1
|
Li Q, Guo R, Zhao C, Chen X, Wang H, Shen C. End Plate Chondrocyte-Derived Exosomal miR-133a-3p Alleviates Intervertebral Disc Degeneration by Targeting the NF-κB Signaling Pathway through the miR-133a-3p/MAML1 Axis. Mol Pharm 2025. [PMID: 39898539 DOI: 10.1021/acs.molpharmaceut.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Chondrocyte-derived exosomes have shown efficacy in differentiating osteoarthritis-affected cartilage. Intervertebral disc degeneration (IVDD) and osteoarthritis often affect facet joints of the spine and show common epidemiological and pathophysiological characteristics. However, the potential of chondrocyte-derived exosomes for treating IVDD remains unclear. The present study aimed to confirm the effect of end plate chondrocyte-derived exosomes (EPC-Exo) on IVDD and elucidate the underlying mechanism. EPC-Exos were isolated and identified by ultracentrifugation, Western blotting, electron microscopy, and nanoparticle tracking analysis. In the in vitro, EPC-Exo uptake by nucleus pulposus (NP) cells reduced cell death by blocking the nuclear factor-κB (NF-κB) signaling pathway. In the in vivo study, EPC-Exos injected into rat intervertebral discs mitigated lipopolysaccharide-induced IVDD, as revealed by a decreased loss of disc height and improved magnetic resonance imaging findings and histological scores. Bioinformatics and sequencing analyses indicated that EPC-Exos alleviated IVDD through the miR-133a-3p/MAML1 axis. The present study suggests that EPC-Exos reduced IVDD incidence via the miR-133a-3p/MAML1 axis-mediated suppression of NF-κB signaling, which prevented the pyroptosis of NP cells.
Collapse
Affiliation(s)
- Qiuwei Li
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Ruocheng Guo
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Chenhao Zhao
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Xuewu Chen
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Wuhu, Anhui 241000, China
| | - Hong Wang
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Wuhu, Anhui 241000, China
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| |
Collapse
|
2
|
Gan Y, He J, Gong Y, Wu Z, Liang D, Shen G, Ren H, Jiang X, Cheng Z. Baicalein-loaded porous silk fibroin microspheres modulate the senescence of nucleus pulposus cells through the NF-κB signaling pathway. Colloids Surf B Biointerfaces 2025; 249:114537. [PMID: 39879672 DOI: 10.1016/j.colsurfb.2025.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Intervertebral disc degeneration (IVDD), an age-associated degenerative condition, significantly contributes to low back pain, thereby adversely affecting individual health and quality of life, while also imposing a substantial societal burden. Baicalein, a natural flavonoid derived from Scutellaria baicalensis Georgi, demonstrates a range of pharmacological activities, including antioxidant, anti-inflammatory, anti-tumor, and antibacterial properties. This positions it as a promising candidate for the treatment of IVDD through intradiscal drug delivery. However, local degenerative processes and the inherently low fluid exchange within the intervertebral disk are likely to affect drug retention. In this study, we developed baicalein-loaded porous silk fibroin microspheres to extend the drug release profile. Baicalein-loaded porous silk fibroin microspheres were prepared by electrostatic spraying. Subsequent characterization and evaluation of their intrinsic properties were conducted using nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), transmission electron microscopy(TEM), and fourier transform infrared spectroscopy (FTIR). The findings of our study demonstrated that baicalein-loaded porous silk fibroin microspheres exhibited a sustained drug release profile. Consequently, these microspheres effectively inhibited the senescence of nucleus pulposus cells (NPCs), which induced by Tert-butyl hydroperoxide (TBHP). Mechanistic investigation utilizing transcriptome sequencing revealed that the NF-κB signaling pathway is involved in the effects of baicalein-loaded porous silk fibroin microspheres. Furthermore, our findings demonstrated that the microspheres exhibited excellent biocompatibility in rats subcutaneous implantation model. Collectively, we developed a promising biomaterial for the treatment of IVDD, warranting further systematic preclinical investigation.
Collapse
Affiliation(s)
- Yanchi Gan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangxi University of Chinese Medicine, Nanning 530000, PR China
| | - Jiahui He
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510130, PR China
| | - Yan Gong
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zixian Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Gengyang Shen
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Hui Ren
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Zhaojun Cheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510130, PR China; Guangzhou University of Chinese Medicine Postdoctoral Research Station, Guangzhou 510130, PR China.
| |
Collapse
|
3
|
Yao J, Zu D, Dong Q, Xia J, Wang X, Guo J, Ma G, Wu B, Fang B. Functionalized Periosteum-Derived Microsphere-Hydrogel with Sequential Release of E7 Short Peptide/miR217 for Large Bone Defect Repairing. Biomater Res 2025; 29:0127. [PMID: 39780960 PMCID: PMC11704090 DOI: 10.34133/bmr.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Large bone defects are still a persistent challenge in orthopedics. The availability limitations and associated complications of autologous and allogeneic bone have prompted an increasing reliance on tissue engineering and regenerative medicine. In this study, we developed an injectable scaffold combining an acellular extracellular periosteal matrix hydrogel with poly(d,l-lactate-co-glycol-acetate) microspheres loaded with the E7 peptide and miR217 (miR217/E7@MP-GEL). Characterization of the composites included morphological analysis by scanning electron microscopy, degradation and swelling tests, in vitro and in vivo biological evaluation, and the biological activity evaluation of mesenchymal stem cells (MSCs) through their effects on cell recruitment, proliferation, and osteogenic differentiation. The designed hydrogels demonstrated good physical and chemical properties that are cytocompatible and suitable for cell recruitment. In vitro studies confirmed the high biological activity of the release agent, which markedly enhanced the proliferation and osteogenic differentiation of MSCs. In vivo application to a rat model of a femur defect exhibited a significant increase in bone volume and density over 7 weeks, resulting in enhanced bone regeneration. Acellular periosteum-based hydrogels combined with the E7 peptide and miR217-loaded poly(d,l-lactate-co-glycol-acetate) microspheres can promote effective bone regeneration through the recruitment, proliferation, and osteogenic differentiation of MSCs, which provides a promising approach for the treatment of large bone defects.
Collapse
Affiliation(s)
- Jun Yao
- Department of Orthopedic Surgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Dan Zu
- School of Life Sciences,
Tianjin University, Tianjin 300100, China
| | - Qi Dong
- Department of Spine Surgery, Honghui Hospital,
Xi’an Jiaotong University, Xi’an, Shaanxi 710054, China
| | - Jiajie Xia
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Xiaonan Wang
- Department of Pharmacy, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Jingjing Guo
- Department of Pharmacy, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Gaoxiang Ma
- Department of Orthopedic Surgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Bing Wu
- Department of Orthopedic Surgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing 312030, China
| | - Bin Fang
- Department of Orthopedics,
The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, China
| |
Collapse
|
4
|
Zhan J, Cui Y, Zhang P, Du Y, Hecker P, Zhou S, Liang Y, Zhang W, Jin Z, Wang Y, Gao W, Moroz O, Zhu L, Zhang X, Zhao K. Cartilage Endplate-Targeted Engineered Exosome Releasing and Acid Neutralizing Hydrogel Reverses Intervertebral Disc Degeneration. Adv Healthc Mater 2025; 14:e2403315. [PMID: 39555665 DOI: 10.1002/adhm.202403315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Cartilage endplate cell (CEPC) and nucleus pulposus cell (NPC) inflammation are critical factors that contribute to intervertebral disc degeneration (IVDD). Recent evidence indicated that iron ion influx, reactive oxygen species (ROS), and the cGAS-STING pathway are involved in CEPC inflammatory degeneration. Moreover, cytokines produced by degenerating CEPCs and lactic acid accumulation within the microenvironment significantly contribute to NPC inflammation. Consequently, simultaneous alleviation of CEPC inflammation and correction of the acidic microenvironment are anticipated to reverse IVDD. Herein, CEPC-targeted engineered exosomes loaded with salvianolic acid A are incorporated into a CaCO3/chitosan hydrogel, forming a composite gel, CAP-sEXOs@Gel. Notably, CAP-sEXOs@Gel shows long local retention, realizes the slow release of CAP-sEXOs and specific uptake by CEPCs. After uptake by CEPCs, CAP-sEXOs reduce intracellular iron ion and ROS by inhibiting hypoxia-inducible factor-2α (HIF-2α)/TfR1 expression. Iron ion influx and ROS inhibition contribute to the maintenance of normal mitochondrial function and reduced mtDNA leakage, suppresing the cGAS-STING pathway. Additionally, the CaCO3 component of CAP-sEXOs@Gel neutralizes H+, thereby alleviating NPC inflammation. Collectively, this novel composite hydrogel demonstrates the ability to concurrently inhibit CEPC and NPC inflammation, thereby presenting a promising therapeutic approach for IVDD.
Collapse
Affiliation(s)
- Jiawen Zhan
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yongzhi Cui
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ping Zhang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yuxuan Du
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Prisca Hecker
- Department of Cognitive Science, University of California, La Jolla, San Diego, California, 92093, USA
| | - Shuaiqi Zhou
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yupeng Liang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Weiye Zhang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Zhefeng Jin
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yuan Wang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Weihang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Oleksandr Moroz
- Department of Thyroid and Breast, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liguo Zhu
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Xiaoguang Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ke Zhao
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| |
Collapse
|
5
|
Chen S, Dou Y, Zhang Y, Sun X, Liu X, Yang Q. Innovating intervertebral disc degeneration therapy: Harnessing the power of extracellular vesicles. J Orthop Translat 2025; 50:44-55. [PMID: 39868351 PMCID: PMC11761297 DOI: 10.1016/j.jot.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025] Open
Abstract
Intervertebral disc degeneration is the leading cause of low back pain, imposing significant burdens on patients, societies, and economies. Advancements in regenerative medicine have spotlighted extracellular vesicles as promising nanoparticles for intervertebral disc degeneration treatment. Extracellular vesicles retain the potential of cell therapy and serve as carriers to deliver their cargo to target cells, thereby regulating cell activity. This review summarizes the biogenesis and molecular composition of extracellular vesicles and explores their therapeutic roles in intervertebral disc degeneration treatment through various mechanisms. These mechanisms include mitigating cell loss and senescence, delaying extracellular matrix degeneration, and modulating the inflammatory microenvironment. Additionally, it highlights recent efforts in engineering extracellular vesicles to enhance their targeting and therapeutic efficacy. The integration of extracellular vesicle-based acellular therapy is anticipated to drive significant advancements in disc regenerative medicine. The translational potential of this article Existing clinical treatment strategies often fail to effectively address the challenges associated with regenerating degenerated intervertebral discs. As a new regenerative medicine strategy, the extracellular vesicle strategy avoids the risks associated with cell transplantation and shows great promise in treating intervertebral disc degeneration by carrying therapeutic cargo. This review comprehensively examines the latest research, underlying mechanisms, and therapeutic potential of extracellular vesicles, offering a promising new strategy for intervertebral disc degeneration treatment.
Collapse
Affiliation(s)
- Shanfeng Chen
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinyu Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Wang J, Zhang Y, Wang S, Wang X, Jing Y, Su J. Bone aging and extracellular vesicles. Sci Bull (Beijing) 2024; 69:3978-3999. [PMID: 39455324 DOI: 10.1016/j.scib.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Bone aging, a major global health concern, is the natural decline in bone mass and strength. Concurrently, extracellular vesicles (EVs), tiny membrane-bound particles produced by cells, have gained recognition for their roles in various physiological processes and age-related diseases. The interaction between EVs and bone aging is of growing interest, particularly their effects on bone metabolism, which become increasingly critical with advancing age. In this review, we explored the biology, types, and functions of EVs and emphasized their regulatory roles in bone aging. We examined the effects of EVs on bone metabolism and highlighted their potential as biomarkers for monitoring bone aging progression. Furthermore, we discussed the therapeutic applications of EVs, including targeted drug delivery and bone regeneration, and addressed the challenges associated with EV-based therapies, including the technical complexities and regulatory issues. We summarized the current research and clinical trials investigating the role of EVs in bone aging and suggested future research directions. These include the potential for personalized medicine using EVs and the integration of EV research with advanced technologies to enhance the management of age-related bone health. This analysis emphasized the transformative potential of EVs in understanding and managing bone aging, thereby marking a significant advancement in skeletal health research.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
Tang A, Shu Q, Jia S, Lai Z, Tian J. Adipose Mesenchymal Stem Cell-Derived Exosomes as Nanocarriers for Treating Musculoskeletal Disorders. Int J Nanomedicine 2024; 19:13547-13562. [PMID: 39720215 PMCID: PMC11668248 DOI: 10.2147/ijn.s486622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Musculoskeletal disorders are a series of diseases involving bone, muscle, cartilage, and tendon, mainly caused by chronic strain, degenerative changes, and structural damage due to trauma. The disorders limit the function of patients due to pain and significantly reduce their quality of life. In recent years, adipose-derived mesenchymal stem cells have been extensively applied in regeneration medicine research due to their particular abilities of self-renewal, differentiation, and targeted homing and are more easily accessed compared with other sources. The paracrine effect of ADSCs plays a crucial role in intercellular communication by releasing mass mediators, including cytokines and growth factors, particularly the exosomes they secrete. Not only do these exosomes possess low immunogenicity, low toxicity, and an enhanced ability to penetrate a bio-barrier, but they also inherit their parent cells' characteristics and carry various bioactive molecules to release to targeted cells, modulating their biological process. Meanwhile, these characteristics also make exosomes a natural nanocarrier capable of targeted drug delivery to specific sites, enhancing the bioavailability of drugs within the body and achieving precision therapy with fewer toxic side effects. Furthermore, the integration of exosomes with tissue engineering and chemical modification strategies can also significantly enhance their efficacy in facilitating tissue repair. However, the current research on ADSC-Exos for improving MSDs remains at an early stage and needs further exploration. Therefore, this review summarized the ADSC-Exo as a nanodrug carrier characteristics and mechanism in the treatment of fracture, osteoporosis, osteoarthritis, intervertebral disc degeneration, and tendon injury, which push forward the research progress of ADSC-Exo therapy for MSDs.
Collapse
Affiliation(s)
- Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Shaohui Jia
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
8
|
Zheng Y, Huang X. Identification of pyroptosis-associated miRNAs in the immunoscape and prognosis of hepatocellular carcinoma. BMC Cancer 2024; 24:1513. [PMID: 39695414 DOI: 10.1186/s12885-024-13276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma is one of the most prevalent types of liver malignancy and poses a severe threat to global health. Despite recent improvements in therapeutic approaches, treatment options for patients with advanced or recurrent HCC are still limited. MATERIALS AND METHODS Our study analyzed miRNA differential expression using data from hepatocellular carcinoma patients in the Cancer Genome Atlas. Pyroptosis-related genes were identified from gene cards. Differential expression of miRNAs was analyzed using DESeq2 and visualized using ggplot2 and pheatmap. A prognostic risk model for pyroptosis-associated miRNAs was constructed using LASSO regression and validated by principal component analysis, Kaplan-Meier survival and ROC curve analysis. We also performed gene and pathway enrichment analysis. Immune cell infiltration and function in HCC were assessed using single-sample genomic enrichment analysis, and correlations with immune cells and function were explored. Also, CCK-8 assay as well as migration and invasion assays were performed after knockdown of miR-6844. RESULTS We have established and validated a prognostic risk model based on ten DEmiRNAs, which is important for the survival of HCC patients. Significant changes in immune cell infiltration and immune function were also found in high-risk patients. It also demonstrated that knockdown of miR-6844 inhibited HCC cell proliferation, migration and invasion, highlighting its role in HCC progression. CONCLUSION Our study reveals the implications of pyroptosis-associated differential miRNAs on the prognosis of patients with hepatocellular carcinoma and provides a foundation for novel HCC therapies, especially immunotherapy.
Collapse
Affiliation(s)
- Yuting Zheng
- Departments of Anaesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xing Huang
- Departments of Anaesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
9
|
Yang H, Chen X, Chen J, Dong Y, Huang Y, Qin L, Tan J, Yi W. The pathogenesis and targeted therapies of intervertebral disc degeneration induced by cartilage endplate inflammation. Front Cell Dev Biol 2024; 12:1492870. [PMID: 39687521 PMCID: PMC11647014 DOI: 10.3389/fcell.2024.1492870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain, where degeneration and death of nucleus pulposus cells within the intervertebral disc (IVD) can be obviously revealed. This degeneration can result in an imbalance in the extracellular matrix due to the loss of proteoglycans and water content, which can further lead to catabolic and anabolic dysfunction of the IVD. Recently, the dysfunction of cartilage endplate (CEP) during aging has drawn large attention due to its essential functions in contributing nutrient exchange and maintaining IVD homeostasis. Furthermore, the inflammation and disturbed homeostasis of CEP not only accelerate the degradation of nucleus pulposus extracellular matrix, but also exacerbate IVDD by causing nucleus pulposus cell death through other pathological factors. Here in this review, we summarized the possible pathological factors and the underlying mechanisms of the CEP inflammation-induced IVDD, including exosomes degeneration, CEP calcification, ferroptosis, mechanical changes, and cell senescence. Besides, changes of miRNAs, pain-related neural reflex arc and pathways associated with CEP inflammation-induced IVDD are also reviewed. In addition, new strategies specifically designed for CEP inflammation-induced IVDD are also discussed in the last section. We hope this paper can not only offer some new insights for advancing novel strategies for treating IVDD, but also serve as a valuable reference for researchers in this field.
Collapse
Affiliation(s)
- Hantao Yang
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Xuandu Chen
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Jun Chen
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Yansong Dong
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Yafang Huang
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Lei Qin
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Jie Tan
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Weihong Yi
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Chen X, Jing S, Xue C, Guan X. Progress in the Application of Hydrogels in Intervertebral Disc Repair: A Comprehensive Review. Curr Pain Headache Rep 2024; 28:1333-1348. [PMID: 38985414 PMCID: PMC11666692 DOI: 10.1007/s11916-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration (IVDD) is a common orthopaedic disease and an important cause of lower back pain, which seriously affects the work and life of patients and causes a large economic burden to society. The traditional treatment of IVDD mainly involves early pain relief and late surgical intervention, but it cannot reverse the pathological course of IVDD. Current studies suggest that IVDD is related to the imbalance between the anabolic and catabolic functions of the extracellular matrix (ECM). Anti-inflammatory drugs, bioactive substances, and stem cells have all been shown to improve ECM, but traditional injection methods face short half-life and leakage problems. RECENT FINDINGS The good biocompatibility and slow-release function of polymer hydrogels are being noticed and explored to combine with drugs or bioactive substances to treat IVDD. This paper introduces the pathophysiological mechanism of IVDD, and discusses the advantages, disadvantages and development prospects of hydrogels for the treatment of IVDD, so as to provide guidance for future breakthroughs in the treatment of IVDD.
Collapse
Affiliation(s)
- Xin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoze Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chenhui Xue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaoming Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
11
|
Sun H, Guo J, Xiong Z, Zhuang Y, Ning X, Liu M. Targeting nucleus pulposus cell death in the treatment of intervertebral disc degeneration. JOR Spine 2024; 7:e70011. [PMID: 39703198 PMCID: PMC11655182 DOI: 10.1002/jsp2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/21/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a progressive age-related disorder characterized by the reduction in the number of nucleus pulposus cells (NPCs) and degradation of extracellular matrix (ECM), thereby leading to chronic pain and disability. The pathogenesis of IDD is multifaceted, and current therapeutic strategies remain limited. The nucleus pulposus (NP), primarily composed of NPCs, proteoglycans, and type II collagen, constitutes essential components for maintaining intervertebral disc (IVD) function and spinal motion. The disturbed homeostasis of NPCs is closely associated with IDD. Accumulating evidence increasingly suggests the crucial role of programmed cell death (PCD) in regulating the homeostasis of NPCs. Aims This review aimed to elucidate various forms of PCD and their respective roles in IDD, and investigate diverse strategies targeting the cell death of NPCs for IDD treatment. Materials & Methods We collected the relevant literature regarding PCD and their roles in the development of IDD. Subsequently, we comprehensively summarized the intricate association between PCD and IDD, and also explored the potential and application of cell therapy and traditional Chinese medicine (TCM) in the prevention and treatment of IDD. Results Current literature indicated that the PCD of NPCs was closely associated with the pathogenesis of IDD. Additionally, the development of targeted pharmaceuticals based on the mechanisms of PCD could effectively impede the loss of NPCs. Conclusion This review demonstrated that targeting the PCD of NPCs may be a promising strategy for the treatment of IDD.
Collapse
Affiliation(s)
- Hong Sun
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Jiajie Guo
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangChina
| | - Zhilin Xiong
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangChina
| | - Yong Zhuang
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xu Ning
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Miao Liu
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
12
|
Sankaranarayanan J, Lee SC, Kim HK, Kang JY, Kuppa SS, Seon JK. Exosomes Reshape the Osteoarthritic Defect: Emerging Potential in Regenerative Medicine-A Review. Int J Stem Cells 2024; 17:381-396. [PMID: 38246659 PMCID: PMC11612219 DOI: 10.15283/ijsc23108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Osteoarthritis (OA) is a joint disorder caused by wear and tear of the cartilage that cushions the joints. It is a progressive condition that can cause significant pain and disability. Currently, there is no cure for OA, though there are treatments available to manage symptoms and slow the progression of the disease. A chondral defect is a common and devastating lesion that is challenging to treat due to its avascular and aneural nature. However, there are conventional therapies available, ranging from microfracture to cell-based therapy. Anyhow, its efficiency in cartilage defects is limited due to unclear cell viability. Exosomes have emerged as a potent therapeutic tool for chondral defects because they are a complicated complex containing cargo of proteins, DNA, and RNA as well as the ability to target cells due to their phospholipidic composition and the altering exosomal contents that boost regeneration potential. Exosomes are used in a variety of applications, including tissue healing and anti-inflammatory therapy. As in recent years, biomaterials-based bio fabrication has gained popularity among the many printable polymer-based hydrogels, tissue-specific decellularized extracellular matrix might boost the effects rather than an extracellular matrix imitating environment, a short note has been discussed. Exosomes are believed to be the greatest alternative option for current cell-based therapy, and future progress in exosome-based therapy could have a greater influence in the field of orthopaedics. The review focuses extensively on the insights of exosome use and scientific breakthroughs centered OA.
Collapse
Affiliation(s)
- Jaishree Sankaranarayanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Seok Cheol Lee
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hyung Keun Kim
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Ju Yeon Kang
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
13
|
Xi H, Weng Y, Zheng Y, Wu L, Han D. Diacetoxy-6-gingerdiol protects the extracellular matrix of nucleus pulposus cells and ameliorates intervertebral disc degeneration by inhibiting the IL-1β-mediated NLRP3 pathway. Heliyon 2024; 10:e37877. [PMID: 39568855 PMCID: PMC11577133 DOI: 10.1016/j.heliyon.2024.e37877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a common cause of low back pain, causing a huge emotional and economic burden on patients and society. Reduction of nucleus pulposus cells (NPC) and extracellular matrix (ECM) is the main feature of IDD, and NPC is the main source of ECM. Thermal apoptosis is a newly discovered form of cell death in recent years that differs significantly from apoptosis in terms of molecular mechanisms and cellular morphological changes. Diacetoxy-6-gingerdiol(D-6-G), a type of gingerol, has anti-inflammatory and antioxidant effects, but whether it has an inhibitory effect on cellular pyroptosis is not clear. Therefore, in the present study, we investigated the effect of D-6-G on the ECM of the nucleus pulposus oblongata under IL-1β treatment, as well as the mechanism of its effect on NLRP3 inflammasome and cellular focal death. In vitro cellular experiments demonstrated that D-6-G could bind to and inhibit the activity of NLRP3 inflammasome, and interestingly, D-6-G could also inhibit cellular pyroptosis and protect the nucleus pulposusry cellular microenvironment by activating the Nrf2/HO-1 axis. In conclusion, we found that D-6-G could inhibit NLRP3 inflammatory vesicle activity as well as cellular pyroptosis in NPCs and protect the ECM, suggesting the potential of D-6-G to delay IDD.
Collapse
Affiliation(s)
- Huifeng Xi
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yuesong Weng
- Linhai Hospital of Traditional Chinese Medicine Healthcare Service Community, Linhai, Zhejiang, China
| | - Youmao Zheng
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Lizhi Wu
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Dawei Han
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
14
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
15
|
Sang P, Li X, Wang Z. Bone Mesenchymal Stem Cells Inhibit Oxidative Stress-Induced Pyroptosis in Annulus Fibrosus Cells to Alleviate Intervertebral Disc Degeneration Based on Matric Hydrogels. Appl Biochem Biotechnol 2024; 196:8043-8057. [PMID: 38676833 DOI: 10.1007/s12010-024-04953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Intervertebral disc degeneration (IVDD) is the primary cause of low back pain. Stem cell transplantation may be a possible approach to promote IVDD. This study was aimed to investigate the role of bone mesenchymal stem cells (BMSCs) in IVDD and the molecular mechanism. Annulus fibrosus cells (AFCs) were treated with tert-butyl hydroperoxide (TBHP) to induce oxidative stress injury. AFC biological functions were analyzed using a lactate dehydrogenase kit, enzyme-linked immunosorbent assay, flow cytometry, and western blot. The molecular mechanisms of BMSC functions were assessed using quantitative real-time PCR, western blot, immunoprecipitation (IP), co-IP, GST pull-down, and cycloheximide treatment. Furthermore, the impacts of BMSCs in IVDD progression in vivo were evaluated by magnetic resonance imaging (MRI) and H&E analysis. BMSCs inhibited TBHP-induced inflammation and pyroptosis in AFCs. Knockdown of SIRT1 reversed the effects on inflammation and pyroptosis of BMSCs. Moreover, SIRT1 promoted the deacetylation of ASC rather than NLRP3. SIRT1 interacted with ASC to reduce its protein stability, thereby negatively regulating ASC protein levels. In addition, BMSCs alleviated LPS-induced IVDD based on matrix hydrogels. BMSCs inhibited oxidative stress-induced pyroptosis and inflammation in AFCs, thereby alleviating IVDD, suggesting that BMSCs may contribute to treating intervertebral disc generation.
Collapse
Affiliation(s)
- Ping Sang
- Department of Spine Surgery, Jilin Provincial People's Hospital, No. 1183, Gongnong Road, Changchun, 130021, Jilin, China.
| | - Xuepeng Li
- Department of Spine Surgery, Jilin Provincial People's Hospital, No. 1183, Gongnong Road, Changchun, 130021, Jilin, China
| | - Ziyu Wang
- Department of Spine Surgery, Jilin Provincial People's Hospital, No. 1183, Gongnong Road, Changchun, 130021, Jilin, China
| |
Collapse
|
16
|
Yu C, Li J, Kuang W, Ni S, Cao Y, Duan Y. PRDM1 promotes nucleus pulposus cell pyroptosis leading to intervertebral disc degeneration via activating CASP1 transcription. Cell Biol Toxicol 2024; 40:89. [PMID: 39432156 PMCID: PMC11493826 DOI: 10.1007/s10565-024-09932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a primary contributor to low back pain and poses a considerable burden to society. However, the molecular mechanisms underlying IVDD remain to be elucidated. PR/SET domain 1 (PRDM1) regulates cell proliferation, apoptosis, and inflammatory responses in various diseases. Despite these regulatory functions, the mechanism of action of PRDM1 in IVDD remains unexplored. In this study, we investigated the role and underlying mechanisms of action of PRDM1 in IVDD progression. The expression of PRDM1 in nucleus pulposus (NP) tissues and NP cells (NPCs) was assessed using western blotting, immunohistochemistry, and immunofluorescence. The effects of PRDM1 on IVDD progression were investigated in vitro and in vivo. Mechanistically, mRNA sequencing, chromatin immunoprecipitation, and dual-luciferase reporter assays were performed to confirm that PRDM1 triggered CASP1 transcription. Our study demonstrated for the first time that PRDM1 expression was substantially upregulated in degenerated NP tissues and NPCs. PRDM1 overexpression promoted NPCs pyroptosis by inhibiting mitophagy and exacerbating IVDD progression, whereas PRDM1 silencing exerted the opposite effect. Furthermore, PRDM1 activated CASP1 transcription, thereby promoting NPCs pyroptosis in vitro. Notably, CASP1 silencing reversed the effects of PRDM1 on the NPCs. To the best of our knowledge, this study is the first to demonstrate that PRDM1 silencing inhibits NPCs pyroptosis by repressing CASP1 transcription, which may be a promising new therapeutic target for IVDD.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Jianjun Li
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Wenhao Kuang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Songjia Ni
- Department of Trauma Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Yanlin Cao
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Yang Duan
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China.
| |
Collapse
|
17
|
Yang Y, Wang J, Lin X, Zhang Z, Zhang M, Tang C, Kou X, Deng F. TNF-α-licensed exosome-integrated titaniumaccelerated T2D osseointegration by promoting autophagy-regulated M2 macrophage polarization. Biochem Biophys Res Commun 2024; 727:150316. [PMID: 38959732 DOI: 10.1016/j.bbrc.2024.150316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Type 2 diabetes (T2D) is on a notable rise worldwide, which leads to unfavorable outcomes during implant treatments. Surface modification of implants and exosome treatment have been utilized to enhance osseointegration. However, there has been insufficient approach to improve adverse osseointegration in T2D conditions. In this study, we successfully loaded TNF-α-treated mesenchymal stem cell (MSC)-derived exosomes onto micro/nano-network titanium (Ti) surfaces. TNF-α-licensed exosome-integrated titanium (TNF-exo-Ti) effectively enhanced M2 macrophage polarization in hyperglycemic conditions, with increased secretion of anti-inflammatory cytokines and decreased secretion of pro-inflammatory cytokines. In addition, TNF-exo-Ti pretreated macrophage further enhanced angiogenesis and osteogenesis of endothelial cells and bone marrow MSCs. More importantly, TNF-exo-Ti markedly promoted osseointegration in T2D mice. Mechanistically, TNF-exo-Ti activated macrophage autophagy to promote M2 polarization through inhibition of the PI3K/AKT/mTOR pathway, which could be abolished by PI3K agonist. Thus, this study established TNF-α-licensed exosome-immobilized titanium surfaces that could rectify macrophage immune states and accelerate osseointegration in T2D conditions.
Collapse
Affiliation(s)
- Yang Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jinyang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xiaoxuan Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Manjin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510055, China
| | - Cuizhu Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
18
|
Wang J, Zhang Y, Huang Y, Hao Z, Shi G, Guo L, Chang C, Li J. Application trends and strategies of hydrogel delivery systems in intervertebral disc degeneration: A bibliometric review. Mater Today Bio 2024; 28:101251. [PMID: 39318370 PMCID: PMC11421353 DOI: 10.1016/j.mtbio.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Hydrogels are widely used to explore emerging minimally invasive strategies for intervertebral disc degeneration (IVDD) due to their suitability as drug and cell delivery vehicles. There has been no review of the latest research trends and strategies of hydrogel delivery systems in IVDD for the last decade. In this study, we identify the application trends and strategies in this field through bibliometric analysis, including aspects such as publication years, countries and institutions, authors and publications, and co-occurrence of keywords. The results reveal that the literature in this field has been receiving increasing attention with a trend of growth annually. Subsequently, the hotspots of hydrogels in this field were described and discussed in detail, and we proposed the "four core factors", hydrogels, cells, cell stimulators, and microenvironmental regulation, required for a multifunctional hydrogel for IVDD. Finally, we discuss the popular and emerging mechanistic strategies of hydrogel therapy for IVDD in terms of five aspects: fundamental pathologic changes in IVDD, counteracting cellular senescence, counteracting cell death, improving organelle function, and replenishing exogenous cells. This study provides a reference and a new perspective for future research in this urgently needed field.
Collapse
Affiliation(s)
- Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yilong Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanhong Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
19
|
Deng W, Chen J, Wang X, Wang Q, Zhao L, Zhu Y, Yan J, Zheng Y. Paravertebrally-Injected Multifunctional Hydrogel for Sustained Anti-Inflammation and Pain Relief in Lumbar Disc Herniation. Adv Healthc Mater 2024; 13:e2401227. [PMID: 38979866 DOI: 10.1002/adhm.202401227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Pain caused by lumbar disc herniation (LDH) severely compromises patients' quality of life. The combination of steroid and local anesthetics is routinely employed in clinics to alleviate LDH-induced pain. However, the approach only mediates transient efficacy and requires repeated and invasive lumbar epidural injections. Here a paravertebrally-injected multifunctional hydrogel that can efficiently co-load and controlled release glucocorticoid betamethasone and anesthetics ropivacaine for sustained anti-inflammation, reactive oxygen species (ROS)-removal and pain relief in LDH is presented. Betamethasone is conjugated to hyaluronic acid (HA) via ROS-responsive crosslinker to form amphiphilic polymer that self-assemble into particles with ropivacaine loaded into the core. Solution of drug-loaded particles and thermo-sensitive polymer rapidly forms therapeutic hydrogel in situ upon injection next to the herniated disc, thus avoiding invasive epidural injection. In a rat model of LDH, multifunctional hydrogel maintains the local drug concentration 72 times longer than free drugs and more effectively inhibits the expression of pro-inflammatory cytokines and pain-related molecules including cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Therapeutic hydrogel suppresses the LDH-induced pain in rats for 12 days while the equivalent dose of free drugs is only effective for 3 days. This platform is also applicable to ameliorate pain caused by other spine-related diseases.
Collapse
Affiliation(s)
- Wenhao Deng
- College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Jianpeng Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, P. R. China
| | - Xinli Wang
- College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Qianliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, P. R. China
| | - Lei Zhao
- College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Yuzheng Zhu
- College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, P. R. China
| | - Yiran Zheng
- College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| |
Collapse
|
20
|
Zhao Y, Xia Q, Zhu L, Xia J, Xiang S, Mao Q, Dong H, Weng Z, Liao W, Xin Z. Mapping knowledge structure and themes trends of non-surgical treatment in intervertebral disc degeneration. Heliyon 2024; 10:e36509. [PMID: 39286189 PMCID: PMC11402762 DOI: 10.1016/j.heliyon.2024.e36509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a chronic disabling disease caused by degeneration of nucleus pulposus cells, decreased activity and the number of nucleus pulposus cells, decreased extracellular matrix, and infiltration of inflammatory factors, resulting in low back and leg pain. Recent studies have shown that non-surgical treatment is of great significance in reversing the progression of degenerative disc disease, and there are more relevant literature reports. However, there is no bibliometric analysis in this area. This study aimed to describe the knowledge structure and thematic trends of non-surgical treatment methods for IDD through bibliometrics. Methods Articles and reviews on non-surgical treatment of disc degeneration from 1998 to 2022 were collected on the Web of Science. VOSviewer 1.6.18, CiteSpace 6.1.R3, R package "bibliometrix" and two online analysis platforms were used for bibliometric and visual literature analysis. Results 961 articles were screened for inclusion, including 821 articles and 140 reviews. The analysis of our study shows that publications in the non-surgical treatment of disc degeneration are increasing annually, with publications coming mainly from North America and Asia, with China and the United States dominating. Huazhong Univ Sci & Technol and Wang K are the most prolific institutions and authors, respectively, and Le Maitre CL is the most co-cited author. However, there is less collaboration between institutions in different countries. Spine is both the most published and the most cited journal. According to the co-citation and co-occurrence analysis results, "mesenchymal stem cells," "exosomes," "medication," and "tissue engineering" are the current research hotspots in this field. Conclusions This study employs bibliometric analysis to explore the knowledge structure and trends of non-surgical treatments for IDD from 2013 to 2022. Key research hotspots include mesenchymal stem cells, exosomes, medication, and tissue engineering. The number of publications, especially from China and the USA, has increased significantly, though international collaboration needs improvement. Influential contributors include Wang K and the journal Spine. These findings provide a comprehensive overview and highlight important future directions for the field.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shaojie Xiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
21
|
Zhang CH, Lu DC, Liu Y, Wang L, Sethi G, Ma Z. The role of extracellular vesicles in pyroptosis-mediated infectious and non-infectious diseases. Int Immunopharmacol 2024; 138:112633. [PMID: 38986299 DOI: 10.1016/j.intimp.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Pyroptosis, a lytic and pro-inflammatory cell death, is important in various pathophysiological processes. Host- and bacteria-derived extracellular vesicles (EVs), as natural nanocarriers messengers, are versatile mediators of intercellular communication between different types of cells. Recently, emerging research has suggested that EVs exhibit multifaceted roles in disease progression by manipulating pyroptosis. This review focuses on new findings concerning how EVs shape disease progression in infectious and non-infectious diseases by regulating pyroptosis. Understanding the characteristics and activity of EVs-mediated pyroptotic death may conducive to the discovery of novel mechanisms and more efficient therapeutic targets in infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Department of Oncology, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing 404100, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ying Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
22
|
Yao L, Flynn N, Kaphle P. Effects of cell culture time and cytokines on migration of dental pulp stem cell-derived chondrogenic cells in collagen hydrogels. Physiol Rep 2024; 12:e70063. [PMID: 39327065 PMCID: PMC11427086 DOI: 10.14814/phy2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The transplantation of collagen hydrogels encapsulating human dental pulp stem cell (DPSC)-derived chondrogenic cells is potentially a novel approach for the regeneration of degenerated nucleus pulposus (NP) and cartilage. Grafted cell migration allows cells to disperse in the hydrogels and the treated tissue from the grafted location. We previously reported the cell migration in type I and type II hydrogels. It is important to explore further how cell culture time affect the cell motility. In this study, we observed the decreased motility of DPSC-derived chondrogenic cells after culturing for 2 weeks compared with cells cultured for 2 days in these gels. The Alamarblue assay showed the cell proliferation during the two-week cell culture period. The findings suggest that the transitions of cell motility and proliferation during the longer culture time. The result indicates that the early culture stage is an optimal time for cell transplantation. In a degenerated disc, the expression of IL-1β and TNFα increased significantly compared with healthy tissue and therefore may affect grafted cell migration. The incorporation of IL-1β and TNFα into the collagen hydrogels decreased cell motility. The study indicates that the control of IL-1β and TNFα production may help to maintain cell motility after transplantation.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Nikol Flynn
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Pranita Kaphle
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|
23
|
Zhou D, Mei Y, Song C, Cheng K, Cai W, Guo D, Gao S, Lv J, Liu T, Zhou Y, Wang L, Liu B, Liu Z. Exploration of the mode of death and potential death mechanisms of nucleus pulposus cells. Eur J Clin Invest 2024; 54:e14226. [PMID: 38632688 DOI: 10.1111/eci.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a common chronic orthopaedic disease in orthopaedics that imposes a heavy economic burden on people and society. Although it is well established that IVDD is associated with genetic susceptibility, ageing and obesity, its pathogenesis remains incompletely understood. Previously, IVDD was thought to occur because of excessive mechanical loading leading to destruction of nucleus pulposus cells (NPCs), but studies have shown that IVDD is a much more complex process associated with inflammation, metabolic factors and NPCs death and can involve all parts of the disc, characterized by causing NPCs death and extracellular matrix (ECM) degradation. The damage pattern of NPCs in IVDD is like that of some programmed cell death, suggesting that IVDD is associated with programmed cell death. Although apoptosis and pyroptosis of NPCs have been studied in IVDD, the pathogenesis of intervertebral disc degeneration can still not be fully elucidated by using only traditional cell death modalities. With increasing research, some new modes of cell death, PANoptosis, ferroptosis and senescence have been found to be closely related to intervertebral disc degeneration. Among these, PANoptosis combines essential elements of pyroptosis, apoptosis and necroptosis to form a highly coordinated and dynamically balanced programmed inflammatory cell death process. Furthermore, we believe that PANoptosis may also crosstalk with pyroptosis and senescence. Therefore, we review the progress of research on multiple deaths of NPCs in IVDD to provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Daru Guo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Silong Gao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jiale Lv
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yang Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liquan Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bing Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
24
|
Wu Q, Du J, Bae EJ, Choi Y. Pyroptosis in Skeleton Diseases: A Potential Therapeutic Target Based on Inflammatory Cell Death. Int J Mol Sci 2024; 25:9068. [PMID: 39201755 PMCID: PMC11354934 DOI: 10.3390/ijms25169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Skeletal disorders, including fractures, osteoporosis, osteoarthritis, rheumatoid arthritis, and spinal degenerative conditions, along with associated spinal cord injuries, significantly impair daily life and impose a substantial burden. Many of these conditions are notably linked to inflammation, with some classified as inflammatory diseases. Pyroptosis, a newly recognized form of inflammatory cell death, is primarily triggered by inflammasomes and executed by caspases, leading to inflammation and cell death through gasdermin proteins. Emerging research underscores the pivotal role of pyroptosis in skeletal disorders. This review explores the pyroptosis signaling pathways and their involvement in skeletal diseases, the modulation of pyroptosis by other signals in these conditions, and the current evidence supporting the therapeutic potential of targeting pyroptosis in treating skeletal disorders, aiming to offer novel insights for their management.
Collapse
Affiliation(s)
- Qian Wu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Jiacheng Du
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
25
|
Wang G, Li H, Hu X, Wang Y, Zhu G, Zhou H, Liang Z, Wang Z, Nuessler A, Lin Z, Xie H, Zhu S. Exploring the relationship between pyroptosis and inflammatory bone loss: Evidence from a cigarette smoke-induced osteoporosis mouse model. Heliyon 2024; 10:e35715. [PMID: 39170204 PMCID: PMC11336831 DOI: 10.1016/j.heliyon.2024.e35715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Smoking is by far one of the greatest public health threats and is recognized as an important predisposing factor for osteoporosis. Exposure to cigarette smoke (CS) has been reported to be associated with inflammation-associated diseases through the induction of pyroptosis. Nevertheless, the correlation between pyroptosis and bone loss induced by CS remains uninvestigated. Here, a mouse model of mainstream smoke exposure-induced osteoporosis was established. μCT, biomechanical testing, and immunohistochemical staining of bone tissue were used to assess the deleterious effects of CS on bone metabolism. In vitro, the effects of cigarette smoke extracts (CSE) on mouse primary bone marrow-derived mesenchymal stem cells (BMSCs) were tested by cell viability assays, gene and protein expression assays, and alizarin red staining. The utilization of the pyroptosis inhibitor MCC950 served to confirm the critical role of BMSCs pyroptosis in CS-induced osteoporosis. Our results indicated that exposure to mainstream smoke led to a notable decrease in the quantity of osteoblasts and hindered the process of osteogenic differentiation in mice. Additionally, there was a significant increase in the expression of pyroptosis-related proteins in the bone marrow. The inhibitory effects of CSE on cell viability and osteogenic differentiation of BMSCs were found to be dose-dependent in vitro. However, the presence of the pyroptosis inhibitor MCC950 significantly improved the impaired osteogenic differentiation and bone mineralization caused by CSE. These results highlight the crucial involvement of BMSCs pyroptosis in the development of bone loss induced by CS. In summary, the findings of this study provide novel evidence that CS exerts a detrimental effect on the process of osteogenesis in BMSCs through the induction of pyroptosis, ultimately leading to bone loss. Inhibition of pyroptosis effectively attenuated the toxicological effects of CS on BMSCs, providing a new target for preventing inflammatory osteoporosis.
Collapse
Affiliation(s)
- Guang Wang
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Hongming Li
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Xinyue Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Yiyi Wang
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Guoqiang Zhu
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Hongliang Zhou
- Movement System Injury and Repair Research Center, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Zilin Liang
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Andreas Nuessler
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076, Tuebingen, Germany
| | - Zhangyuan Lin
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| | - Sheng Zhu
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
26
|
Yu XJ, Bai XF, Qu YK, Wang SX, Zhang J, Yang W, Wang S, Yang Y, Wang YG, Hao DJ, Zhao YT. Unveiling the Therapeutic Potential of hUCMSC-Derived EVs in Intervertebral Disc Degeneration through MALAT1/ miR-138-5p/SLC7A11 Coexpression Regulation. ACS Biomater Sci Eng 2024; 10:4839-4854. [PMID: 39079050 DOI: 10.1021/acsbiomaterials.3c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent chronic condition causing spinal pain and functional impairment. This study investigates the role of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUCMSCs) in regulating IVDD. Using RNA-seq, we analyzed differential expressions of lncRNA and miRNA in nucleus pulposus tissues from various mouse groups. We identified key regulatory molecules, MALAT1 and miRNA-138-5p, which contribute to IVDD. Further experiments demonstrated that MALAT1 can up-regulate SLC7A11 expression by competitively binding to miR-138-5p, forming a MALAT1/miR-138-5p/SLC7A11 coexpression regulatory network. This study elucidates the molecular mechanism by which hUCMSC-derived EVs regulate IVDD and could help develop novel therapeutic strategies for treating this condition. Our findings demonstrate that hUCMSCs-EVs inhibit ferroptosis in nucleus pulposus cells, thereby improving IVDD. These results highlight the therapeutic potential of hUCMSCs-EVs in ameliorating the development of IVDD, offering significant scientific and clinical implications for new treatments.
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Xiao-Fan Bai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Yun-Kun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan-Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Jianwei Zhang
- Department of Orthopedics, the First People's Hospital of Tianshui City, Tianshui 741000, Gansu Province, China
| | - Wenlong Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Sibo Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Yuli Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Ying-Guang Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| |
Collapse
|
27
|
Chen L, Peng K, Huang H, Gong Z, Huang J, Mohamed AM, Chen Q, Sow WT, Guo L, Kwan KYH, Li B, Khan MA, Makvnadi P, Jones M, Shen S, Wang X, Ma C, Li H, Wu A. Injectable Hydrogel Based on Enzymatic Initiation of Keratin Methacrylate for Controlled Exosome Release in Intervertebral Disc Degeneration Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202316545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe treatment of intervertebral disc degeneration (IVDD) using bone marrow mesenchymal stem cell‐derived exosomes has shown success in alleviating inflammation and restoring the extracellular matrix (ECM), however, challenges persist due to the deficiency in mechanical support and controlled release. Herein, a carbon‐carbon double bond modified keratin (KeMA) is synthesized by 2‐isocyanatoethyl modification for exosomes wrapping. This injectable KeMA hydrogel, initiated by a biocompatible glucose/ glucose oxidase/ horse radish peroxidase enzymatic cascade reaction with acetylacetone and N‐vinylpyrrolidone, displayed rapid gelation, resembling nucleus pulposus (NP) elasticity, and excellent cytocompatibility. In vitro studies showcased that the exosomes‐loaded KeMA hydrogel (Exo@KeMA) enhanced exosome release kinetics, suppressed inflammation, fostered extracellular matrix (ECM) regeneration, and reinstated NP biomechanics. RNA‐seq analysis indicated Exo@KeMA's effects involved PI3K‐Akt signaling for matrix regeneration and NF‐κB signaling inhibition for anti‐inflammation. In vivo IVDD rat models demonstrated Exo@KeMA attenuated inflammation, maintained NP water content, preserved disc height, and promoted structural regeneration. This research introduces an injectable KeMA hydrogel as a promising therapy for IVDD, by facilitating biomechanics restoration, anti‐inflammatory response, and ECM regeneration.
Collapse
Affiliation(s)
- Linjie Chen
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Ke Peng
- School of Biomedical Engineering School of Ophthalmology and Optometry and Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325011 P. R. China
| | - He Huang
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325000 P. R. China
| | - Zehua Gong
- School of Biomedical Engineering School of Ophthalmology and Optometry and Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Jinyi Huang
- School of Biomedical Engineering School of Ophthalmology and Optometry and Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Abdihafid Mohamud Mohamed
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Qizhu Chen
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Wan Ting Sow
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325011 P. R. China
| | - Liting Guo
- School of Biomedical Engineering School of Ophthalmology and Optometry and Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Bin Li
- Orthopedic Institute Department of Orthopedic Surgery The First Affiliated Hospital School of Biology & Basic Medical Sciences Suzhou Medical College Soochow University Suzhou Jiangsu 215007 P. R. China
| | - Moonis Ali Khan
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Pooyan Makvnadi
- The Quzhou Affiliated Hospital of Wenzhou Medical University Quzhou People's Hospital Quzhou Zhejiang 324000 P. R. China
| | - Morgan Jones
- Spine Unit The Royal Orthopaedic Hospital Bristol Road South Northfield Birmingham B31 2AP UK
| | - Shuying Shen
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P. R. China
| | - Xiangyang Wang
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Chao Ma
- Department of Chemistry Tsinghua University Beijing 100080 P. R. China
| | - Huaqiong Li
- School of Biomedical Engineering School of Ophthalmology and Optometry and Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325011 P. R. China
| | - Aimin Wu
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| |
Collapse
|
28
|
Zhang Z, Wu W, Li M, Du L, Li J, Yin X, Zhang W. Mesenchymal stem cell–derived extracellular vesicles: A novel nanoimmunoregulatory tool in musculoskeletal diseases. NANO TODAY 2024; 57:102343. [DOI: 10.1016/j.nantod.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Zhou Z, Bu Z, Wang S, Yu J, Liu W, Huang J, Hu J, Xu S, Wu P. Extracellular matrix hydrogels with fibroblast growth factor 2 containing exosomes for reconstructing skin microstructures. J Nanobiotechnology 2024; 22:438. [PMID: 39061089 PMCID: PMC11282598 DOI: 10.1186/s12951-024-02718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Decellularized extracellular matrix hydrogel (ECM hydrogel), a natural material derived from normal tissue with unique biocompatibility properties, is widely used for tissue repair. However, there are still problems such as poor biological activity and insufficient antimicrobial property. To overcome these drawbacks, fibroblast growth factor 2 (FGF 2) containing exosome (exoFGF 2) was prepared to increase the biological activity. Furthermore, the antimicrobial capacity of ECM hydrogel was optimised by using copper ions as a ligand-bonded cross-linking agent. The decellularized extracellular matrix hydrogel, intricately cross-linked with copper ions through ligand bonds and loaded with FGF 2 containing exosome (exoFGF 2@ECM/Cu2+ hydrogel), has demonstrated exceptional biocompatibility and antimicrobial properties. In vitro, exoFGF 2@ECM/Cu2+ hydrogel effectively promoted cell proliferation, migration, antioxidant and inhibited bacterial growth. In vivo, the wound area of rat treated with exoFGF 2@ECM/Cu2+ hydrogels were significantly smaller than that of other groups at Day 5 (45.24% ± 3.15%), Day 10 (92.20% ± 2.31%) and Day 15 (95.22% ± 1.28%). Histological examination showed that exoFGF 2@ECM/Cu2+ hydrogels promoted angiogenesis and collagen deposition. Overall, this hydrogel has the potential to inhibit bacterial growth and effectively promote wound healing in a variety of clinical applications.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Ziheng Bu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Shiqiang Wang
- Department of Joint and Sports Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jianing Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Wei Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Junchao Huang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jianhai Hu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Sudan Xu
- Department of Geriatric, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| |
Collapse
|
30
|
Maiullari F, Milan M, Chirivì M, Ceraolo MG, Bousselmi S, Fratini N, Galbiati M, Fortunato O, Costantini M, Brambilla F, Mauri P, Di Silvestre D, Calogero A, Sciarra T, Rizzi R, Bearzi C. Enhancing neovascularization post-myocardial infarction through injectable hydrogel functionalized with endothelial-derived EVs. Biofabrication 2024; 16:045009. [PMID: 38986455 DOI: 10.1088/1758-5090/ad6190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Over the past three decades, cell therapy development has fallen short of expectations, with many cellular sources demonstrating a 'Janus effect' and raising safety concerns. Extracellular vesicles (EVs), supported by advanced technologies, present a promising avenue in regenerative medicine, offering benefits such as immune tolerance and avoidance of negative aspects associated with cell transplants. Our previous research showcased enhanced and organized subcutaneous vascularization using three-dimensional bioprinted patches containing HUVEC-derived EVs in immunodeficient animal models. In this context, stress conditions on the cells of origin further boosted the EVs' neoangiogenic potential. Since neovascularization is the first regenerative target requiring restoration, the present study aims to complement our previous work by employing an injectable gelatin methacrylate (GelMA) hydrogel functionalized with HUVEC-derived EVs in a pathological condition of acute myocardial infarction. This bioactive hydrogel resulted in reduced fibrosis, improved contractility, and promoted angiogenesis, showing promise in countering tissue deterioration and addressing vascular deficits. Moreover, the molecular characterization of EVs through miRNome and proteomic analyses further supports their potential as bio-additives for hydrogel functionalization. This cell-free approach mitigates immune rejection and oncogenic risks, offering innovative therapeutic advantages.
Collapse
Affiliation(s)
- Fabio Maiullari
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Via della RicercaScientifica, 1, 00133 Rome, Italy
| | - Marika Milan
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maila Chirivì
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Maria Grazia Ceraolo
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Salma Bousselmi
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Via della RicercaScientifica, 1, 00133 Rome, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Nicole Fratini
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Matteo Galbiati
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, IRCCS Fondazione Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Marco Costantini
- Institute of Physical Chemistry-Polish Academy of Sciences, MarcinaKasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francesca Brambilla
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| |
Collapse
|
31
|
Liu X, Liu C, Lin Q, Shi T, Liu G. Exosome-loaded hydrogels for craniofacial bone tissue regeneration. Biomed Mater 2024; 19:052002. [PMID: 38815606 DOI: 10.1088/1748-605x/ad525c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
It is common for maladies and trauma to cause significant bone deterioration in the craniofacial bone, which can cause patients to experience complications with their appearance and their ability to function. Regarding grafting procedures' complications and disadvantages, the newly emerging field of tissue regeneration has shown promise. Tissue -engineered technologies and their applications in the craniofacial region are increasingly gaining prominence with limited postoperative risk and cost. MSCs-derived exosomes are widely applied in bone tissue engineering to provide cell-free therapies since they not only do not cause immunological rejection in the same way that cells do, but they can also perform a cell-like role. Additionally, the hydrogel system is a family of multipurpose platforms made of cross-linked polymers with considerable water content, outstanding biocompatibility, and tunable physiochemical properties for the efficient delivery of commodities. Therefore, the promising exosome-loaded hydrogels can be designed for craniofacial bone regeneration. This review lists the packaging techniques for exosomes and hydrogel and discusses the development of a biocompatible hydrogel system and its potential for exosome continuous delivery for craniofacial bone healing.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Chang Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Qingquan Lin
- Institute of Applied Catalysis, College of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| | - Ting Shi
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Guanying Liu
- Department of Hand and Foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| |
Collapse
|
32
|
Yang L, Li W, Zhao Y, Shang L. Magnetic Polysaccharide Mesenchymal Stem Cells Exosomes Delivery Microcarriers for Synergistic Therapy of Osteoarthritis. ACS NANO 2024. [PMID: 39039744 DOI: 10.1021/acsnano.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease that afflicts more than 250 million people worldwide, impairing their mobility and quality of life. However, conventional drug therapy is palliative. Exosomes (Exo), although with the potential to fundamentally repair cartilage, face challenges in their efficient enrichment and delivery. In this study, we developed magnetic polysaccharide hydrogel particles as microcarriers for synergistic therapy of OA. The microcarriers were composed of modified natural polysaccharides, hyaluronic acid (HAMA), and chondroitin sulfate (CSMA), and were generated from microfluidic electrospray in combination with a cryogelation process. Magnetic nanoparticles with spiny structures capable of capturing stem cell Exo were encapsulated within the microcarriers together with an anti-inflammatory drug diclofenac sodium (DS). The released DS and Exo from the microcarriers had a synergistic effect in alleviating the OA symptoms and promoting cartilage repair. The in vitro and in vivo results demonstrated the excellent performance of the microcarrier for OA treatment. We believe this work has potential for Exo therapy of OA and other related diseases.
Collapse
Affiliation(s)
- Lei Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wenzhao Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Luoran Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Zhang K, Du L, Li Z, Huo Z, Shen L, Gao S, Jia Y, Zhu M, Xu B. M2 Macrophage-Derived Small Extracellular Vesicles Ameliorate Pyroptosis and Intervertebral Disc Degeneration. Biomater Res 2024; 28:0047. [PMID: 38952714 PMCID: PMC11214826 DOI: 10.34133/bmr.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Intervertebral discs (IVDs) have a limited self-regenerative capacity and current strategies for IVD regeneration are unsatisfactory. Recent studies showed that small extracellular vesicles derived from M2 macrophage cells (M2-sEVs) inhibited inflammation by delivery of various bioactive molecules to recipient cells, which indicated that M2-sEVs may offer a therapeutic strategy for the repair of IVDs. Herein, we investigated the roles and mechanisms of M2-sEVs on IVD regeneration. The in vitro results demonstrated that M2-sEVs inhibited pyroptosis, preserved cellular viability, and promoted migration of nucleus pulposus cells (NPCs). Bioinformatics analysis and verification experiments of microRNA (miR) expression showed that miR-221-3p was highly expressed in M2-sEVs. The mechanism of action was explored and indicated that M2-sEVs inhibited pyroptosis of NPCs through transfer of miR-221-3p, which suppressed the expression levels of phosphatase and tensin homolog and NOD-, LRR-, and pyrin domain-containing protein 3. Moreover, we fabricated decellularized ECM-hydrogel (dECM) for sustained release of M2-sEVs, which exhibited biocompatibility and controlled release properties. The in vivo results revealed that dECM-hydrogel containing M2-sEVs (dECM/M2-sEVs) delayed the degeneration of intervertebral disc degeneration (IDD) models. In addition to demonstrating a promising therapeutic for IDD, this study provided valuable data for furthering the understanding of the roles and mechanisms of M2-sEVs in IVD regeneration.
Collapse
Affiliation(s)
- Kaihui Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| | - Zhenhua Li
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| | - Zhenxin Huo
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| | - Li Shen
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yiming Jia
- Department of Stomatology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),
Nankai University, Tianjin 300071, China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital,
Tianjin University, Tianjin 300211, China
| |
Collapse
|
34
|
Teng X, Liu T, Zhao G, Liang Y, Li P, Li F, Li Q, Fu J, Zhong C, Zou X, Li L, Qi L. A novel exosome-based multifunctional nanocomposite platform driven by photothermal-controlled release system for repair of skin injury. J Control Release 2024; 371:258-272. [PMID: 38815704 DOI: 10.1016/j.jconrel.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Currently, exosomes showed appropriate potential in the repair of skin injury. However, the functions of the exosomes could be compromised rapidly due to their short half-life and high clearance rate in vivo. In addition, the controlled release of effective concentrations of exosomes could increase the utilization efficiency of exosomes in wound healing. Accordingly, the design of an effective system for the controlled delivery of exosomes during the wound treatment period was necessary. In this contribution, we designed a novel exosome-based multifunctional nanocomposite platform with photothermal-controlled release performance for the repair of skin injury. Based on the agarose hydrogel, two-dimensional Ti3C2 (Ti3C2 MXene) and human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes, the as-prepared platform (i.e., hucMSC-derived exosome/Ti3C2 MXene hydrogel) was synthesized for the first time. Apart from possessing injectability, the hucMSC-derived exosome/Ti3C2 MXene hydrogel utilized the excellent photothermal effect of Ti3C2 MXene and proper phase transition performance of agarose hydrogel to provide a photothermal-controlled release system for the hucMSC-derived exosomes, which was beneficial for the personalized on-demand drug delivery. Importantly, the hucMSC-derived exosomes maintained their inherent structure and activity after being released from the Ti3C2 MXene hydrogel. Additionally, the as-prepared hydrogel with multifunctional performance also presented remarkable biocompatibility and photothermal-antibacterial property, and could efficiently accelerate wound healing by promoting cell proliferation, angiogenesis, collagen deposition, and reducing the level of inflammation at the wound site. The results suggested that the exosome-based multifunctional nanocomposite platform with great potential for wound healing would make significant advances in the revolution of traditional treatment methods in skin injury.
Collapse
Affiliation(s)
- Xu Teng
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China.
| | - Tao Liu
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China; DALI University, Dali 671000, China
| | - Guifang Zhao
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China; Department of Pathology, Jilin Medical University, Jilin 130013, China
| | - Yaru Liang
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Pengdong Li
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Fengjin Li
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qiguang Li
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Jiacai Fu
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China; DALI University, Dali 671000, China
| | - Chengming Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Xiaohui Zou
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Linhai Li
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China.
| | - Ling Qi
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China.
| |
Collapse
|
35
|
Hu S, Zhu M, Xing H, Xue Y, Li J, Wang Z, Zhu Z, Fang M, Li Z, Xu J, He Y, Zhang N. Thread-structural microneedles loaded with engineered exosomes for annulus fibrosus repair by regulating mitophagy recovery and extracellular matrix homeostasis. Bioact Mater 2024; 37:1-13. [PMID: 38515611 PMCID: PMC10951295 DOI: 10.1016/j.bioactmat.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Low back pain is among the most grave public health concerns worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The destruction of annulus fibrosus (AF) is the primary cause of IVDD. A sustainable and stable treatment system for IVDD is lacking because of the special organizational structure and low nutrient supply of AF. We here found that IVDD results in the impaired mitochondrial function of AF tissue, and mitochondrial autophagy (mitophagy) plays a protective role in this process. We therefore reported a thread-structural microneedle (T-MN) matching the ring structure of AF. Based on the adsorption effect of laminin, our T-MN could load with bone marrow mesenchymal stem cell-derived exosomes to envelope the regulating mitophagy microRNA (miRNA 378), named as T-MN@EXO@miR-378. In general, we offered in situ locking in the defect site of AF to prevent nucleus pulposus leakage and promoted AF repair. The design of the thread structure was aimed at bionically matching the layered AF structure, thereby providing stronger adhesion. The T-MN@EXO@miR-378 effectively attached to AF and slowly released therapeutic engineered exosomes, and prevented IVDD progression by restoring mitophagy, promoting AF cell proliferation and migration, and inhibiting the pathological remodeling of the extracellular matrix. This functional system can be used as an excellent tool for sustained drug release and has a certain prospect in substituting the conventional treatment of IVDD.
Collapse
Affiliation(s)
- Shaojun Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Meng Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Hongyuan Xing
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zhan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zhou Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Miaojie Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zilong Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ning Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| |
Collapse
|
36
|
Zhou H, He J, Liu R, Cheng J, Yuan Y, Mao W, Zhou J, He H, Liu Q, Tan W, Shuai C, Deng Y. Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration. Bioact Mater 2024; 37:51-71. [PMID: 38515609 PMCID: PMC10954684 DOI: 10.1016/j.bioactmat.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) can be caused by aging, injury, and genetic factors. The pathological changes associated with IVDD include the excessive accumulation of reactive oxygen species (ROS), cellular pyroptosis, and extracellular matrix (ECM) degradation. There are currently no approved specific molecular therapies for IVDD. In this study, we developed a multifunctional and microenvironment-responsive metal-phenolic network release platform, termed TMP@Alg-PBA/PVA, which could treat (IL-1β)-induced IVDD. The metal-phenolic network (TA-Mn-PVP, TMP) released from this platform targeted mitochondria to efficiently scavenge ROS and reduce ECM degradation. Pyroptosis was suppressed through the inhibition of the IL-17/ERK signaling pathway. These findings demonstrate the versatility of the platform. And in a rat model of IVDD, TMP@Alg-PBA/PVA exhibited excellent therapeutic effects by reducing the progression of the disease. TMP@Alg-PBA/PVA, therefore, presents clinical potential for the treatment of IVDD.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Jinpeng He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Renfeng Liu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yuhao Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wanpu Mao
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Jun Zhou
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Honghui He
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Qianqi Liu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
37
|
Wang D, Zhang L, He D, Zhang Y, Zhao L, Miao Z, Cheng W, Zhu C, Shao Y, Ge G, Zhu H, Jin H, Zhang W, Pan H. A natural hydrogel complex improves intervertebral disc degeneration by correcting fatty acid metabolism and inhibiting nucleus pulposus cell pyroptosis. Mater Today Bio 2024; 26:101081. [PMID: 38741924 PMCID: PMC11089368 DOI: 10.1016/j.mtbio.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The degeneration of intervertebral discs is strongly associated with the occurrence of pyroptosis in nucleus pulposus (NP) cells. This pyroptosis is characterized by abnormal metabolism of fatty acids in the degenerative pathological state, which is further exacerbated by the inflammatory microenvironment and degradation of the extracellular matrix. In order to address this issue, we have developed a fibrin hydrogel complex (FG@PEV). This intricate formulation amalgamates the beneficial attributes of platelet extravasation vesicles, contributing to tissue repair and regeneration. Furthermore, this complex showcases exceptional stability, gradual-release capabilities, and a high degree of biocompatibility. In order to substantiate the biological significance of FG@PEV in intervertebral disc degeneration (IVDD), we conducted a comprehensive investigation into its potential mechanism of action through the integration of RNA-seq sequencing and metabolomics analysis. Furthermore, these findings were subsequently validated through experimentation in both in vivo and in vitro models. The experimental results revealed that the FG@PEV intervention possesses the capability to reshape the inflammatory microenvironment within the disc. It also addresses the irregularities in fatty acid metabolism of nucleus pulposus cells, consequently hindering cellular pyroptosis and slowing down disc degeneration through the regulation of extracellular matrix synthesis and degradation. As a result, this injectable gel system represents a promising and innovative therapeutic approach for mitigating disc degeneration.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Lan Zhao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - HongTing Jin
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| |
Collapse
|
38
|
Xu X, Li J, Lu Y, Shan Y, Shen Z, Sun F, Zhu J, Chen W, Shi H. Extracellular Vesicles in the Repair of Bone and Cartilage Injury: From Macro‐Delivery to Micro‐Modification. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 01/06/2025]
Abstract
AbstractExtracellular vesicles (EVs) are intermediaries in intercellular signal transmission and material exchange and have attracted significant attention from researchers in bone and cartilage repair. These nanoscale vesicles hold immense potential in facilitating bone and cartilage repair and regeneration by regulating the microenvironment at an injury site. However, their in vivo utilization is limited by their self‐clearance and random distribution. Therefore, various delivery platforms have been developed to improve EV targeting and retention rates in target organs while achieving a controlled release of EVs. Additionally, engineering modification of EVs has been proposed to effectively enhance EVs' intrinsic targeting and drug‐loading abilities and further improve their therapeutic effects on bone and cartilage injuries. This review aims to introduce the biogenesis of EVs and their regulatory mechanisms in the microenvironment of bone and cartilage injuries and comprehensively discuss the application of EV‐delivery platforms of different materials and various EV engineering modification methods in treating bone and cartilage injuries. The review's findings can help advance EV research and develop new strategies for improving the therapy of bone and cartilage injuries.
Collapse
Affiliation(s)
- Xiangyu Xu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Jialu Li
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Yi Lu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Yibo Shan
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Zhiming Shen
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Fei Sun
- Department of Thoracic Surgery Taizhou People's Hospital Affiliated to Nanjing Medical University Taizhou 225300 China
| | - Jianwei Zhu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Wenxuan Chen
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Hongcan Shi
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| |
Collapse
|
39
|
Li W, Xing X, Shen C, Hu C. Tumor cell-derived exosomal miR-193b-3p promotes tumor-associated macrophage activation to facilitate nasopharyngeal cancer cell invasion and radioresistances. Heliyon 2024; 10:e30808. [PMID: 38818176 PMCID: PMC11137362 DOI: 10.1016/j.heliyon.2024.e30808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Background Communication between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) plays a crucial role in accelerating nasopharyngeal cancer (NPC) metastasis and radioresistance. However, the mechanisms through which NPC cells regulate the properties and activation of TAMs during NPC progression are not yet fully understood. Methods A high-metastatic NPC subclone (HMC) and a low-metastatic NPC subclone (LMC) were screened from the CNE-2 cell line and exosomes were collected from HMCs and LMCs, respectively. The effects of HMC- and LMC-derived exosomes (HMC-Exos and LMC-Exos) on the regulation of TAM activation were evaluated by assessing the levels of inflammation-related or immunosuppression-related genes. The role of miRNA-193b-3p (miR-193b) in mediating communication between NPCs and TAMs was assessed using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot analysis, Transwell assays, and clonogenic survival assays. Results HMCs and HMC-Exos exhibited a greater capacity to facilitate macrophage protumorigenic activation than LMCs and LMC-Exos. miR-193b levels derived from HMC-Exos were higher than those from LMC-Exos, and miR-193b levels were higher in metastatic NPC tissue-derived TAMs than in non-metastatic NPC tissue-derived TAMs. The upregulated miR-193b was packaged into exosomes and transferred to macrophages. Functionally, miR-193b up-regulation accelerated TAM activation by directly targeting mitogen-activated protein/ERK kinase kinase 3 (MEKK3). As a result, miR-193b-overexpressed macrophages facilitated NPC cell invasion and radioresistance. Conclusions These data revealed a critical role for exosomal miR-193b in mediating intercellular communication between NPC cells and macrophages, providing a potential target for NPC treatment.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Xing Xing
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Chunying Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
40
|
Li Q, Liang W, Wu H, Li J, Wang G, Zhen Y, An Y. Challenges in Application: Gelation Strategies of DAT-Based Hydrogel Scaffolds. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38666688 DOI: 10.1089/ten.teb.2023.0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Decellularized adipose tissue (DAT) has great clinical applicability, owing to its abundant source material, natural extracellular matrix microenvironment, and nonimmunogenic attributes, rendering it a versatile resource in the realm of tissue engineering. However, practical implementations are confronted with multifarious limitations. Among these, the selection of an appropriate gelation strategy serves as the foundation for adapting to diverse clinical contexts. The cross-linking strategies under varying physical or chemical conditions exert profound influences on the ultimate morphology and therapeutic efficacy of DAT. This review sums up the processes of DAT decellularization and subsequent gelation, with a specific emphasis on the diverse gelation strategies employed in recent experimental applications of DAT. The review expounds upon methodologies, underlying principles, and clinical implications of different gelation strategies, aiming to offer insights and inspiration for the application of DAT in tissue engineering and advance research for tissue engineering scaffold development.
Collapse
Affiliation(s)
- Qiaoyu Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Jingming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
41
|
Rahmati S, Khazaei M, Abpeikar Z, Soleimanizadeh A, Rezakhani L. Exosome-loaded decellularized tissue: Opening a new window for regenerative medicine. J Tissue Viability 2024; 33:332-344. [PMID: 38594147 DOI: 10.1016/j.jtv.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSCs-EXO) have received a lot of interest recently as a potential therapeutic tool in regenerative medicine. Extracellular vesicles (EVs) known as exosomes (EXOs) are crucial for cell-cell communication throughout a variety of activities including stress response, aging, angiogenesis, and cell differentiation. Exploration of the potential use of EXOs as essential therapeutic effectors of MSCs to encourage tissue regeneration was motivated by success in the field of regenerative medicine. EXOs have been administered to target tissues using a variety of methods, including direct, intravenous, intraperitoneal injection, oral delivery, and hydrogel-based encapsulation, in various disease models. Despite the significant advances in EXO therapy, various methods are still being researched to optimize the therapeutic applications of these nanoparticles, and it is not completely clear which approach to EXO administration will have the greatest effects. Here, we will review emerging developments in the applications of EXOs loaded into decellularized tissues as therapeutic agents for use in regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arghavan Soleimanizadeh
- Faculty of Medicine, Graduate School 'Molecular Medicine, University of Ulm, 89081, Ulm, Germany
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
42
|
Nezadi M, Keshvari H, Shokrolahi F, Shokrollahi P. Injectable, self-healing hydrogels based on gelatin, quaternized chitosan, and laponite as localized celecoxib delivery system for nucleus pulpous repair. Int J Biol Macromol 2024; 266:131337. [PMID: 38574911 DOI: 10.1016/j.ijbiomac.2024.131337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Utilization of injectable hydrogels stands as a paradigm of minimally invasive intervention in the context of intervertebral disc degeneration treatment. Restoration of nucleus pulposus (NP) function exerts a profound influence in alleviating back pain. This study introduces an innovative class of injectable shear-thinning hydrogels, founded on quaternized chitosan (QCS), gelatin (GEL), and laponite (LAP) with the capacity for sustained release of the anti-inflammatory drug, celecoxib (CLX). First, synthesis of Magnesium-Aluminum-Layered double hydroxide (LDH) was achieved through a co-precipitation methodology, as a carrier for celecoxib and a source of Mg ions. Intercalation of celecoxib within LDH layers (LDH-CLX) was verified through a battery of analytical techniques, including FTIR, XRD, SEM, EDAX, TGA and UV-visible spectroscopy confirmed a drug loading efficiency of 39.22 ± 0.09 % within LDH. Then, LDH-CLX was loaded in the optimal GEL-QCS-LAP hydrogel under physiological conditions. Release behavior (15 days profile), mechanical properties, swelling ratio, and degradation rate of the resulting composite were evaluated. A G* of 15-47 kPa was recorded for the hydrogel at 22-40 °C, indicating gel stability in this temperature range. Self-healing properties and injectability of the composite were proved by rheological measurements. Also, ex vivo injection into intervertebral disc of sheep, evidenced in situ forming and NP cavity filling behavior of the hydrogel. Support of GEL-QCS-LAP/LDH-CLX (containing mg2+ ions) for viability and proliferation (from ~94 % on day 1 to ~134 % on day 7) of NP cells proved using MTT assay, DAPI and Live/Dead assays. The hydrogel could significantly upregulate secretion of glycosaminoglycan (GAG, from 4.68 ± 0.1 to 27.54 ± 1.0 μg/ml), when LHD-CLX3% was loaded. We conclude that presence of mg2+ ion and celecoxib in the hydrogel can lead to creation of a suitable environment that encourages GAG secretion. In conclusion, the formulated hydrogel holds promise as a minimally invasive candidate for degenerative disc repair.
Collapse
Affiliation(s)
- Maryam Nezadi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Hamid Keshvari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran.
| |
Collapse
|
43
|
Yue Y, Dai W, Wei Y, Cao S, Liao S, Li A, Liu P, Lin J, Zeng H. Unlocking the potential of exosomes: a breakthrough in the theranosis of degenerative orthopaedic diseases. Front Bioeng Biotechnol 2024; 12:1377142. [PMID: 38699435 PMCID: PMC11064847 DOI: 10.3389/fbioe.2024.1377142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Degenerative orthopaedic diseases pose a notable worldwide public health issue attributable to the global aging population. Conventional medical approaches, encompassing physical therapy, pharmaceutical interventions, and surgical methods, face obstacles in halting or reversing the degenerative process. In recent times, exosome-based therapy has gained widespread acceptance and popularity as an effective treatment for degenerative orthopaedic diseases. This therapeutic approach holds the potential for "cell-free" tissue regeneration. Exosomes, membranous vesicles resulting from the fusion of intracellular multivesicles with the cell membrane, are released into the extracellular matrix. Addressing challenges such as the rapid elimination of natural exosomes in vivo and the limitation of drug concentration can be effectively achieved through various strategies, including engineering modification, gene overexpression modification, and biomaterial binding. This review provides a concise overview of the source, classification, and preparation methods of exosomes, followed by an in-depth analysis of their functions and potential applications. Furthermore, the review explores various strategies for utilizing exosomes in the treatment of degenerative orthopaedic diseases, encompassing engineering modification, gene overexpression, and biomaterial binding. The primary objective is to provide a fresh viewpoint on the utilization of exosomes in addressing bone degenerative conditions and to support the practical application of exosomes in the theranosis of degenerative orthopaedic diseases.
Collapse
Affiliation(s)
- Yaohang Yue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei Dai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Siyang Cao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shuai Liao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Aikang Li
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Peng Liu
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianjing Lin
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
44
|
Esmaeilzadeh A, Yeganeh PM, Nazari M, Esmaeilzadeh K. Platelet-derived extracellular vesicles: a new-generation nanostructured tool for chronic wound healing. Nanomedicine (Lond) 2024; 19:915-941. [PMID: 38445377 DOI: 10.2217/nnm-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Chronic nonhealing wounds pose a serious challenge to regaining skin function and integrity. Platelet-derived extracellular vesicles (PEVs) are nanostructured particles with the potential to promote wound healing since they can enhance neovascularization and cell migration and reduce inflammation and scarring. This work provides an innovative overview of the technical laboratory issues in PEV production, PEVs' role in chronic wound healing and the benefits and challenges in its clinical translation. The article also explores the challenges of proper sourcing, extraction techniques and storage conditions, and discusses the necessity of further evaluations and combinational therapeutics, including dressing biomaterials, M2-derived exosomes, mesenchymal stem cells-derived extracellular vesicles and microneedle technology, to boost their therapeutic efficacy as advanced strategies for wound healing.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| |
Collapse
|
45
|
Pan S, Yin Z, Shi C, Xiu H, Wu G, Heng Y, Zhu Z, Zhang J, Gui J, Yu Z, Liang B. Multifunctional Injectable Hydrogel Microparticles Loaded with miR-29a Abundant BMSCs Derived Exosomes Enhanced Bone Regeneration by Regulating Osteogenesis and Angiogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306721. [PMID: 38018340 DOI: 10.1002/smll.202306721] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/28/2023] [Indexed: 11/30/2023]
Abstract
The study investigated whether both the osteogenic and angiogenic potential of Exos (Exosomes) can be enhanced by overexpression of exosomal miRNA (microRNA) and to confirm whether Exos loaded in HMPs (Hydrogel microparticles) exert long-term effects during new bone formation. BMSCs and Exos are successfully obtained. In vitro and in vivo experiments confirmed that HDAC4 (Histone deacetylase 4) is inhibited by miR-29a overexpression accompanied by the upregulation of RUNX2 (Runt-related transcription factor 2) and VEGF (Vascular Endothelial Growth Factor), thereby enhancing osteogenic and angiogenic capabilities. The HMP@Exo system is synthesized from HB-PEGDA (Hyperbranched Poly Ethylene Glycol Diacrylate)- and SH-HA (Sulfhydryl-Modified Hyaluronic Acid)-containing Exos using a microfluidic technique. The HMP surface is modified with RGD (Arg-Gly-Asp) peptides to enhance cell adhesion. The system demonstrated good injectability, remarkable compatibility, outstanding cell adhesion properties, and slow degradation capacity, and the sustained release of Agomir-29a-Exos (Exosomes derived from Agomir-29a transfected BMSCs) from HMPs enhanced the proliferation and migration of BMSCs and HUVECs (Human Umbilical Vein Endothelial Cells) while promoting osteogenesis and angiogenesis. Overall, the findings demonstrate that the HMP@Exo system can effectively maintain the activity and half-life of Exos, accompanied by overexpression of miR-29a (microRNA-29a). The injectable system provides an innovative approach for accelerating fracture healing by coupling osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Shaowei Pan
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Zhaowei Yin
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Chen Shi
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Haonan Xiu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Guanfu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yongyuan Heng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Zhangyu Zhu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Jianchao Gui
- Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Bin Liang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| |
Collapse
|
46
|
Han P, Raveendran N, Liu C, Basu S, Jiao K, Johnson N, Moran CS, Ivanovski S. 3D bioprinted small extracellular vesicles from periodontal cells enhance mesenchymal stromal cell function. BIOMATERIALS ADVANCES 2024; 158:213770. [PMID: 38242057 DOI: 10.1016/j.bioadv.2024.213770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Recent research indicates that combining 3D bioprinting and small extracellular vesicles (sEVs) offers a promising 'cell-free' regenerative medicine approach for various tissue engineering applications. Nonetheless, the majority of existing research has focused on bioprinting of sEVs sourced from cell lines. There remains a notable gap in research regarding the bioprinting of sEVs derived from primary human periodontal cells and their potential impact on ligamentous and osteogenic differentiation. Here, we investigated the effect of 3D bioprinted periodontal cell sEVs constructs on the differentiation potential of human buccal fat pad-derived mesenchymal stromal cells (hBFP-MSCs). Periodontal cell-derived sEVs were enriched by size exclusion chromatography (SEC) with particle-shaped morphology, and characterized by being smaller than 200 nm in size and CD9/CD63/CD81 positive, from primary human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs). The sEVs were then 3D bioprinted in 10 % gelatin methacryloyl (GelMA) via microextrusion bioprinting. Release of sEVs from bioprinted constructs was determined by DiO-labelling and confocal imaging, and CD9 ELISA. Attachment and ligament/osteogenic/cementogenic differentiation of hBFP-MSCs was assessed on bioprinted GelMA, without and with sEVs (GelMA/hPDLCs-sEVs and GelMA/hGFs-sEVs), scaffolds. hBFP-MSCs seeded on the bioprinted sEVs constructs spread well with significantly enhanced focal adhesion, mechanotransduction associated gene expression, and ligament and osteogenesis/cementogenesis differentiation markers in GelMA/hPDLCs-sEVs, compared to GelMA/hGFs-sEVs and GelMA groups. A 2-week osteogenic and ligamentous differentiation showed enhanced ALP staining, calcium formation and toluidine blue stained cells in hBFP-MSCs on bioprinted GelMA/hPDLCs-sEVs constructs compared to the other two groups. The proof-of-concept data from this study supports the notion that 3D bioprinted GelMA/hPDLCs-sEVs scaffolds promote cell attachment, as well as ligamentous, osteogenic and cementogenic differentiation, of hBFP-MSCs in vitro.
Collapse
Affiliation(s)
- Pingping Han
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia.
| | - Nimal Raveendran
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Chun Liu
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Saraswat Basu
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Kexin Jiao
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Nigel Johnson
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Corey S Moran
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia.
| |
Collapse
|
47
|
Genedy HH, Humbert P, Laoulaou B, Le Moal B, Fusellier M, Passirani C, Le Visage C, Guicheux J, Lepeltier É, Clouet J. MicroRNA-targeting nanomedicines for the treatment of intervertebral disc degeneration. Adv Drug Deliv Rev 2024; 207:115214. [PMID: 38395361 DOI: 10.1016/j.addr.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Low back pain stands as a pervasive global health concern, afflicting almost 80% of adults at some point in their lives with nearly 40% attributable to intervertebral disc degeneration (IVDD). As only symptomatic relief can be offered to patients there is a dire need for innovative treatments.Given the accumulating evidence that multiple microRNAs (miRs) are dysregulated during IVDD, they could have a huge potential against this debilitating condition. The way miRs can profoundly modulate signaling pathways and influence several cellular processes at once is particularly exciting to tackle this multifaceted disorder. However, miR delivery encounters extracellular and intracellular biological barriers. A promising technology to address this challenge is the vectorization of miRs within nanoparticles, providing both protection and enhancing their uptake within the scarce target cells of the degenerated IVD. This comprehensive review presents the diverse spectrum of miRs' connection with IVDD and demonstrates their therapeutic potential when vectorized in nanomedicines.
Collapse
Affiliation(s)
- Hussein H Genedy
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Paul Humbert
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Bilel Laoulaou
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Brian Le Moal
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Marion Fusellier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Department of Diagnostic Imaging, CRIP, ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes F-44307, France
| | | | - Catherine Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Élise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Institut Universitaire de France (IUF), France.
| | - Johann Clouet
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| |
Collapse
|
48
|
周 豪, 陈 涛, 吴 爱. [Effects of Oxidative Stress on Mitochondrial Functions and Intervertebral Disc Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:249-255. [PMID: 38645848 PMCID: PMC11026887 DOI: 10.12182/20240360201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 04/23/2024]
Abstract
Intervertebral disc degeneration is widely recognized as one of the main causes of lower back pain. Intervertebral disc cells are the primary cellular components of the discs, responsible for synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the discs. Additionally, intervertebral disc cells are involved in maintaining the nutritional and metabolic balance, as well as exerting antioxidant and anti-inflammatory effects within the intervertebral discs. Consequently, intervertebral disc cells play a crucial role in the process of disc degeneration. When these cells are exposed to oxidative stress, mitochondria can be damaged, which may disrupt normal cellular function and accelerate degenerative changes. Mitochondria serve as the powerhouse of cells, being the primary energy-producing organelles that control a number of vital processes, such as cell death. On the other hand, mitochondrial dysfunction may be associated with various degenerative pathophysiological conditions. Moreover, mitochondria are the key site for oxidation-reduction reactions. Excessive oxidative stress and reactive oxygen species can negatively impact on mitochondrial function, potentially leading to mitochondrial damage and impaired functionality. These factors, in turn, triggers inflammatory responses, mitochondrial DNA damage, and cell apoptosis, playing a significant role in the pathological processes of intervertebral disc cell degeneration. This review is focused on exploring the impact of oxidative stress and reactive oxygen species on mitochondria and the crucial roles played by oxidative stress and reactive oxygen species in the pathological processes of intervertebral disc cells. In addition, we discussed current cutting-edge treatments and introduced the use of mitochondrial antioxidants and protectants as a potential method to slow down oxidative stress in the treatment of disc degeneration.
Collapse
Affiliation(s)
- 豪 周
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 涛 陈
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 爱悯 吴
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
49
|
Xiang H, Zhao W, Jiang K, He J, Chen L, Cui W, Li Y. Progress in regulating inflammatory biomaterials for intervertebral disc regeneration. Bioact Mater 2024; 33:506-531. [PMID: 38162512 PMCID: PMC10755503 DOI: 10.1016/j.bioactmat.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is rising worldwide and leading to significant health issues and financial strain for patients. Traditional treatments for IVDD can alleviate pain but do not reverse disease progression, and surgical removal of the damaged disc may be required for advanced disease. The inflammatory microenvironment is a key driver in the development of disc degeneration. Suitable anti-inflammatory substances are critical for controlling inflammation in IVDD. Several treatment options, including glucocorticoids, non-steroidal anti-inflammatory drugs, and biotherapy, are being studied for their potential to reduce inflammation. However, anti-inflammatories often have a short half-life when applied directly and are quickly excreted, thus limiting their therapeutic effects. Biomaterial-based platforms are being explored as anti-inflammation therapeutic strategies for IVDD treatment. This review introduces the pathophysiology of IVDD and discusses anti-inflammatory therapeutics and the components of these unique biomaterial platforms as comprehensive treatment systems. We discuss the strengths, shortcomings, and development prospects for various biomaterials platforms used to modulate the inflammatory microenvironment, thus providing guidance for future breakthroughs in IVDD treatment.
Collapse
Affiliation(s)
- Honglin Xiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Ke Jiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Jiangtao He
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Lu Chen
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yuling Li
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| |
Collapse
|
50
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|