1
|
Li Y, Xia M, Zhou J, Hu L, Du Y. Recent advances in gold Janus nanomaterials: Preparation and application. Adv Colloid Interface Sci 2024; 334:103315. [PMID: 39454268 DOI: 10.1016/j.cis.2024.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/02/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Gold Janus nanomaterials have a tremendous significance for the novel bifunctional materials, significantly expanding the application scope of gold nanomaterials, especially Janus gold-thiol coordination polymer due to their exceptional biological characteristics, stability, plasmon effect, etc. The recent research on Janus gold nanoparticles and monolayer films of preparation and application has been summarized and in this review. To begin, we briefly introduce overview of Janus nanomaterials which received intense attention, outline current research trends, and detail the preparation and application of gold nanomaterials. Subsequently, we present comprehensively detailing fabrication strategies and applications of Janus gold nanoparticles. Additionally, we survey recent studies on the Janus gold nano-thickness films and point out the outstanding advantage of application on the tunable surface plasmon resonance, high sensitivity of surface-enhanced Raman scattering and electrical analysis fields. Finally, we discuss the emerging trends in Janus gold nanomaterials and address the associated challenges, thereby providing a comprehensive overview of this area of research.
Collapse
Affiliation(s)
- Yunbo Li
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China.
| | - Minqiang Xia
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Jiahang Zhou
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Lingui Hu
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Yixuan Du
- School of Materials Science & Engineering, Bayreuth Universität, Bayreuth, 95445, Germany.
| |
Collapse
|
2
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
3
|
Park S, Choi J, Ko N, Mondal S, Pal U, Lee BI, Oh J. Beta cyclodextrin conjugated AuFe 3O 4 Janus nanoparticles with enhanced chemo-photothermal therapy performance. Acta Biomater 2024; 182:213-227. [PMID: 38734286 DOI: 10.1016/j.actbio.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The strategic integration of multi-functionalities within a singular nanoplatform has received growing attention for enhancing treatment efficacy, particularly in chemo-photothermal therapy. This study introduces a comprehensive concept of Janus nanoparticles (JNPs) composed of Au and Fe3O4 nanostructures intricately bonded with β-cyclodextrins (β-CD) to encapsulate 5-Fluorouracil (5-FU) and Ibuprofen (IBU). This strategic structure is engineered to exploit the synergistic effects of chemo-photothermal therapy, underscored by their exceptional biocompatibility and photothermal conversion efficiency (∼32.88 %). Furthermore, these β-CD-conjugated JNPs enhance photodynamic therapy by generating singlet oxygen (1O2) species, offering a multi-modality approach to cancer eradication. Computer simulation results were in good agreement with in vitro and in vivo assays. Through these studies, we were able to prove the improved tumor ablation ability of the drug-loaded β-CD-conjugated JNPs, without inducing adverse effects in tumor-bearing nude mice. The findings underscore a formidable tumor ablation potency of β-CD-conjugated Au-Fe3O4 JNPs, heralding a new era in achieving nuanced, highly effective, and side-effect-free cancer treatment modalities. STATEMENT OF SIGNIFICANCE: The emergence of multifunctional nanoparticles marks a pivotal stride in cancer therapy research. This investigation unveils Janus nanoparticles (JNPs) amalgamating gold (Au), iron oxide (Fe3O4), and β-cyclodextrins (β-CD), encapsulating 5-Fluorouracil (5-FU) and Ibuprofen (IBU) for synergistic chemo-photothermal therapy. Demonstrating both biocompatibility and potent photothermal properties (∼32.88 %), these JNPs present a promising avenue for cancer treatment. Noteworthy is their heightened photodynamic efficiency and remarkable tumor ablation capabilities observed in vitro and in vivo, devoid of adverse effects. Furthermore, computational simulations validate their interactions with cancer cells, bolstering their utility as an emerging therapeutic modality. This endeavor pioneers a secure and efficacious strategy for cancer therapy, underscoring the significance of β-CD-conjugated Au-Fe3O4 JNPs as innovative nanoplatforms with profound implications for the advancement of cancer therapy.
Collapse
Affiliation(s)
- Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Namsuk Ko
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Umapada Pal
- Institute of Physics, Autonomous University of Puebla, Puebla 72570, Mexico
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea; Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea.
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea; Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
5
|
Klangprapan J, Souza GR, Ferreira JN. Bioprinting salivary gland models and their regenerative applications. BDJ Open 2024; 10:39. [PMID: 38816372 PMCID: PMC11139920 DOI: 10.1038/s41405-024-00219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Salivary gland (SG) hypofunction is a common clinical condition arising from radiotherapy to suppress head and neck cancers. The radiation often destroys the SG secretory acini, and glands are left with limited regenerative potential. Due to the complex architecture of SG acini and ducts, three-dimensional (3D) bioprinting platforms have emerged to spatially define these in vitro epithelial units and develop mini-organs or organoids for regeneration. Due to the limited body of evidence, this comprehensive review highlights the advantages and challenges of bioprinting platforms for SG regeneration. METHODS SG microtissue engineering strategies such as magnetic 3D bioassembly of cells and microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes have been proposed to replace the damaged acinar units, avoid the use of xenogeneic matrices (like Matrigel), and restore salivary flow. RESULTS Replacing the SG damaged organ is challenging due to its complex architecture, which combines a ductal network with acinar epithelial units to facilitate a unidirectional flow of saliva. Our research group was the first to develop 3D bioassembly SG epithelial functional organoids with innervation to respond to both cholinergic and adrenergic stimulation. More recently, microtissue engineering using coaxial 3D bioprinting of hydrogel microfibers and microtubes could also supported the formation of viable epithelial units. Both bioprinting approaches could overcome the need for Matrigel by facilitating the assembly of adult stem cells, such as human dental pulp stem cells, and primary SG cells into micro-sized 3D constructs able to produce their own matrix and self-organize into micro-modular tissue clusters with lumenized areas. Furthermore, extracellular vesicle (EV) therapies from organoid-derived secretome were also designed and validated ex vivo for SG regeneration after radiation damage. CONCLUSION Magnetic 3D bioassembly and microfluidic coaxial bioprinting platforms have the potential to create SG mini-organs for regenerative applications via organoid transplantation or organoid-derived EV therapies.
Collapse
Affiliation(s)
- Jutapak Klangprapan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Glauco R Souza
- Greiner Bio-one North America Inc., 4238 Capital Drive, Monroe, NC, 28110, USA
| | - João N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Madadi M, Khoee S. Magnetite-based Janus nanoparticles, their synthesis and biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1908. [PMID: 37271573 DOI: 10.1002/wnan.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023]
Abstract
The advent of Janus nanoparticles has been a great breakthrough in the emerging field of nanomaterials. Janus nanoparticles refer to a single structure with two distinct chemical functions on either side. Owing to their asymmetric structures, they can be utilized in a variety of applications where monomorphic particles are insufficient. In the last decade, a wide variety of materials have been employed to fabricate Janus nanoparticles, and due to the great advantages of magnetite (Iron-oxide) NPs, they have been considered as one of the best candidates. With the main benefit of magnetic controlling, magnetite Janus nanoparticles fulfill great promises, especially in biomedical areas such as bioimaging, cancer therapies, theranostics, and biosensing. The intrinsic characteristics of magnetite Janus nanoparticles (MJNPs) even hold great potential in magnetite Janus forms of micro-/nanomotors. Despite the great interest and potential in magnetic Janus NPs, the need for a comprehensive review on MJNPs with a concentration on magnetite NPs has been overlooked. Herein, we present recent advancements in the magnetite-based Janus nanoparticles in the flourishing field of biomedicine. First, the synthesis and fabrication methods of Janus nanoparticles are discussed. Then we will delve into their intriguing biomedical applications, with a separate section for magnetite Janus micro-/nanomotors in biomedicine. And finally, the challenges and future outlook are provided. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Mozhdeh Madadi
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Huang L, Pei K, Wang X. Magnetic relaxation switch sensor based on aptamer-modified poly-L-lysine-ferroferric oxide magnetic nanoparticles and graphene oxide for the determination of insecticides in vegetables. Mikrochim Acta 2023; 190:239. [PMID: 37231283 DOI: 10.1007/s00604-023-05817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
A simple and effective graphene oxide-magnetic relaxation switch (GO-MRS) sensor that combines graphene oxide (GO) and aptamer-modified poly-L-lysine(PLL)-Fe3O4 nanoparticles (Fe3O4@PLL-Apt NPs) was designed for the detection of acetamiprid (ACE). In this sensor, Fe3O4@PLL-Apt NPs acted as a relaxation signal probe and GO facilitated the generation of relaxation signal changes (dispersion/aggregation shift), while the aptamer is a molecular component that recognizes ACE. This GO-assisted magnetic signal probe improves the stability of magnetic nanoparticles in solution and enhances their sensitivity to small molecules while avoiding cross-reactions. Under optimal conditions, the sensor exhibits a wide working range (10-80 nM) and low detection limit (8.43 nM). The spiked recoveries ranged from 96.54 to 103.17%, with a relative standard deviation (RSD) of less than 2.3%. In addition, the performance of the GO-MRS sensor matched that of the standard method (liquid chromatography-mass spectrometry (LC-MS)), indicating that the GO-MRS sensor is suitable for the detection of ACE in vegetables.
Collapse
Affiliation(s)
- Lei Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Kaili Pei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
8
|
Singh R, Yadav V, Dhillon AK, Sharma A, Ahuja T, Siddhanta S. Emergence of Raman Spectroscopy as a Probing Tool for Theranostics. Nanotheranostics 2023; 7:216-235. [PMID: 37064614 PMCID: PMC10093420 DOI: 10.7150/ntno.81936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Although medical advances have increased our grasp of the amazing morphological, genetic, and phenotypic diversity of diseases, there are still significant technological barriers to understanding their complex and dynamic character. Specifically, the complexities of the biological systems throw a diverse set of challenges in developing efficient theranostic tools and methodologies that can probe and treat pathologies. Among several emerging theranostic techniques such as photodynamic therapy, photothermal therapy, magnetic resonance imaging, and computed tomography, Raman spectroscopy (RS) is emerging as a promising tool that is a label-free, cost-effective, and non-destructive technique. It can also provide real-time diagnostic information and can employ multimodal probes for detection and therapy. These attributes make it a perfect candidate for the analytical counterpart of the existing theranostic probes. The use of biocompatible nanomaterials for the fabrication of Raman probes provides rich structural information about the biological molecules, cells, and tissues and highly sensitive information down to single-molecule levels when integrated with advanced RS tools. This review discusses the fundamentals of Raman spectroscopic tools such as surface-enhanced Raman spectroscopy and Resonance Raman spectroscopy, their variants, and the associated theranostic applications. Besides the advantages, the current limitations, and future challenges of using RS in disease diagnosis and therapy have also been discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India
| |
Collapse
|
9
|
Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Mehra NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release 2022; 352:1024-1047. [PMID: 36379278 DOI: 10.1016/j.jconrel.2022.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Breast cancer is the most prevalent non-cutaneous malignancy in women, with greater than a million new cases every year. In the last decennium, numerous diagnostic and treatment approaches have been enormously studied for Breast cancer. Among the different approaches, nanotechnology has appeared as a promising approach in preclinical and clinical studies for early diagnosis of primary tumors and metastases and eradicating tumor cells. Each of these nanocarriers has its particular advantages and drawbacks. Combining two or more than two constituents in a single nanocarrier system leads to the generation of novel multifunctional Hybrid Nanocarriers with improved structural and biological properties. These novel Hybrid Nanocarriers have the capability to overcome the drawbacks of individual constituents while having the advantages of those components. Various hybrid nanocarriers such as lipid polymer hybrid nanoparticles, inorganic hybrid nanoparticles, metal-organic hybrid nanoparticles, and hybrid carbon nanocarriers are utilized for the diagnosis and treatment of various cancers. Certainly, Hybrid Nanocarriers have the capability to encapsulate multiple cargos, targeting agents, enhancement in encapsulation, stability, circulation time, and structural disintegration compared to non-hybrid nanocarriers. Many studies have been conducted to investigate the utilization of Hybrid nanocarriers in breast cancer for imaging platforms, photothermal and photodynamic therapy, chemotherapy, gene therapy, and combinational therapy. In this review, we mainly discussed in detailed about of preparation techniques and toxicological considerations of hybrid nanoparticles. This review also discussed the role of hybrid nanocarriers as a diagnostic and therapeutic agent for the treatment of breast cancer along with alternative treatment approaches apart from chemotherapy including photothermal and photodynamic therapy, gene therapy, and combinational therapy.
Collapse
Affiliation(s)
- Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aare Mounika
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anuradha Urati
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Khatri
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Mujahid MH, Upadhyay TK, Khan F, Pandey P, Park MN, Sharangi AB, Saeed M, Upadhye VJ, Kim B. Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomed Pharmacother 2022; 155:113791. [DOI: 10.1016/j.biopha.2022.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/02/2022] Open
|
11
|
Shivanna AT, Dash BS, Chen JP. Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies. MICROMACHINES 2022; 13:mi13081279. [PMID: 36014201 PMCID: PMC9413965 DOI: 10.3390/mi13081279] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 05/14/2023]
Abstract
The multi-faceted nature of functionalized magnetic nanoparticles (fMNPs) is well-suited for cancer therapy. These nanocomposites can also provide a multimodal platform for targeted cancer therapy due to their unique magnetic guidance characteristics. When induced by an alternating magnetic field (AMF), fMNPs can convert the magnetostatic energy to heat for magnetic hyperthermia (MHT), as well as for controlled drug release. Furthermore, with the ability to convert near-infrared (NIR) light energy to heat energy, fMNPs have attracted interest for photothermal therapy (PTT). Other than MHT and PTT, fMNPs also have a place in combination cancer therapies, such as chemo-MHT, chemo-PTT, and chemo-PTT-photodynamic therapy, among others, due to their versatile properties. Thus, this review presents multifunctional nanocomposites based on fMNPs for cancer therapies, induced by an AMF or NIR light. We will first discuss the different fMNPs induced with an AMF for cancer MHT and chemo-MHT. Secondly, we will discuss fMNPs irradiated with NIR lasers for cancer PTT and chemo-PTT. Finally, fMNPs used for dual-mode AMF + NIR-laser-induced magneto-photo-hyperthermia (MPHT) will be discussed.
Collapse
Affiliation(s)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
- Correspondence: ; Tel.: +886-3-2118800
| |
Collapse
|
12
|
Kahali P, Montazer M, Kamali Dolatabadi M. Sustainable copper oxide/Tragacanth gum bionanocomposites with multi‐purpose catalytic activities on textile. J Appl Polym Sci 2022. [DOI: 10.1002/app.52781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Panid Kahali
- Department of Textile Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Majid Montazer
- Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Mehdi Kamali Dolatabadi
- Department of Textile Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
13
|
Shete MB, Patil TS, Deshpande AS, Saraogi G, Vasdev N, Deshpande M, Rajpoot K, Tekade RK. Current trends in theranostic nanomedicines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Li X, Chen L, Cui D, Jiang W, Han L, Niu N. Preparation and application of Janus nanoparticles: Recent development and prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Jose AD, Wu Z, Thakur SS. A comprehensive update of micro- and nanobubbles as theranostics in oncology. Eur J Pharm Biopharm 2022; 172:123-133. [PMID: 35181491 DOI: 10.1016/j.ejpb.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
Advances in diagnostic and imaging capabilities have allowed cancers to be detected earlier and characterized more robustly. These strategies have recently branched into theranostics whereby contrast agents traditionally used for imaging have been co-loaded with therapeutics to simultaneously diagnose and treat cancers in a patient-specific manner. Microbubbles (MB) and nanobubbles (NB) are contrast agents which can be modulated to meet the theranostic needs particularly in the realm of oncology. The current review focuses on the ultrasound-responsive MB/NB platforms used as a theranostic tool in oncology. We discuss in detail the key parameters that influence the utility of MB/NB formulations and implications of such treatment modalities. Recent advances in composition strategies, latest works in the pre-clinical stages and multiple paradigm-shifting innovations in the field of MB/NB are discussed in-depth in this review. The clinical application of MB/NB is currently limited to diagnostic imaging. Surface chemistry modification strategies will help tune the formulations toward therapeutic applications. It is also anticipated that MB/NB will see increased use to deliver gas therapeutics. Scalability and stability considerations will be at the forefront as these particles get introduced into the clinical theranostic toolbox.
Collapse
Affiliation(s)
- Ashok David Jose
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sachin Sunil Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
16
|
Jakaria MG, Sorkhdini P, Yang D, Zhou Y, Meenach SA. Lung cell membrane-coated nanoparticles capable of enhanced internalization and translocation in pulmonary epithelial cells. Int J Pharm 2022; 613:121418. [PMID: 34954003 PMCID: PMC8792290 DOI: 10.1016/j.ijpharm.2021.121418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023]
Abstract
Cell membrane-coated nanoparticles (CMCNP), which involve coating a core nanoparticle (NP) with cell membranes, have been gaining attention due to their ability to mimic the properties of the cells, allowing for enhanced delivery and efficacy of therapeutics. Two CMCNP systems comprised of an acetalated dextran-based NP core loaded with curcumin (CUR) coated with cell membranes derived from pulmonary epithelial cells were developed. The NP were approximately 200 nm and their surface charges varied based on their coating, where CMCNP systems exhibited negative surface charge like natural cell membranes. The NP were smooth, spherical, and homogeneous with distinct coatings on their cores. Minimal in vitro toxicity was observed for the NP and controlled release of CUR was observed. The CMCNP internalized into and translocated across an in vitro pulmonary epithelial monolayer significantly more than the control NP. Blocking endocytosis pathways reduced the transcytosis of NP, indicating a relationship between endocytosis and transcytosis. These newly developed CMCNP have the potential to be used in pulmonary drug delivery applications to potentially enhance NP internalization and transport into and across the pulmonary epithelium.
Collapse
Affiliation(s)
- Md Golam Jakaria
- Department of Chemical Engineering, 2 East Alumni Drive, University of Rhode Island, Kingston, Rhode Island 02881, USA.
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Sidney Frank Hall, Room 258, Box G-B5, 185 Meeting Street, Brown University, Providence, Rhode Island 02912, USA.
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Sidney Frank Hall, Room 258, Box G-B5, 185 Meeting Street, Brown University, Providence, Rhode Island 02912, USA.
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Sidney Frank Hall, Room 258, Box G-B5, 185 Meeting Street, Brown University, Providence, Rhode Island 02912, USA.
| | - Samantha A Meenach
- Department of Chemical Engineering, 2 East Alumni Drive, University of Rhode Island, Kingston, Rhode Island 02881, USA; Department of Biomedical and Pharmaceutical Sciences, 6 Greenhouse Road, University of Rhode Island, Kingston, Rhode Island 02881, USA.
| |
Collapse
|
17
|
Liang F. Magnetic Hybrid Materials of Gold Nanoparticles as Anti-Cancer Agents. Anticancer Agents Med Chem 2022; 22:2504-2506. [PMID: 35088679 DOI: 10.2174/1871520622666220128101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Feng Liang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan
| |
Collapse
|
18
|
Shevtsov M, Kaesler S, Posch C, Multhoff G, Biedermann T. Magnetic nanoparticles in theranostics of malignant melanoma. EJNMMI Res 2021; 11:127. [PMID: 34905138 PMCID: PMC8671576 DOI: 10.1186/s13550-021-00868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is an aggressive tumor with a tendency to metastasize early and with an increasing incidence worldwide. Although in early stage, melanoma is well treatable by excision, the chances of cure and thus the survival rate decrease dramatically after metastatic spread. Conventional treatment options for advanced disease include surgical resection of metastases, chemotherapy, radiation, targeted therapy and immunotherapy. Today, targeted kinase inhibitors and immune checkpoint blockers have for the most part replaced less effective chemotherapies. Magnetic nanoparticles as novel agents for theranostic purposes have great potential in the treatment of metastatic melanoma. In the present review, we provide a brief overview of treatment options for malignant melanoma with different magnetic nanocarriers for theranostics. We also discuss current efforts of designing magnetic particles for combined, multimodal therapies (e.g., chemotherapy, immunotherapy) for malignant melanoma.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, Primorsky Krai, 690091, Vladivostok, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str, Saint Petersburg, Russian Federation, 197341
| | - Susanne Kaesler
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Christian Posch
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Ismaninger Str. 22, 81675, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany.
| |
Collapse
|
19
|
Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int J Mol Sci 2021; 22:ijms222312789. [PMID: 34884592 PMCID: PMC8657944 DOI: 10.3390/ijms222312789] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Nanomedical research necessarily involves the study of the interactions between nanoparticulates and the biological environment. Transmission electron microscopy has proven to be a powerful tool in providing information about nanoparticle uptake, biodistribution and relationships with cell and tissue components, thanks to its high resolution. This article aims to overview the transmission electron microscopy techniques used to explore the impact of nanoconstructs on biological systems, highlighting the functional value of ultrastructural morphology, histochemistry and microanalysis as well as their fundamental contribution to the advancement of nanomedicine.
Collapse
|
20
|
Pivetta TP, Botteon CEA, Ribeiro PA, Marcato PD, Raposo M. Nanoparticle Systems for Cancer Phototherapy: An Overview. NANOMATERIALS 2021; 11:nano11113132. [PMID: 34835896 PMCID: PMC8625970 DOI: 10.3390/nano11113132] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces' functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.
Collapse
Affiliation(s)
- Thais P. Pivetta
- CEFITEC, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Caroline E. A. Botteon
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil; (C.E.A.B.); (P.D.M.)
| | - Paulo A. Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Priscyla D. Marcato
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil; (C.E.A.B.); (P.D.M.)
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- Correspondence: ; Fax: +351-21-294-85-49
| |
Collapse
|
21
|
Abstract
Cancer nanotheranostics aims at providing alternative approaches to traditional cancer diagnostics and therapies. In this context, plasmonic nanostructures especially gold nanostructures are intensely explored due to their tunable shape, size and surface plasmon resonance (SPR), better photothermal therapy (PTT) and photodynamic therapy (PDT) ability, effective contrast enhancing ability in Magnetic Resonance imaging (MRI) and Computed Tomography (CT) scan. Despite rapid breakthroughs in gold nanostructures based theranostics of cancer, the translation of gold nanostructures from bench side to human applications is still questionable. The major obstacles that have been facing by nanotheranostics are specific targeting, poor resolution and photoinstability during PTT etc. In this regard, various encouraging studies have been carried out recently to overcome few of these obstacles. Use of gold nanocomposites also overcomes the limitations of gold nanostructure probes and emerged as good nanotheranostic probe. Hence, the present article discusses the advances in gold nanostructures based cancer theranostics and mainly emphasizes on the importance of gold nanocomposites which have been designed to decipher the past questions and limitations of in vivo gold nanotheranostics.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| |
Collapse
|
22
|
Catalytic ferromagnetic gold nanoparticle immunoassay for the detection and differentiation of Mycobacterium tuberculosis and Mycobacterium bovis. Anal Chim Acta 2021; 1184:339037. [PMID: 34625241 DOI: 10.1016/j.aca.2021.339037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
A ferromagnetic gold nanoparticle based immune detection assay, exploiting the enhanced signal amplification of inorganic nanozymes, was developed and evaluated for its potential application in the detection of Mycobacterium tuberculosis complex (MTBC) organisms, and simultaneous identification of Mycobacterium bovis. Ferromagnetic gold nanoparticles (Au-Fe3O4 NPs) were prepared and their intrinsic peroxidase-like activity exploited to catalyse 3,3',5',5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). When the Au-Fe3O4 NPs were functionalised by direct coupling with MTBC-selective antibodies, a nanoparticle based immune detection assay (NPIDA) was developed which could detect Mycobacterium tuberculosis (MTB) and differentiate M. bovis. In the assay, the intrinsic magnetic capability of the functionalised Au-Fe3O4 NPs was used in sample preparation to capture target bacterial cells. These were incorporated into a novel immunoassay which used species selective monoclonal antibodies (mAb) to detect bound target. The formation of a blue TMB oxidation product, with a peak absorbance of 370 nm, indicated successful capture and identification of the target. The detection limit of the NPIDA for both MTB and M. bovis was determined to be comparable to conventional ELISA using the same antibodies. Although limited matrix effects were observed in either assay, the NPIDA offers a reduced time to confirmatory identification. This novel NPIDA was capable of simultaneous sample concentration, purification, immunological detection and speciation. To our knowledge, it represents the first immune-based diagnostic test capable of identifying MTBC organisms and simultaneously differentiating M. bovis.
Collapse
|
23
|
Gupta N, Yadav V, Patel R. A brief review of the essential role of nanovehicles for improving the therapeutic efficacy of pharmacological agents against tumours. Curr Drug Deliv 2021; 19:301-316. [PMID: 34391379 DOI: 10.2174/1567201818666210813144105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the leading cause of death globally. There are several differences between cancer cells and normal cells. From all the therapies, chemotherapy is the most prominent therapy to treat cancer. However, the conventional drug delivery that is used to deliver poorly aqueous soluble chemotherapeutic agents has several obstacles such as whole-body distribution, rapid excretion, degradation before reaching the infected site, side effects, etc. Nanoformulation of these aqueous insoluble agents is the emerging delivery system for targeted and increasing solubility. Among all the three methods (physical, chemical and biological) chemical and biological methods are mostly used for the synthesis of nanovehicles (NVs) of different sizes, shapes and dimensions. A passive targeting delivery system in which NVs supports the pharmacological agents (drugs/genes) is a good way for resolving the obstacles with a conventional delivery system. It enhances the therapeutic efficacy of pharmacological agents (drugs/genes). These NVs have several specific characters like small size, large surface area to volume ratio, surface functionalization, etc. However, this delivery is not able to deliver site-specific delivery of drugs. An active targeting delivery system in which pharmacological agents are loaded on NVs to attack directly on cancer cells and tissues is a superior way for delivering the pharmacological agents compared to a passive targeting delivery system. Various targeting ligands have been investigated and applied for targeting the delivery of drugs such as sugar, vitamin, antibodies, protein, peptides, etc. These targeted ligand supports to guide the NVs accumulated directly on the cancer cells with a higher level of cellular internalization compared to passive targeting and conventional delivery system.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India
| | - Virendra Yadav
- Department of Microbiology, School of Life Sciences, Jaipur National University, Jaipur- 341503, Rajasthan, India
| | - Rakesh Patel
- Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana- 384012, Gujarat, India
| |
Collapse
|
24
|
Gassen R, Thompkins D, Routt A, Jones P, Smith M, Thompson W, Couture P, Bozhko DA, Celinski Z, Camley RE, Hagen GM, Spendier K. Optical Imaging of Magnetic Particle Cluster Oscillation and Rotation in Glycerol. J Imaging 2021; 7:jimaging7050082. [PMID: 34460678 PMCID: PMC8321340 DOI: 10.3390/jimaging7050082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022] Open
Abstract
Magnetic particles have been evaluated for their biomedical applications as a drug delivery system to treat asthma and other lung diseases. In this study, ferromagnetic barium hexaferrite (BaFe12O19) and iron oxide (Fe3O4) particles were suspended in water or glycerol, as glycerol can be 1000 times more viscous than water. The particle concentration was 2.50 mg/mL for BaFe12O19 particle clusters and 1.00 mg/mL for Fe3O4 particle clusters. The magnetic particle cluster cross-sectional area ranged from 15 to 1000 μμm2, and the particle cluster diameter ranged from 5 to 45 μμm. The magnetic particle clusters were exposed to oscillating or rotating magnetic fields and imaged with an optical microscope. The oscillation frequency of the applied magnetic fields, which was created by homemade wire spools inserted into an optical microscope, ranged from 10 to 180 Hz. The magnetic field magnitudes varied from 0.25 to 9 mT. The minimum magnetic field required for particle cluster rotation or oscillation in glycerol was experimentally measured at different frequencies. The results are in qualitative agreement with a simplified model for single-domain magnetic particles, with an average deviation from the model of 1.7 ± 1.3. The observed difference may be accounted for by the fact that our simplified model does not include effects on particle cluster motion caused by randomly oriented domains in multi-domain magnetic particle clusters, irregular particle cluster size, or magnetic anisotropy, among other effects.
Collapse
Affiliation(s)
- River Gassen
- BioFrontiers Center, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (R.G.); (D.T.); (A.R.); (P.J.); (M.S.); (W.T.); (Z.C.); (R.E.C.); (G.M.H.)
- Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (P.C.); (D.A.B.)
| | - Dennis Thompkins
- BioFrontiers Center, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (R.G.); (D.T.); (A.R.); (P.J.); (M.S.); (W.T.); (Z.C.); (R.E.C.); (G.M.H.)
- Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (P.C.); (D.A.B.)
| | - Austin Routt
- BioFrontiers Center, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (R.G.); (D.T.); (A.R.); (P.J.); (M.S.); (W.T.); (Z.C.); (R.E.C.); (G.M.H.)
- Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (P.C.); (D.A.B.)
| | - Philippe Jones
- BioFrontiers Center, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (R.G.); (D.T.); (A.R.); (P.J.); (M.S.); (W.T.); (Z.C.); (R.E.C.); (G.M.H.)
- Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (P.C.); (D.A.B.)
| | - Meghan Smith
- BioFrontiers Center, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (R.G.); (D.T.); (A.R.); (P.J.); (M.S.); (W.T.); (Z.C.); (R.E.C.); (G.M.H.)
| | - William Thompson
- BioFrontiers Center, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (R.G.); (D.T.); (A.R.); (P.J.); (M.S.); (W.T.); (Z.C.); (R.E.C.); (G.M.H.)
| | - Paul Couture
- Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (P.C.); (D.A.B.)
| | - Dmytro A. Bozhko
- Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (P.C.); (D.A.B.)
| | - Zbigniew Celinski
- BioFrontiers Center, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (R.G.); (D.T.); (A.R.); (P.J.); (M.S.); (W.T.); (Z.C.); (R.E.C.); (G.M.H.)
- Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (P.C.); (D.A.B.)
| | - Robert E. Camley
- BioFrontiers Center, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (R.G.); (D.T.); (A.R.); (P.J.); (M.S.); (W.T.); (Z.C.); (R.E.C.); (G.M.H.)
- Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (P.C.); (D.A.B.)
| | - Guy M. Hagen
- BioFrontiers Center, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (R.G.); (D.T.); (A.R.); (P.J.); (M.S.); (W.T.); (Z.C.); (R.E.C.); (G.M.H.)
| | - Kathrin Spendier
- BioFrontiers Center, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (R.G.); (D.T.); (A.R.); (P.J.); (M.S.); (W.T.); (Z.C.); (R.E.C.); (G.M.H.)
- Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA; (P.C.); (D.A.B.)
- Correspondence:
| |
Collapse
|
25
|
A sensitive electrochemical method for indole based on the signal amplification strategy by gold/iron-oxide composite nanoparticles. Anal Chim Acta 2021; 1142:56-64. [PMID: 33280704 DOI: 10.1016/j.aca.2020.10.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Indole is a major metabolite of tryptophan, which plays an important role in the intestinal microecological balance and human physiological activities. The determination of indole becomes important for its researches. So, it is urgent to establish a sensitive and cost-effective method for indole detection. Herein, a sensitive electrochemical method was constructed to determine the concentration of indole using screen-printed carbon electrode (SPCE) with the signal amplification strategy by gold/iron-oxide composite nanoparticles (Au/Fe3O4). Au/Fe3O4 nanoparticles were successfully synthesized under the irradiation by high-energy electron beams. 4-aminothiophenol (4-ATP) was connected to Au/Fe3O4 via Au-S bond. And then NaNO2 reacted with 4-ATP to form the azo bond, which could form the final product of Au/Fe3O4@ATP-azo-indole by the coupling reaction. Thus, the concentration of indole was detected by the electrochemical signal produced by Au/Fe3O4@ATP-azo-indole indirectly. The detection sensitivity was greatly improved by the large specific surface area provided by Au/Fe3O4 after the modification. The linear range of indole was from 0.50 to 120.00 μg L-1 and the limit of detection (LOD) was as low as 0.10 μg L-1 (S/N = 3). Furthermore, the developed method exhibited acceptable intra-day and inter-day precisions with the coefficient of variations (CV) less than 4.9% and 8.2%, respectively. And the recoveries were from 97.2% to 105.4%. An innovative, sensitive, cost-effective method was established for indole determination in human plasma matrix in this manuscript, which provides a promising way for indole detection in conventional laboratories.
Collapse
|
26
|
Al-Musawi S, Albukhaty S, Al-Karagoly H, Almalki F. Design and Synthesis of Multi-Functional Superparamagnetic Core-Gold Shell Coated with Chitosan and Folate Nanoparticles for Targeted Antitumor Therapy. NANOMATERIALS 2020; 11:nano11010032. [PMID: 33374415 PMCID: PMC7824182 DOI: 10.3390/nano11010032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
A dual-targeting nanomedicine composed of pH-sensitive superparamagnetic iron oxide core-gold shell SPION@Au, chitosan (CS), and folate (FA) was developed as a doxorubicin (DOX) antitumor medication. Microemulsion was used for preparation and cross-linking conjugation. The characteristics of the designed nanocomposite were studied using atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction, UV-visible spectroscopy, Zeta potential and vibrating sample magnetometry (VSM), and Fourier transform infrared spectroscopy. The prepared SPION@Au-CS-DOX-FA nanoparticles (NPs) were spherical with an average diameter of 102.6 ± 7 nm and displayed an elevated drug loading behavior and sustained drug release capacity. The SPION@Au-CS-DOX-FA NPs revealed long term anti-cancer efficacy due to their cytotoxic effect and apoptotic inducing efficiency in SkBr3 cell lines. Additionally, Real-time PCR outcomes significantly showed an increase in BAK and BAX expression and a decrease in BCL-XL and BCL-2. In vivo results revealed that SPION@Au significantly decreased the tumor size in treated mice through magnetization. In conclusion, prepared SPION@Au-CS-DOX-FA could be a beneficial drug formulation for clinical breast cancer treatment.
Collapse
Affiliation(s)
- Sharafaldin Al-Musawi
- Faculty of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq
- Correspondence:
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq;
| | - Hassan Al-Karagoly
- Department of Internal and Preventive Medicine, Veterinary Medicine College, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq;
| | - Faizah Almalki
- Faculty of Science, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
27
|
Nathanael AJ, Oh TH. Biopolymer Coatings for Biomedical Applications. Polymers (Basel) 2020; 12:E3061. [PMID: 33371349 PMCID: PMC7767366 DOI: 10.3390/polym12123061] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Biopolymer coatings exhibit outstanding potential in various biomedical applications, due to their flexible functionalization. In this review, we have discussed the latest developments in biopolymer coatings on various substrates and nanoparticles for improved tissue engineering and drug delivery applications, and summarized the latest research advancements. Polymer coatings are used to modify surface properties to satisfy certain requirements or include additional functionalities for different biomedical applications. Additionally, polymer coatings with different inorganic ions may facilitate different functionalities, such as cell proliferation, tissue growth, repair, and delivery of biomolecules, such as growth factors, active molecules, antimicrobial agents, and drugs. This review primarily focuses on specific polymers for coating applications and different polymer coatings for increased functionalization. We aim to provide broad overview of latest developments in the various kind of biopolymer coatings for biomedical applications, in order to highlight the most important results in the literatures, and to offer a potential outline for impending progress and perspective. Some key polymer coatings were discussed in detail. Further, the use of polymer coatings on nanomaterials for biomedical applications has also been discussed, and the latest research results have been reported.
Collapse
Affiliation(s)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
28
|
Magnetic Nanoparticle-Based Drug Delivery Approaches for Preventing and Treating Biofilms in Cystic Fibrosis. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilm-associated infections pose a huge burden on healthcare systems worldwide, with recurrent lung infections occurring due to the persistence of biofilm bacteria populations. In cystic fibrosis (CF), thick viscous mucus acts not only as a physical barrier, but also serves as a nidus for infection. Increased antibiotic resistance in the recent years indicates that current therapeutic strategies aimed at biofilm-associated infections are “failing”, emphasizing the need to develop new and improved drug delivery systems with higher efficacy and efficiency. Magnetic nanoparticles (MNPs) have unique and favourable properties encompassing biocompatibility, biodegradability, magnetic and heat-mediated characteristics, making them suitable drug carriers. Additionally, an external magnetic force can be applied to enhance drug delivery to target sites, acting as “nano-knives”, cutting through the bacterial biofilm layer and characteristically thick mucus in CF. In this review, we explore the multidisciplinary approach of using current and novel MNPs as vehicles of drug delivery. Although many of these offer exciting prospects for future biofilm therapeutics, there are also major challenges of this emerging field that need to be addressed.
Collapse
|
29
|
Gauger AJ, Hershberger KK, Bronstein LM. Theranostics Based on Magnetic Nanoparticles and Polymers: Intelligent Design for Efficient Diagnostics and Therapy. Front Chem 2020; 8:561. [PMID: 32733850 PMCID: PMC7359411 DOI: 10.3389/fchem.2020.00561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Theranostics is a fast-growing field due to demands for new, efficient therapeutics which could be precisely delivered to the target site using multimodal imaging with enhancing auxiliary actions. In this review article we discuss theranostic nanoplatforms containing polymers and magnetic nanoparticles along with other components. Magnetic nanoparticles allow for both diagnostic and therapeutic (hyperthermia) capabilities, while polymers can be reservoirs for drugs and are easily functionalized for cell targeting. We focus on the most important design strategies to achieve optimal theranostic effects as well as the roles of different components included in theranostics, reviewing the literature from the last 5 years.
Collapse
Affiliation(s)
- Andrew J. Gauger
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| | | | - Lyudmila M. Bronstein
- Department of Chemistry, Indiana University, Bloomington, IN, United States
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
30
|
Calderan L, Malatesta M. Imaging techniques in nanomedical research. Eur J Histochem 2020; 64. [PMID: 32613820 PMCID: PMC7341075 DOI: 10.4081/ejh.2020.3151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
About twenty years ago, nanotechnology began to be applied to biomedical issues giving rise to the research field called nanomedicine. Thus, the study of the interactions between nanomaterials and the biological environment became of primary importance in order to design safe and effective nanoconstructs suitable for diagnostic and/or therapeutic purposes. Consequently, imaging techniques have increasingly been used in the production, characterisation and preclinical/clinical application of nanomedical tools. This work aims at making an overview of the microscopy and imaging techniques in vivo and in vitro in their application to nanomedical investigation, and to stress their contribution to this developing research field.
Collapse
Affiliation(s)
- Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| |
Collapse
|
31
|
Bhargava A, Mishra DK, Tiwari R, Lohiya NK, Goryacheva IY, Mishra PK. Immune cell engineering: opportunities in lung cancer therapeutics. Drug Deliv Transl Res 2020; 10:1203-1227. [PMID: 32172351 DOI: 10.1007/s13346-020-00719-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineered immune cells offer a prime therapeutic alternate for some aggressive and frequently occurring malignancies like lung cancer. These therapies were reported to result in tumor regression and overall improvement in patient survival. However, studies also suggest that the presence of cancer cell-induced immune-suppressive microenvironment, off-target toxicity, and difficulty in concurrent imaging are some prime impendent in the success of these approaches. The present article reviews the need and significance of the currently available immune cell-based strategies for lung cancer therapeutics. It also showcases the utility of incorporating nanoengineered strategies and details the available formulations of nanocarriers. In last, it briefly discussed the existing methods for nanoparticle fuctionalization and challenges in translating basic research to the clinics. Graphical Abstract.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russian Federation
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
32
|
Afzal M, Ameeduzzafar, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, Kumar V, Kamal MA, Nadeem MS, Aslam M, Anwar F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin Cancer Biol 2019; 69:279-292. [PMID: 31870940 DOI: 10.1016/j.semcancer.2019.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Amongst the various types of cancer, breast cancer is a highly heterogeneous disease and known as the leading cause of death among women globally. The extensive interdisciplinary investigation in nanotechnology and cancer biomedical research has been evolved over the years for its effective treatment. However, the advent of chemotherapeutic resistance in breast cancer is one of the major confront researchers are facing in achieving successful chemotherapy. Research in the area of cancer nanotechnology over the years have now been revolutionized through the development of smart polymers, lipids, inorganic materials and eventually their surface-engineering with targeting ligands. Moreover, nanotechnology further extended and brings in the notice the new theranostic approach which combining the therapy and imaging simultaneously. Currently, research is being envisaged in the area of novel nano-pharmaceutical design viz. liposome, nanotubes, polymer lipid hybrid system, which focuses to make the chemotherapy curative and long-lasting. In this review, we aimed to discuss the recent advancement of different surface-engineered/targeted nanomedicines that improved the drug efficacy in breast cancer.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | - Ameeduzzafar
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | | | | | - Fahad A Al-Abassi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Natural Product Drug Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Aslam
- Statistics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.
| |
Collapse
|
33
|
Li X, Wei Z, Li B, Li J, Lv H, Wu L, Zhang H, Yang B, Zhu M, Jiang J. In vivo migration of Fe 3O 4@polydopamine nanoparticle-labeled mesenchymal stem cells to burn injury sites and their therapeutic effects in a rat model. Biomater Sci 2019; 7:2861-2872. [PMID: 31070196 DOI: 10.1039/c9bm00242a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising therapeutic strategy for tissue regeneration and repair. However, efficient targeted delivery to specific tissues remains an open challenge. Here, we non-invasively monitored the migration of MSCs labeled with Fe3O4@polydopamine nanoparticles (Fe3O4@PDA NPs) toward laser burn injury sites in a living rat model and evaluated the effects of the labeled MSCs at the injury site. The Fe3O4@PDA NPs could be effectively incorporated into the MSCs without any negative effects on stem cell properties. Furthermore, they enhanced the migration ability of the MSCs by up-regulating the expression level of C-X-C chemokine receptor type 4 (CXCR4). They also increased the secretion of some cytokines and the expression of healing-related genes in comparison with unlabeled MSCs. Labeled MSCs were intravenously administered into injured rats, and live imaging was performed to monitor MSC migration. Fluorescent signals of the labeled MSCs appeared at burn injury lesions 1 day after injection and then gradually increased up to 7 days. After 7 days, the group injected with the labeled MSCs showed less inflammation compared with those injected with the unlabeled MSCs. Additionally, the labeled MSC group showed increased cytokines and reduced pro-inflammatory factors compared with the unlabeled MSC group. The Fe3O4@PDA NPs enhanced stromal cell-derived factor-1/CXCR4-mediated MSC migration in vivo. Thus, we demonstrated the safety, feasibility, and potential efficacy of using the Fe3O4@PDA NPs for optimizing MSC-based therapeutic strategies for burn wound healing.
Collapse
Affiliation(s)
- Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rajitha B, Malla RR, Vadde R, Kasa P, Prasad GLV, Farran B, Kumari S, Pavitra E, Kamal MA, Raju GSR, Peela S, Nagaraju GP. Horizons of nanotechnology applications in female specific cancers. Semin Cancer Biol 2019; 69:376-390. [PMID: 31301361 DOI: 10.1016/j.semcancer.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022]
Abstract
Female-specific cancers are the most common cancers in women worldwide. Early detection methods remain unavailable for most of these cancers, signifying that most of them are diagnosed at later stages. Furthermore, current treatment options for most female-specific cancers are surgery, radiation and chemotherapy. Although important milestones in molecularly targeted approaches have been achieved lately, current therapeutic strategies for female-specific cancers remain limited, ineffective and plagued by the emergence of chemoresistance, which aggravates prognosis. Recently, the application of nanotechnology to the medical field has allowed the development of novel nano-based approaches for the management and treatment of cancers, including female-specific cancers. These approaches promise to improve patient survival rates by reducing side effects, enabling selective delivery of drugs to tumor tissues and enhancing the uptake of therapeutic compounds, thus increasing anti-tumor activity. In this review, we focus on the application of nano-based technologies to the design of novel and innovative diagnostic and therapeutic strategies in the context of female-specific cancers, highlighting their potential uses and limitations.
Collapse
Affiliation(s)
- Balney Rajitha
- Department of Pathology, WellStar Hospital, Marietta, GA, 30060, USA
| | - Rama Rao Malla
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, AP, 516003, India
| | - Prameswari Kasa
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, TS, 500004, India
| | | | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Seema Kumari
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon 22212, Republic of Korea
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, AP, 532410, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
35
|
Smith D, Herman C, Razdan S, Abedin MR, Stoecker WV, Barua S. Microparticles for Suspension Culture of Mammalian Cells. ACS APPLIED BIO MATERIALS 2019; 2:2791-2801. [DOI: 10.1021/acsabm.9b00215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel Smith
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Chase Herman
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Sidharth Razdan
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Muhammad Raisul Abedin
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | | | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
36
|
Zhao L, Li Y, Zhu J, Sun N, Song N, Xing Y, Huang H, Zhao J. Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. J Nanobiotechnology 2019; 17:30. [PMID: 30782154 PMCID: PMC6380014 DOI: 10.1186/s12951-019-0462-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Malignant glioma is the most common and deadliest brain cancer due to the obstacle from indistinct tumor margins for surgical excision and blood brain barrier (BBB) for chemotherapy. Here, we designed and prepared multifunctional polyethylenimine-entrapped gold nanoparticles (Au PENPs) for targeted SPECT/CT imaging and radionuclide therapy of glioma. RESULTS Polyethylenimine was selected as a template for sequential modification with polyethylene glycol (PEG), glioma-specific peptide (chlorotoxin, CTX) and 3-(4-hydroxyphenyl)propionic acid-OSu (HPAO), and were then used to entrap gold nanoparticles (Au NPs). After 131I radiolabeling via HPAO, the 131I-labeded CTX-functionalized Au PENPs as a multifunctional glioma-targeting nanoprobe were generated. Before 131I radiolabeling, the CTX-functionalized Au PENPs exhibited a uniform size distribution, favorable X-ray attenuation property, desired water solubility, and cytocompatibility in the given Au concentration range. The 131I-labeled CTX-functionalized Au PENPs showed high radiochemical purity and stability, and could be used as a nanoprobe for the targeted SPECT/CT imaging and radionuclide therapy of glioma cells in vitro and in vivo in a subcutaneous tumor model. Owing to the unique biological properties of CTX, the developed nanoprobe was able to cross the BBB and specifically target glioma cells in a rat intracranial glioma model. CONCLUSIONS Our results indicated that the formed nanosystem had the significant potential to be applied for glioma targeted diagnosis and therapy.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yujie Li
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jingyi Zhu
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Na Sun
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Ningning Song
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - He Huang
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|