1
|
Prieto-Montero R, Tejón M, Albaya A, Arbeloa T, Chiara JL, Fanarraga ML, Martínez-Martínez V. Targeted photodynamic therapy: Gluconamide-modified cellulose nanocrystals as efficient photosensitizer delivery platforms against Gram-negative bacteria. Carbohydr Polym 2025; 348:122784. [PMID: 39562063 DOI: 10.1016/j.carbpol.2024.122784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 11/21/2024]
Abstract
Antimicrobial Photodynamic Therapy (aPDT) is an emerging strategy against resistant pathogenic bacteria, a serious global health threat. We describe herein the efficient preparation of photosensitized cellulose nanocrystals (CNC) using trialkoxysilane linkers for covalent incorporation of anionic (Rose Bengal: RB) and cationic (Toluidine blue O: TBO) photosensitizers (PSs), along with a N-alkyl-d-gluconamide ligand to specifically target Escherichia coli, as model nanosystems for aPDT. The synthesized nanomaterials exhibited high PS loading, high singlet oxygen quantum yield comparable to the solution, and good stability in aqueous media with minimal PS release under physiological conditions. Experimental viability tests in bacteria demonstrated their capability for aPDT, mitigating the inherent cytotoxicity of both PSs under dark conditions while retaining high phototoxicity against E. coli bacteria. The presence of gluconamide further enhanced photoactivity, highlighting the importance of surface functionalization with a specific bacterial ligand for improved efficacy. The CNC-supported RB system exhibited sufficient fluorescence for tracking via fluorescence microscopy, making it suitable for theranostics, integrating bioimaging and aPDT. Overall, photosensitized CNCs hold great promise as nanocarriers for combating topical infections caused by Gram-negative bacteria, addressing the urgent need for novel therapeutic strategies in infectious disease management while also mitigating antimicrobial resistance.
Collapse
Affiliation(s)
- Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain; Grupo de Nanomedicina-IDIVAL, Universidad de Cantabria, Herrera Oria s/n, CP 39011 Santander, Spain
| | - Maite Tejón
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Andrea Albaya
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Teresa Arbeloa
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Jose Luis Chiara
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Mónica L Fanarraga
- Grupo de Nanomedicina-IDIVAL, Universidad de Cantabria, Herrera Oria s/n, CP 39011 Santander, Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain.
| |
Collapse
|
2
|
Lee SY, Choi JW, Lee TG, Heo MB, Son JG. Influence of albumin concentration on surface characteristics and cellular responses in the pre-incubation of multi-walled carbon nanotubes. NANOSCALE ADVANCES 2024:d4na00743c. [PMID: 39398624 PMCID: PMC11465410 DOI: 10.1039/d4na00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Reliable characterization of protein coronas (PCs) that form when nanomaterials are introduced into biological fluids is a critical step in the development of safe and efficient nanomedicine. We observed that bovine serum albumin (BSA)-coated multi-walled carbon nanotubes (MWCNTs) do not induce cytotoxicity, but have different cellular uptake rates depending on the BSA pretreatment concentration. To determine how these slight differences affect A549 cell responses and intracellular changes, we conducted spectroscopic (circular dichroism and Fourier-transform infrared) and spectrometric (nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses. The various characterization techniques conducted in this study reveal the following. (i) The composition ratio of PCs on MWCNTs differs depending on the BSA concentration. (ii) Analysis of the secondary structure of the proteins revealed that the α-helix structure increased with increasing BSA concentration. (iii) Proteomic analysis showed that different biological pathways were activated at levels higher and lower than 5 mg mL-1. Such combined spectroscopic and spectrometric approaches provide an integrated understanding of PC composition as well as how nano/bio-interface states are linked to cellular-level responses. Our results can support reliable and practical applications of nanomedicine development.
Collapse
Affiliation(s)
- Sun Young Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Jae Won Choi
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
| | - Tae Geol Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Min Beom Heo
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Jin Gyeong Son
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| |
Collapse
|
3
|
Dominguez J, Holmes SK, Bartone RD, Tisch LJ, Tighe RM, Bonner JC, Payne CK. House Dust Mite Extract Forms a Der p 2 Corona on Multi-Walled Carbon Nanotubes: Implications for Allergic Airway Disease. ENVIRONMENTAL SCIENCE. NANO 2024; 11:324-335. [PMID: 38577066 PMCID: PMC10990074 DOI: 10.1039/d3en00666b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Multi-walled carbons nanotubes (MWCNTs) are used in materials for the construction, automotive, and aerospace industries. Workers and consumers are exposed to these materials via inhalation. Existing recommended exposure limits are based on MWCNT exposures that do not take into account more realistic co-exposures. Our goal was to understand how a common allergen, house dust mites, interacts with pristine MWCNTs and lung fluid proteins. We used gel electrophoresis, western blotting, and proteomics to characterize the composition of the allergen corona formed from house dust mite extract on the surface of MWCNTs. We found that the corona is dominated by der p 2, a protein associated with human allergic responses to house dust mites. Der p 2 remains adsorbed on the surface of the MWCNTs following subsequent exposures to lung fluid proteins. The high concentration of der p 2, localized on surface of MWCNTs, has important implications for house dust mite-induced allergies and asthma. This research provides a detailed characterization of the complex house dust mite-lung fluid protein coronas for future cellular and in vivo studies. These studies will help to address the molecular and biochemical mechanisms underlying the exacerbation of allergic lung disease by nanomaterials.
Collapse
Affiliation(s)
- Judith Dominguez
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27708
| | - Samantha K. Holmes
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27708
| | - Ryan D. Bartone
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA 27695
| | - Logan J. Tisch
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA 27695
| | - Robert M. Tighe
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - James C. Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA 27695
| | - Christine K. Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27708
| |
Collapse
|
4
|
Komane P, Kumar P, Choonara Y. Functionalised Carbon Nanotubes: Promising Drug Delivery Vehicles for Neurovascular Disorder Intervention. AAPS PharmSciTech 2023; 24:201. [PMID: 37783896 DOI: 10.1208/s12249-023-02651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Neurovascular diseases are linked to the brain's blood vessels. These disorders are complicated to treat due to the strict selective characteristics of the blood-brain barrier. Consequently, the potency of the pharmacological treatments for these conditions is immensely diminished, leading to a rise in neurovascular-associated morbidity and mortality. Carbon nanotubes are regarded as essential nanoparticles with a promise of treating neurovascular disorders. Current findings have demonstrated the effectiveness of carbon nanotubes as vehicles for ferrying drugs to the site of interest. This review accentuates the theoretical utilisation of carbon nanotubes as drug nanocarriers equipped with the penetrating capability to the blood-brain barrier for treating neurovascular disorders such as ischemic stroke. The success of the carbon nanotube system may result in the development of a new and highly relevant drug delivery procedure. This review will also cover carbon nanotube functionalisation for applications in the biomedical fields, toxicity, in vitro and in vivo drugs and biomolecule delivery, and the future outlook of carbon nanotubes.
Collapse
Affiliation(s)
- Patrick Komane
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, 2193, Parktown, South Africa
| | - Yahya Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, 2193, Parktown, South Africa
| |
Collapse
|
5
|
Pikula K, Johari SA, Santos-Oliveira R, Golokhvast K. The Comparative Toxic Impact Assessment of Carbon Nanotubes, Fullerene, Graphene, and Graphene Oxide on Marine Microalgae Porphyridium purpureum. TOXICS 2023; 11:491. [PMID: 37368591 DOI: 10.3390/toxics11060491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The growing production and application of carbon-based nanomaterials (CNMs) represent possible risks for aquatic systems. However, the variety of CNMs with different physical and chemical properties and different morphology complicate the understanding of their potential toxicity. This paper aims to evaluate and compare the toxic impact of the four most common CNMs, namely multiwalled carbon nanotubes (CNTs), fullerene (C60), graphene (Gr), and graphene oxide (GrO) on the marine microalgae Porphyridium purpureum. The microalgae cells were exposed to the CNMs for 96 h and measured by flow cytometry. Based on the obtained results, we determined no observed effect level (NOEL), and calculated EC10 and EC50 concentrations for growth rate inhibition, esterase activity, membrane potential, and reactive oxygen species (ROS) generation changes for each tested CNM. According to the sensitivity (growth rate inhibition) of P. purpureum, the used CNMs can be listed in the following order (EC50 in mg/L, 96 h): CNTs (2.08) > GrO (23.37) > Gr (94.88) > C60 (>131.0). The toxicity of CNTs was significantly higher than the toxic effect of the other used CNMs, and only this sample caused an increase in ROS generation in microalgae cells. This effect was apparently caused by the high affinity between particles and microalgae associated with the presence of exopolysaccharide coverage on P. purpureum cells.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St, Sanandaj 66177-15175, Iran
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Hélio de Almeida 75, Rio de Janeiro 21941906, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro State University, R. São Francisco Xavier, 524, Rio de Janeiro 23070200, Brazil
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
- Siberian Federal Scientific Center of Agrobiotechnology RAS, Centralnaya Str., Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
6
|
Heide F, Stetefeld J. A Structural Analysis of Proteinaceous Nanotube Cavities and Their Applications in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4080. [PMID: 36432365 PMCID: PMC9698212 DOI: 10.3390/nano12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Protein nanotubes offer unique properties to the materials science field that allow them to fulfill various functions in drug delivery, biosensors and energy storage. Protein nanotubes are chemically diverse, modular, biodegradable and nontoxic. Furthermore, although the initial design or repurposing of such nanotubes is highly complex, the field has matured to understand underlying chemical and physical properties to a point where applications are successfully being developed. An important feature of a nanotube is its ability to bind ligands via its internal cavities. As ligands of interest vary in size, shape and chemical properties, cavities have to be able to accommodate very specific features. As such, understanding cavities on a structural level is essential for their effective application. The objective of this review is to present the chemical and physical diversity of protein nanotube cavities and highlight their potential applications in materials science, specifically in biotechnology.
Collapse
Affiliation(s)
- Fabian Heide
- Correspondence: (F.H.); (J.S.); Tel.: +1-(204)-332-0853 (F.H.); +1-(204)-474-9731 (J.S.)
| | - Jörg Stetefeld
- Correspondence: (F.H.); (J.S.); Tel.: +1-(204)-332-0853 (F.H.); +1-(204)-474-9731 (J.S.)
| |
Collapse
|