1
|
Morena F, Argentati C, Caponi S, Lüchtefeld I, Emiliani C, Vassalli M, Martino S. Piezo1 - Serine/threonine-protein phosphatase 2A - Cofilin1 biochemical mechanotransduction axis controls F-actin dynamics and cell migration. Heliyon 2024; 10:e32458. [PMID: 38933959 PMCID: PMC11201121 DOI: 10.1016/j.heliyon.2024.e32458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This study sheds light on a ground-breaking biochemical mechanotransduction pathway and reveals how Piezo1 channels orchestrate cell migration. We observed an increased cell migration rate in HEK293T (HEK) cells treated with Yoda1, a Piezo1 agonist, or in HEK cells overexpressing Piezo1 (HEK + P). Conversely, a significant reduction in cell motility was observed in HEK cells treated with GsMTx4 (a channel inhibitor) or upon silencing Piezo1 (HEK-P). Our findings establish a direct correlation between alterations in cell motility, Piezo1 expression, abnormal F-actin microfilament dynamics, and the regulation of Cofilin1, a protein involved in severing F-actin microfilaments. Here, the conversion of inactive pCofilin1 to active Cofilin1, mediated by the serine/threonine-protein phosphatase 2A catalytic subunit C (PP2AC), resulted in increased severing of F-actin microfilaments and enhanced cell migration in HEK + P cells compared to HEK controls. However, this effect was negligible in HEK-P and HEK cells transfected with hsa-miR-133b, which post-transcriptionally inhibited PP2AC mRNA expression. In summary, our study suggests that Piezo1 regulates cell migration through a biochemical mechanotransduction pathway involving PP2AC-mediated Cofilin1 dephosphorylation, leading to changes in F-actin microfilament dynamics.
Collapse
Affiliation(s)
- Francesco Morena
- Department of Chemistry, Biology, and Biotechnologies, Via del Giochetto, University of Perugia, Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology, and Biotechnologies, Via del Giochetto, University of Perugia, Perugia, Italy
| | - Silvia Caponi
- CNR, Istituto Officina dei Materiali-IOM c/o Dipartimento di Fisica e Geologia, University of Perugia, Perugia, Italy
| | - Ines Lüchtefeld
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, Switzerland
| | - Carla Emiliani
- Department of Chemistry, Biology, and Biotechnologies, Via del Giochetto, University of Perugia, Perugia, Italy
| | | | - Sabata Martino
- Department of Chemistry, Biology, and Biotechnologies, Via del Giochetto, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Lüchtefeld I, Pivkin IV, Gardini L, Zare-Eelanjegh E, Gäbelein C, Ihle SJ, Reichmuth AM, Capitanio M, Martinac B, Zambelli T, Vassalli M. Dissecting cell membrane tension dynamics and its effect on Piezo1-mediated cellular mechanosensitivity using force-controlled nanopipettes. Nat Methods 2024; 21:1063-1073. [PMID: 38802520 PMCID: PMC11166569 DOI: 10.1038/s41592-024-02277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.
Collapse
Affiliation(s)
- Ines Lüchtefeld
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland.
| | - Igor V Pivkin
- Institute of Computing, Università della Svizzera Italiana, Lugano, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Lucia Gardini
- National Institute of Optics, National Research Council, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy
| | | | | | - Stephan J Ihle
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland
| | - Andreas M Reichmuth
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland
| | - Marco Capitanio
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy
- Physics and Astronomy Department, University of Florence, Florence, Italy
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Tomaso Zambelli
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland.
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Markova O, Clanet C, Husson J. Quantifying both viscoelasticity and surface tension: Why sharp tips overestimate cell stiffness. Biophys J 2024; 123:210-220. [PMID: 38087780 PMCID: PMC10808041 DOI: 10.1016/j.bpj.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/10/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Quantifying the mechanical properties of cells is important to better understand how mechanics constrain cellular processes. Furthermore, because pathologies are usually paralleled by altered cell mechanical properties, mechanical parameters can be used as a novel way to characterize the pathological state of cells. Key features used in models are cell tension, cell viscoelasticity (representing the average of the cell bulk), or a combination of both. It is unclear which of these features is the most relevant or whether both should be included. To clarify this, we performed microindentation experiments on cells with microindenters of various tip radii, including micrometer-sized microneedles. We obtained different cell-indenter contact radii and measured the corresponding contact stiffness. We derived a model predicting that this contact stiffness should be an affine function of the contact radius and that, at vanishing contact radius, the cell stiffness should be equal to the cell tension multiplied by a constant. When microindenting leukocytes and both adherent and trypsinized adherent cells, the contact stiffness was indeed an affine function of the contact radius. For leukocytes, the deduced surface tension was consistent with that measured using micropipette aspiration. For detached endothelial cells, agreement between microindentation and micropipette aspiration was better when considering these as only viscoelastic when analyzing micropipette aspiration experiments. This work suggests that indenting cells with sharp tips but neglecting the presence of surface tension leads to an effective elastic modulus whose origin is in fact surface tension. Accordingly, using sharp tips when microindenting a cell is a good way to directly measure its surface tension without the need to let the viscoelastic modulus relax.
Collapse
Affiliation(s)
- Olga Markova
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Christophe Clanet
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
4
|
Feng Y, Li M. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements. NANOSCALE 2023; 15:13346-13358. [PMID: 37526589 DOI: 10.1039/d3nr02404k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Mechanical cues play a crucial role in regulating physiological and pathological processes, and atomic force microscopy (AFM) has become an important and standard tool for measuring the mechanical properties of single cells. In particular, providing a capability to manipulate cells in a three-dimensional (3D) space benefits enhancing the applications of AFM measurements in cell biology. Here, we present the complementary integration of AFM and micropipette micromanipulation, which allows precise 3D manipulations and nanomechanical measurements of single living cells. A micropipette micromanipulation system under the guidance of optical microscopy was established to isolate single living cells, and polydimethylsiloxane (PDMS) micropillar substrates were used to physically immobilize the isolated living cells for downstream AFM detection. The viscoelastic properties (Young's modulus, relaxation time, viscosity) of cells were quantitatively measured by AFM-based indentation assay. The effectiveness of micropipette-assisted AFM in single-cell analysis was confirmed on both living animal suspended cells and living animal adherent cells, showing dramatic changes in cell mechanics in different states and revealing the dynamics of single cells grown on micropillar arrays. The study demonstrates the great potential of a micropipette to aid AFM in single-cell manipulations for better accessing the mechanical cues involved in cellular processes, which will allow additional studies of single-cell mechanics and will benefit the field of mechanobiology.
Collapse
Affiliation(s)
- Yaqi Feng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Marshall LJ, Wallace M, Mahmoudi N, Ciccone G, Wilson C, Vassalli M, Adams DJ. Hierarchical Composite Self-Sorted Supramolecular Gel Noodles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211277. [PMID: 36720202 PMCID: PMC11475401 DOI: 10.1002/adma.202211277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Indexed: 05/17/2023]
Abstract
Multicomponent supramolecular systems can be used to achieve different properties and new behaviors compared to their corresponding single component systems. Here, a two-component system is used, showing that a non-gelling component modifies the assembly of the gelling component, allowing access to co-assembled structures that cannot be formed from the gelling component alone. The systems are characterized across multiple length scales, from the molecular level by NMR and CD spectroscopy to the microstructure level by SANS and finally to the material level using nanoindentation and rheology. By exploiting the enhanced mechanical properties achieved through addition of the second component, multicomponent noodles are formed with superior mechanical properties to those formed by the single-component system. Furthermore, the non-gelling component can be triggered to crystallize within the multicomponent noodles, allowing the preparation of new types of hierarchical composite noodles.
Collapse
Affiliation(s)
| | - Matthew Wallace
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Najet Mahmoudi
- ISIS Neutron and Muon SourceRutherford Appleton LaboratoryDidcotOX11 0QXUK
| | - Giuseppe Ciccone
- Centre for the Cellular MicroenvironmentAdvanced Research CentreUniversity of GlasgowGlasgowG11 6EWUK
| | - Claire Wilson
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Massimo Vassalli
- Centre for the Cellular MicroenvironmentAdvanced Research CentreUniversity of GlasgowGlasgowG11 6EWUK
| | - Dave J. Adams
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
6
|
Ross EA, Turner LA, Donnelly H, Saeed A, Tsimbouri MP, Burgess KV, Blackburn G, Jayawarna V, Xiao Y, Oliva MAG, Willis J, Bansal J, Reynolds P, Wells JA, Mountford J, Vassalli M, Gadegaard N, Oreffo ROC, Salmeron-Sanchez M, Dalby MJ. Nanotopography reveals metabolites that maintain the immunomodulatory phenotype of mesenchymal stromal cells. Nat Commun 2023; 14:753. [PMID: 36765065 PMCID: PMC9918539 DOI: 10.1038/s41467-023-36293-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that are of considerable clinical potential in transplantation and anti-inflammatory therapies due to their capacity for tissue repair and immunomodulation. However, MSCs rapidly differentiate once in culture, making their large-scale expansion for use in immunomodulatory therapies challenging. Although the differentiation mechanisms of MSCs have been extensively investigated using materials, little is known about how materials can influence paracrine activities of MSCs. Here, we show that nanotopography can control the immunomodulatory capacity of MSCs through decreased intracellular tension and increasing oxidative glycolysis. We use nanotopography to identify bioactive metabolites that modulate intracellular tension, growth and immunomodulatory phenotype of MSCs in standard culture and during larger scale cell manufacture. Our findings demonstrate an effective route to support large-scale expansion of functional MSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Ewan A Ross
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Lesley-Anne Turner
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Hannah Donnelly
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Anwer Saeed
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Monica P Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Karl V Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, Bearsden, Glasgow, G61 1QH, UK
| | - Gavin Blackburn
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, Bearsden, Glasgow, G61 1QH, UK
| | - Vineetha Jayawarna
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Yinbo Xiao
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Mariana A G Oliva
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Jennifer Willis
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Jaspreet Bansal
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Paul Reynolds
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Julia A Wells
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Joanne Mountford
- Scottish National Blood Transfusion Service, Advanced Therapeutics, Jack Copland Centre, 52 Research Avenue North, Heriot Watt Research Park, Edinburgh, EH14 4BE, UK
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK.
| |
Collapse
|
7
|
Senigagliesi B, Samperi G, Cefarin N, Gneo L, Petrosino S, Apollonio M, Caponnetto F, Sgarra R, Collavin L, Cesselli D, Casalis L, Parisse P. Triple negative breast cancer-derived small extracellular vesicles as modulator of biomechanics in target cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102582. [PMID: 35817390 DOI: 10.1016/j.nano.2022.102582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicle (EV) mediated communication has recently been proposed as one of the pivotal routes in the development of cancer metastasis. EVs are nano-sized vesicles swapped between cells, carrying a biologically active content that can promote tumor-induced immune suppression, metastasis and angiogenesis. Thus, EVs constitute a potential target in cancer therapy. However, their role in triggering the premetastatic niche and in tumor spreading is still unclear. Here, we focused on the EV ability to modulate the biomechanical properties of target cells, known to play a crucial role in metastatic spreading. To this purpose, we isolated and thoroughly characterized triple-negative breast cancer (TNBC)-derived small EVs. We then evaluated variations in the mechanical properties (cell stiffness, cytoskeleton/nuclear/morphology and Yap activity rearrangements) of non-metastatic breast cancer MCF7 cells upon EV treatment. Our results suggest that TNBC-derived small EVs are able to directly modify MCF7 cells by inducing a decrease in cell stiffness, rearrangements in cytoskeleton, focal adhesions and nuclear/cellular morphology, and an increase in Yap downstream gene expression. Testing the biomechanical response of cells after EV addition might represent a new functional assay in metastatic cancer framework that can be exploited for future application both in diagnosis and in therapy.
Collapse
Affiliation(s)
- Beatrice Senigagliesi
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy; Elettra-Sincrotrone Trieste S.C.p.A, Trieste, Italy.
| | | | - Nicola Cefarin
- Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, Trieste, Italy
| | | | - Sara Petrosino
- Telethon Institute of Genetics and Medicine, Naples, Italy.
| | - Mattia Apollonio
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Daniela Cesselli
- Pathology Department, University Hospital of Udine, Udine, Italy; Department of Medicine, University of Udine, Udine, Italy.
| | | | - Pietro Parisse
- Elettra-Sincrotrone Trieste S.C.p.A, Trieste, Italy; Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, Trieste, Italy.
| |
Collapse
|
8
|
Kołodziejczyk AM, Grala MM, Zimon A, Białkowska K, Walkowiak B, Komorowski P. Investigation of HUVEC response to exposure to PAMAM dendrimers – changes in cell elasticity and vesicles release. Nanotoxicology 2022; 16:375-392. [DOI: 10.1080/17435390.2022.2097138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Agnieszka Maria Kołodziejczyk
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland
| | | | - Aleksandra Zimon
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
| | - Kamila Białkowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bogdan Walkowiak
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Piotr Komorowski
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
9
|
Senigagliesi B, Bedolla DE, Birarda G, Zanetti M, Lazzarino M, Vaccari L, Parisse P, Casalis L. Subcellular elements responsive to the biomechanical activity of triple-negative breast cancer-derived small extracellular vesicles. Biomol Concepts 2022; 13:322-333. [PMID: 36482512 DOI: 10.1515/bmc-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) stands out for its aggressive, fast spread, and highly metastatic behavior and for being unresponsive to the classical hormonal therapy. It is considered a disease with a poor prognosis and limited treatment options. Among the mechanisms that contribute to TNBC spreading, attention has been recently paid to small extracellular vesicles (sEVs), nano-sized vesicles that by transferring bioactive molecules to recipient cells play a crucial role in the intercellular communication among cancer, healthy cells, and tumor microenvironment. In particular, TNBC-derived sEVs have been shown to alter proliferation, metastasis, drug resistance, and biomechanical properties of target cells. To shed light on the molecular mechanisms involved in sEVs mediation of cell biomechanics, we investigated the effects of sEVs on the main subcellular players, i.e., cell membrane, cytoskeleton, and nuclear chromatin organization. Our results unveiled that TNBC-derived sEVs are able to promote the formation and elongation of cellular protrusions, soften the cell body, and induce chromatin decondensation in recipient cells. In particular, our data suggest that chromatin decondensation is the main cause of the global cell softening. The present study added new details and unveiled a novel mechanism of activity of the TNBC-derived sEVs, providing information for the efficient translation of sEVs to cancer theranostics.
Collapse
Affiliation(s)
- Beatrice Senigagliesi
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.,Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Diana E Bedolla
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.,Area Science Park, Padriciano 99, Trieste, Italy
| | | | - Michele Zanetti
- Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, CNR-IOM, Trieste, Italy.,Department of Physics, University of Trieste, Trieste, Italy
| | - Marco Lazzarino
- Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, CNR-IOM, Trieste, Italy
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.,Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, CNR-IOM, Trieste, Italy
| | | |
Collapse
|
10
|
Non-contact elastography methods in mechanobiology: a point of view. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 51:99-104. [PMID: 34463775 PMCID: PMC8964566 DOI: 10.1007/s00249-021-01567-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
In recent decades, mechanobiology has emerged as a novel perspective in the context of basic biomedical research. It is now widely recognized that living cells respond not only to chemical stimuli (for example drugs), but they are also able to decipher mechanical cues, such as the rigidity of the underlying matrix or the presence of shear forces. Probing the viscoelastic properties of cells and their local microenvironment with sub-micrometer resolution is required to study this complex interplay and dig deeper into the mechanobiology of single cells. Current approaches to measure mechanical properties of adherent cells mainly rely on the exploitation of miniaturized indenters, to poke single cells while measuring the corresponding deformation. This method provides a neat implementation of the everyday approach to measure mechanical properties of a material, but it typically results in a very low throughput and invasive experimental protocol, poorly translatable towards three-dimensional living tissues and biological constructs. To overcome the main limitations of nanoindentation experiments, a radical paradigm change is foreseen, adopting next generation contact-less methods to measure mechanical properties of biological samples with sub-cell resolution. Here we briefly introduce the field of single cell mechanical characterization, and we concentrate on a promising high resolution optical elastography technique, Brillouin spectroscopy. This non-contact technique is rapidly emerging as a potential breakthrough innovation in biomechanics, but the application to single cells is still in its infancy.
Collapse
|
11
|
Vaiani L, Migliorini E, Cavalcanti-Adam EA, Uva AE, Fiorentino M, Gattullo M, Manghisi VM, Boccaccio A. Coarse-grained elastic network modelling: A fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111860. [PMID: 33579492 DOI: 10.1016/j.msec.2020.111860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
Abstract
The knowledge of the mechanical properties is the starting point to study the mechanobiology of mesenchymal stem cells and to understand the relationships linking biophysical stimuli to the cellular differentiation process. In experimental biology, Atomic Force Microscopy (AFM) is a common technique for measuring these mechanical properties. In this paper we present an alternative approach for extracting common mechanical parameters, such as the Young's modulus of cell components, starting from AFM nanoindentation measurements conducted on human mesenchymal stem cells. In a virtual environment, a geometrical model of a stem cell was converted in a highly deformable Coarse-Grained Elastic Network Model (CG-ENM) to reproduce the real AFM experiment and retrieve the related force-indentation curve. An ad-hoc optimization algorithm perturbed the local stiffness values of the springs, subdivided in several functional regions, until the computed force-indentation curve replicated the experimental one. After this curve matching, the extraction of global Young's moduli was performed for different stem cell samples. The algorithm was capable to distinguish the material properties of different subcellular components such as the cell cortex and the cytoskeleton. The numerical results predicted with the elastic network model were then compared to those obtained from hertzian contact theory and Finite Element Method (FEM) for the same case studies, showing an optimal agreement and a highly reduced computational cost. The proposed simulation flow seems to be an accurate, fast and stable method for understanding the mechanical behavior of soft biological materials, even for subcellular levels of detail. Moreover, the elastic network modelling allows shortening the computational times to approximately 33% of the time required by a traditional FEM simulation performed using elements with size comparable to that of springs.
Collapse
Affiliation(s)
- L Vaiani
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | | | - E A Cavalcanti-Adam
- Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; Heidelberg University, D-69120 Heidelberg, Germany
| | - A E Uva
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - M Fiorentino
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - M Gattullo
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - V M Manghisi
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - A Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy.
| |
Collapse
|