, are also primarily responsible for the development of leukemia relapse and drug resistance. Elimination of stemness and induction of AML cell differentiation would become a promising and effective therapeutic strategy. In the present study, a novel class of HDACs/CDKs dual inhibitors was prepared and optimized. An active compound 33a has been identified, which exhibited potent and selective inhibition of CDK9, CDK12, CDK13, HDAC1, HDAC2 and HDAC3 at low nanomolar concentrations and significantly induced differentiation of leukemic stem-like cells and inhibited AML proliferation. Furthermore, the lead compound has relatively adequate oral bioavailability, suggesting that it might be used as a novel strategy to reduce the burden of LSCs and improve the prognosis for AML.
Collapse
Affiliation(s)
- Yulin Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Yujiao Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Xuan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Lan Ma
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Xuechun Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Yue Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Yanjie Wu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China
| | - Li Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518000, PR China
| | - Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Ming Li
- Cangzhou Institutes for Food and Drug Control, Cangzhou, 061000, PR China.
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China.
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China.
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China.
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
7
|
Devarajan N, Nathan J, Mathangi R, Mahendra J, Ganesan SK. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management. J Biochem Mol Toxicol 2023; 37:e23278. [PMID: 36588295 DOI: 10.1002/jbt.23278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/27/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
Berberine (BBR), a traditional Chinese phytomedicine extracted from various parts of Berberis plants, is an isoquinoline alkaloid used for centuries to treat diabetes, hypercholesterolemia, hypertension, and so forth. It has recently received immense attention worldwide to treat cancer due to its potent pro-apoptotic, antiproliferative, and anti-inflammatory properties. BBR efficiently induces tumor apoptosis, replicative quiescence and abrogates cell proliferation, epithelial-mesenchymal transition, tumor neovascularization, and metastasis by modulating diverse molecular and cell signaling pathways. Furthermore, BBR could also reverse drug resistance, make tumor cells sensitive to current cancer treatment and significantly minimize the harmful side effects of cytotoxic therapies. This review comprehensively analyzed the pharmacological effects of BBR against the development, growth, progression, metastasis, and therapy resistance in wide varieties of cancer. Also, it critically discusses the significant limitations behind the development of BBR into pharmaceuticals to treat cancer and the future research directions to overcome these limitations.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research - MAHER (Deemed to be University), Chennai, Tamilnadu, India
| | - Jhansi Nathan
- Zebrafish Developmental Biology Laboratory, AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Ramalingam Mathangi
- Department of Biochemistry, Sree Balaji Dental College and Hospital, BIHER, Chennai, Tamil Nadu, India
| | - Jaideep Mahendra
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Lan Y, Wang H, Wu J, Meng X. Cytokine storm-calming property of the isoquinoline alkaloids in Coptis chinensis Franch. Front Pharmacol 2022; 13:973587. [PMID: 36147356 PMCID: PMC9485943 DOI: 10.3389/fphar.2022.973587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Coronavirus disease (COVID-19) has spread worldwide and its effects have been more devastating than any other infectious disease. Importantly, patients with severe COVID-19 show conspicuous increases in cytokines, including interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, IL-8, tumor necrosis factor (TNF)-α, IL-1, IL-18, and IL-17, with characteristics of the cytokine storm (CS). Although recently studied cytokine inhibitors are considered as potent and targeted approaches, once an immunological complication like CS happens, anti-viral or anti-inflammation based monotherapy alone is not enough. Interestingly, certain isoquinoline alkaloids in Coptis chinensis Franch. (CCFIAs) exerted a multitude of biological activities such as anti-inflammatory, antioxidant, antibacterial, and immunomodulatory etc, revealing a great potential for calming CS. Therefore, in this timeline review, we report and compare the effects of CCFIAs to attenuate the exacerbation of inflammatory responses by modulating signaling pathways like NF-ĸB, mitogen-activated protein kinase, JAK/STAT, and NLRP3. In addition, we also discuss the role of berberine (BBR) in two different triggers of CS, namely sepsis and viral infections, as well as its clinical applications. These evidence provide a rationale for considering CCFIAs as therapeutic agents against inflammatory CS and this suggestion requires further validation with clinical studies.
Collapse
Affiliation(s)
- Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| |
Collapse
|
9
|
He Q, Chen B, Wang G, Zhou D, Zeng H, Li X, Song Y, Yu X, Liang W, Chen H, Liu X, Wu Q, Wu L, Zhang L, Li H, Hu X, Zhou W. Co-Crystal of Rosiglitazone With Berberine Ameliorates Hyperglycemia and Insulin Resistance Through the PI3K/AKT/TXNIP Pathway In Vivo and In Vitro. Front Pharmacol 2022; 13:842879. [PMID: 35571083 PMCID: PMC9096649 DOI: 10.3389/fphar.2022.842879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by insulin resistance and hyperglycemia. This study examined the effect and elucidated the mechanism of improvement of hyperglycemia and insulin resistance by a co-crystal of rosiglitazone with berberine (RB) in high-sugar high-fat diet (HSHFD)-induced diabetic KKAy mice. Methods: Diabetic KKAy mice were randomly divided into seven groups: KKAy model control group (DM control) treated with 3% sodium carboxymethyl cellulose; RB groups, administered daily with RB 0.7 mg/kg (RB-L), 2.11 mg/kg (RB-M), or 6.33 mg/kg (RB-H); positive control groups, administered daily with rosiglitazone 1.04 mg/kg (RSG), berberine 195 mg/kg (BBR), or combination of 1.04 mg/kg RSG and 1.08 mg/kg BBR (MIX). Test compounds were administered orally for 8 weeks. Non-diabetic C57BL/6J mice were used as normal control (NC). Blood glucose, food intake, body weight, glucose-lipid metabolism, and pathological changes in the pancreas and liver were examined. We further evaluated the mechanism of action of RB in C2C12 and HepG2 cells stimulated with high glucose and palmitate. Results: RB treatment improved glucolipid metabolism and insulin resistance in diabetic KKAy mice. RB reduced blood glucose levels, white fat index, plasma triglyceride (TG), low-density lipoprotein (LDL), gastric inhibitory peptide (GIP), and insulin levels, increased the levels of plasma glucagon-like peptide-1 (GLP-1), high-density lipoprotein (HDL), and glycogen content in the liver and muscle; and improved oral glucose tolerance test (OGTT), insulin tolerance test (ITT), and pathological changes in the pancreas and liver of KKAy mice. Moreover, RB upregulated p-PI3K and p-AKT levels and reduced TXNIP expression in KKAy mice and in HepG2 and C2C12 cells. Conclusion: These data indicate that RB ameliorates insulin resistance and metabolic disorders, and the mechanism might be through regulating the PI3K/AKT/TXNIP signaling pathway . Thus, the co-crystal drug RB may be considered as a potential antidiabetic agent for future clinical therapy.
Collapse
Affiliation(s)
- Qichen He
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Hongfang Zeng
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Yi Song
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Xiaoping Yu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Wenxin Liang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Huiling Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Qiuya Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Lihong Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Limei Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Huizhen Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiangnan Hu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Zhang S, Sun J. Nano-drug delivery system for the treatment of acute myelogenous leukemia. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:233-240. [PMID: 35713321 PMCID: PMC9353639 DOI: 10.3724/zdxbyxb-2022-0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
Administration of therapeutic drugs has been the core strategy for acute myelogenous leukemia (AML), but it is generally limited by its low bioavailability, toxic side effects and intravenous administration. The nano-drug delivery system significantly improves the anti-AML activity through targeted optimization of the drug delivery system. Organic nanocarriers include polymers, liposomes, nanoemulsion, nanomicelle and proteins, which have the advantages of high loading capacity, biocompatibility and functionalization. Inorganic nanocarriers include gold nanoparticles, silicon nanoparticles, iron nanoparticles and other inorganic nanoparticles, which exhibit diverse physical and chemical properties, and have a wide range of biomedical applications including drug carriers. Both organic and inorganic nanocarriers exhibit the potential to alter the pharmacokinetics and pharmacodynamics of drugs. This article reviews the recent progress of nanocarriers as drug delivery system in clinical applications of AML treatment.
Collapse
Affiliation(s)
- Shaoqi Zhang
- 1. Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- 2. Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Jie Sun
- 1. Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- 2. Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Zuo Z, Li M, Han T, Zheng X, Yao W, Wang H, Li X, Qu D. A platelet-cloaking tetramethylprazine-loaded microemulsion for improved therapy of myocardial ischemia/reperfusion injury. J Drug Target 2022; 30:646-656. [PMID: 35225125 DOI: 10.1080/1061186x.2022.2048389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | | | - Tao Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Wenming Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Hui Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
13
|
Devarajan N, Jayaraman S, Mahendra J, Venkatratnam P, Rajagopal P, Palaniappan H, Ganesan SK. Berberine-A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytother Res 2021; 35:3059-3077. [PMID: 33559280 DOI: 10.1002/ptr.7032] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Chemotherapy and radiotherapy are mainstay treatments for cancer patients. However, their clinical outcomes are highly limited by the resistance of malignant tumors to these therapies and the incurrence of serious damages in vital organs. This in turn necessitates the development of adjunct drugs that overcomes chemo/radioresistance in refractory cancers and protects vital organs from the cytotoxic effects of cancer therapies. In recent years, Berberine (BBR), a natural isoquinoline alkaloid has garnered more attention due to its potent chemosensitizing and chemoprotective properties. BBR effectively sensitizes refractory cancers to chemotherapy and radiotherapy by ameliorating the diverse events underlying therapy resistance. Furthermore, it protects the heart, liver, lungs, and kidneys from severe damages caused by these therapies. In this review, we discuss the molecular mechanisms underlying the chemo/radiosensitizing and chemo/radioprotective potential of BBR during cancer treatment. Also, we highlight the limitations that hamper the clinical application of BBR as an adjunct drug and how novel innovations have been made in recent years to circumvent these challenges.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Jaideep Mahendra
- Department of Periodontology, Meenakshi Ammal Dental College, and Hospital, Chennai, India
| | - Purushothaman Venkatratnam
- Central Research laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Hema Palaniappan
- Department of Pharmacology, Coimbatore Medical College, Coimbatore, India
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020; 12:E1194. [PMID: 33317067 PMCID: PMC7764143 DOI: 10.3390/pharmaceutics12121194] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.
Collapse
Affiliation(s)
- Aristote B. Buya
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| | - Patrick B. Memvanga
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| |
Collapse
|
15
|
Calvo A, Moreno E, Larrea E, Sanmartín C, Irache JM, Espuelas S. Berberine-Loaded Liposomes for the Treatment of Leishmania infantum-Infected BALB/c Mice. Pharmaceutics 2020; 12:pharmaceutics12090858. [PMID: 32916948 PMCID: PMC7558179 DOI: 10.3390/pharmaceutics12090858] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
Berberine (BER)—an anti-inflammatory quaternary isoquinoline alkaloid extracted from plants—has been reported to have a variety of biologic properties, including antileishmanial activity. This work addresses the preparation of BER-loaded liposomes with the aim to prevent its rapid liver metabolism and improve the drug selective delivery to the infected organs in visceral leishmaniasis (VL). BER liposomes (LP-BER) displayed a mean size of 120 nm, negative Z-potential of −38 mV and loaded 6 nmol/μmol lipid. In vitro, the loading of BER in liposomes enhanced its selectivity index more than 7-fold by decreasing its cytotoxicity to macrophages. In mice, LP-BER enhanced drug accumulation in the liver and the spleen. Consequently, the liposomal delivery of the drug reduced parasite burden in the liver and spleen by three and one logarithms (99.2 and 93.5%), whereas the free drug only decreased the infection in the liver by 1-log. The organ drug concentrations—far from IC50 values— indicate that BER immunomodulatory activity or drug metabolites also contribute to the efficacy. Although LP-BER decreased 10-fold—an extremely rapid clearance of the free drug in mice—the value remains very high. Moreover, LP-BER reduced plasma triglycerides levels.
Collapse
Affiliation(s)
- Alba Calvo
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
| | - Esther Moreno
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Esther Larrea
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Juan Manuel Irache
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Socorro Espuelas
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +34-948-425-600 (ext. 806310)
| |
Collapse
|
16
|
Zheng F, Li J, Ma C, Tang X, Tang Q, Wu J, Chai X, Xie J, Yang XB, Hann SS. Novel regulation of miR-34a-5p and HOTAIR by the combination of berberine and gefitinib leading to inhibition of EMT in human lung cancer. J Cell Mol Med 2020; 24:5578-5592. [PMID: 32248643 PMCID: PMC7214156 DOI: 10.1111/jcmm.15214] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
HOTAIR is an important carcinogenic lncRNA and involves in tumorigenesis, and invasion. MiR-34a-5p functions as a tumour suppressor. However, the underlying mechanism of HOTAIR regulation especially in association with miR-34a-5p in non-small-cell lung cancer (NSCLC) has not been explored. Herein, we performed series of in vitro experiments, including viability, migration, invasion, apoptosis and in vivo xenograft model, and identified that HOTAIR was remarkably elevated in NSCLC cells. Enforced HOTAIR expression promoted migration and invasion, while depleted HOTAIR diminished the ability of migration and invasion of NSCLC cells. We also observed that miR-34a-5p was dramatically inhibited in NSCLC cells and the binding correlation between HOTAIR and miR-34a-5p was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. We also showed that induction of miR-34a-5p and reduction of HOTAIR, and the interaction between miR-34a-5p and HOTAIR resulted in the suppression of epithelial-mesenchymal transition (EMT) as illustrated by induction of key epithelial markers E-cadherin expression, reduction of vimentin and EMT-inducing transcription factor snail. Excessive expression of snail resisted miR-34a-5p-inhibited cell growth. Snail binds to E-cadherin promoter and regulates E-cadherin expression. There was a synergy in combination of berberine and gefinitib in this process. Similar findings were also observed in a tumour xenograft model. Collectively, this is the first report demonstrating reciprocal interaction of miR-34a-5p- and HOTAIR-mediated regulation of snail resulting in inhibition of EMT process by the combination of berberine and gefitinib suggesting that regulation of miR-34a-5p- and HOTAIR-mediated inhibition of EMT may provide novel treatment paradigms for lung cancer.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Li
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Human Resource, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - ChangJu Ma
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - XiaoJuan Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JingJing Wu
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - XiaoSu Chai
- Department of Medical Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Bo Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Liu J, Zhu Z, Liu Y, Wei L, Li B, Mao F, Zhang J, Wang Y, Liu Y. MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. Life Sci 2019; 242:117228. [PMID: 31881227 DOI: 10.1016/j.lfs.2019.117228] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
AIMS Berberine (BBR) is reported to induce apoptosis and inhibit migration of leukemic cells, but the underlying pharmacological mechanisms have not been fully revealed. This study aims to investigate the possible mechanisms from the perspective of autophagy. MAIN METHODS P-53-null leukemic cell lines Jurkat and U937 were used for the in vitro study. MDC staining was used for observation of autophagy in leukemic cells, and Western blot analysis was for determination of the expression levels of autophagy-associated proteins. Apoptosis of the leukemic cells was detected by flow cytometry. Cellular location of MDM2 was observed with immunofluorescence staining. Ubiquitination of MDM2 was assessed by immunoprecipitation. Male 6-8-week-old NOD/SCID mice were used for evaluating the effect of BBR on chemotherapy sensitivity in vivo. KEY FINDINGS BBR induced autophagy in p53-null leukemic cells, which was inhibited by autophagy inhibitors 3-methyladenine. 3-methyladenine also inhibited BBR-induced apoptosis in leukemic cells. In addition, BBR not only decreased MDM2 mRNA expression, but also enhanced MDM2 self-ubiquitination in leukemic cells. Forced overexpression of MDM2 reversed the effect of BBR on autophagy and apoptosis. Furthermore, BBR promoted doxorubicin-induced autophagy and cell death in the leukemic cells and overexpression of MDM2 suppressed these effects. In vivo, BBR combined with doxorubicin achieved better therapeutic effect than doxorubicin alone. SIGNIFICANCE MDM2 inhibits autophagy and apoptosis in leukemic cells in a p53-independent manner. BBR induces autophagy in p53-null leukemic cells through downregulating MDM2 expression at both transcriptional and post-transcriptional levels, which may contribute to the anti-cancer effect of BBR in leukemia.
Collapse
Affiliation(s)
- Jian Liu
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Zhenjing Zhu
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yueyao Liu
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Linlin Wei
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Bai Li
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Fengxia Mao
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ju Zhang
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yingchao Wang
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yufeng Liu
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
18
|
Madan JR, Patil K, Awasthi R, Dua K. Formulation and evaluation of solid self-microemulsifying drug delivery system for azilsartan medoxomil. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1695206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jyotsana R. Madan
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Pune, India
| | - Kajal Patil
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Pune, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
19
|
Xu HY, Liu CS, Huang CL, Chen L, Zheng YR, Huang SH, Long XY. Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf B Biointerfaces 2019; 181:927-934. [DOI: 10.1016/j.colsurfb.2019.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022]
|