1
|
Wang Y, Geng X, Guo Z, Chu D, Liu R, Cheng B, Cui H, Li C, Li J, Li Z. M2 macrophages promote subconjunctival fibrosis through YAP/TAZ signalling. Ann Med 2024; 56:2313680. [PMID: 38335557 PMCID: PMC10860428 DOI: 10.1080/07853890.2024.2313680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
PURPOSE To evaluate the role of M2 macrophages in subconjunctival fibrosis after silicone implantation (SI) and investigate the underlying mechanisms. MATERIALS AND METHODS A model of subconjunctival fibrosis was established by SI surgery in rabbit eyes. M2 distribution and collagen deposition were evaluated by histopathology. The effects of M2 cells on the migration (using wound-scratch assay) and activation (by immunofluorescence and western blotting) of human Tenon's fibroblasts (HTFs) were investigated. RESULTS There were more M2 macrophages (CD68+/CD206+ cells) occurring in tissue samples around silicone implant at 2 weeks postoperatively. Dense collagen deposition was observed at 8 weeks after SI. In vitro experiment showed M2 expressed high level of CD206 and transforming growth factor-β1 (TGF-β1). The M2-conditioned medium promoted HTFs migration and the synthesis of collagen I and fibronectin. Meanwhile, M2-conditioned medium increased the protein levels of TGF-β1, TGF-βR II, p-Smad2/3, yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ). Verteporfin, a YAP inhibitor, suppressedTGF-β1/Smad2/3-YAP/TAZ pathway and attenuated M2-induced extracellular matrix deposition by HTFs. CONCLUSIONS TGF-β1/Smad2/3-YAP/TAZ signalling may be involved in M2-induced fibrotic activities in HTFs. M2 plays a key role in promoting subconjunctival fibrosis and can serve as an attractive target for anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Yiwei Wang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Boyuan Cheng
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengcheng Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Wang Y, Geng X, Sun X, Cui H, Guo Z, Chu D, Li J, Li Z. Celastrol alleviates subconjunctival fibrosis induced by silicone implants mimicking glaucoma surgery. Eur J Pharm Biopharm 2024; 201:114352. [PMID: 38851459 DOI: 10.1016/j.ejpb.2024.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
Subconjunctival fibrosis is critical to the outcomes of several ophthalmic conditions or procedures, such as glaucoma filtering surgery. This study aimed to investigate the anti-fibrotic effect of celastrol on subconjunctival fibrosis and to further reveal the underlying mechanisms. We used celastrol-loaded nanomicelles hydrogel hybrid as a sustained-release drug. A rabbit model of subconjunctival fibrosis following silicone implantation was used for in vivo study, and TGF-β1-induced human pterygium fibroblast (HPF) activation as an in vitro model. The effects of celastrol on inhibiting TGF-β1-induced migration and proliferation of HPFs were evaluated by scratch wound assay and CCK-8, respectively. Immunofluorescence and western blotting were used to examine the effect of celastrol on the expression of α-SMA, collagen I, fibronectin, and the targets of the Hippo signaling pathway. We found that in vivo celastrol treatment reduced the expression of YAP and TAZ in subconjunctival tissue. Moreover, celastrol alleviated collagen deposition and subconjunctival fibrosis at 8 weeks. No obvious tissue toxicity was observed in the rabbit models. Mechanistically, celastrol significantly inhibited TGF-β1-induced proliferation and migration of HPFs. Pretreatment of HPFs with celastrol also suppressed the TGF-β1-induced protein expression of α-SMA, collagen I, fibronectin, TGF-βRII, phosphorylated Smad2/3, YAP, TAZ, and TEAD1. In conclusion, celastrol effectively prevented subconjunctival fibrosis through inhibiting TGF-β1/Smad2/3-YAP/TAZ pathway. Celastrol could serve as a promising therapy for subconjunctival fibrosis.
Collapse
Affiliation(s)
- Yiwei Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xue Sun
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
3
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
4
|
Cui B, Zhang N, Zhang W, Ning Q, Wang X, Feng H, Liu R, Li Z, Li J. ROS-responsive celastrol-nanomedicine alleviates inflammation for dry eye disease. NANOTECHNOLOGY 2024; 35:335102. [PMID: 38829163 DOI: 10.1088/1361-6528/ad4ee5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Dry eye disease (DED) is a major global eye disease leading to severe eye discomfort and even vision impairment. The incidence of DED has been gradually increasing with the high frequency of use of electronic devices. It has been demonstrated that celastrol (Cel) has excellent therapeutic efficacy in ocular disorders. However, the poor water solubility and short half-life of Cel limit its further therapeutic applications. In this work, a reactive oxygen species (ROS) sensitive polymeric micelle was fabricated for Cel delivery. The micelles improve the solubility of Cel, and the resulting Cel loaded micelles exhibit an enhanced intervention effect for DED. Thein vitroresults demonstrated that Cel-nanomedicine had a marked ROS responsive release behavior. The results ofin vitroandin vivoexperiments demonstrated that Cel has excellent biological activities to alleviate inflammation in DED by inhibiting TLR4 signaling activation and reducing pro-inflammatory cytokine expression. Therefore, the Cel nanomedicine can effectively eliminate ocular inflammation, promote corneal epithelial repair, and restore the number of goblet cells and tear secretion, providing a new option for the treatment of DED.
Collapse
Affiliation(s)
- Bingbing Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Nan Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Wei Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qingyun Ning
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Xing Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Huayang Feng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
5
|
Li Z, Liu R, Zhang X, Guo Z, Geng X, Chu D, Cui H, Zhang A, Li W, Zhu L, Li J. An injectable thermoresponsive-hydrogel for lamellar keratoplasty: In-situ releases celastrol and hampers corneal scars. J Control Release 2024; 369:604-616. [PMID: 38582337 DOI: 10.1016/j.jconrel.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Corneal stromal fibrosis is a common cause of visual impairment resulting from corneal injury, inflammation and surgery. Therefore, there is an unmet need for inhibiting corneal stromal fibrosis. However, bioavailability of topical eye drops is very low due to the tear and corneal barriers. In situ delivery offers a unique alternative to improve efficacy and minimize systemic toxicity. Herein, a drug delivery platform based on thermoresponsive injectable hydrogel/nano-micelles composite with in situ drug-controlled release and long-acting features is developed to prevent corneal scarring and reduce corneal stromal fibrosis in lamellar keratoplasty. The in-situ gelation hydrogels enabled direct delivery of celastrol to the corneal stroma. In vivo evaluation with a rabbit anterior lamellar keratoplasty model showed that hydrogel/micelles platform could effectively inhibit corneal stromal fibrosis. This strategy achieves controlled and prolonged release of celastrol in the corneal stroma of rabbit. Following a single corneal interlamellar injection, celastrol effectively alleviated fibrosis via mTORC1 signal promoting autophagy and inhibiting TGF-β1/Smad2/3 signaling pathway. Overall, this strategy demonstrates promise for the clinical application of celastrol in preventing corneal scarring and reducing corneal stromal fibrosis post-lamellar keratoplasty, highlighting the potential benefits of targeted drug delivery systems in ocular therapeutics.
Collapse
Affiliation(s)
- Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
6
|
Chen H, Geng X, Ning Q, Shi L, Zhang N, He S, Zhao M, Zhang J, Li Z, Shi J, Li J. Biophilic Positive Carbon Dot Exerts Antifungal Activity and Augments Corneal Permeation for Fungal Keratitis. NANO LETTERS 2024; 24:4044-4053. [PMID: 38517749 DOI: 10.1021/acs.nanolett.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Fungal keratitis (FK) is an infectious eye disease that poses a significant risk of blindness. However, the effectiveness of conventional antifungal drugs is limited due to the intrinsic ocular barrier that impedes drug absorption. There is an urgent need to develop new therapeutic strategies to effectively combat FK. Herein, we synthesized an ultrasmall positively charged carbon dot using a simple stage-melting method. The carbon dot can penetrate the corneal barrier by opening the tight junctions, allowing them to reach the lesion site and effectively kill the fungi. The results both in vitro and in vivo demonstrated that it exhibited good biocompatibility and antifungal activity, significantly improving the therapeutic effect in a mouse model of FK. Therefore, this biophilic ultrasmall size and positive carbon dot, characterized by its ability to penetrate the corneal barrier and its antifungal properties, may offer valuable insights into the design of effective ocular nanomedicines.
Collapse
Affiliation(s)
- Huiying Chen
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
- School of Material Science and Engineering, Zhengzhou University, 450001 Zhengzhou, China
| | - Xiwen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Qingyun Ning
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
- School of Material Science and Engineering, Zhengzhou University, 450001 Zhengzhou, China
| | - Liuqi Shi
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Nan Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Siyu He
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Mengyang Zhao
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Jun Shi
- School of Material Science and Engineering, Zhengzhou University, 450001 Zhengzhou, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
- School of Material Science and Engineering, Zhengzhou University, 450001 Zhengzhou, China
| |
Collapse
|
7
|
Ai S, Li Y, Zheng H, Zhang M, Tao J, Liu W, Peng L, Wang Z, Wang Y. Collision of herbal medicine and nanotechnology: a bibliometric analysis of herbal nanoparticles from 2004 to 2023. J Nanobiotechnology 2024; 22:140. [PMID: 38556857 PMCID: PMC10983666 DOI: 10.1186/s12951-024-02426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Herbal nanoparticles are made from natural herbs/medicinal plants, their extracts, or a combination with other nanoparticle carriers. Compared to traditional herbs, herbal nanoparticles lead to improved bioavailability, enhanced stability, and reduced toxicity. Previous research indicates that herbal medicine nanomaterials are rapidly advancing and making significant progress; however, bibliometric analysis and knowledge mapping for herbal nanoparticles are currently lacking. We performed a bibliometric analysis by retrieving publications related to herbal nanoparticles from the Web of Science Core Collection (WoSCC) database spanning from 2004 to 2023. Data processing was performed using the R package Bibliometrix, VOSviewers, and CiteSpace. RESULTS In total, 1876 articles related to herbal nanoparticles were identified, originating from various countries, with China being the primary contributing country. The number of publications in this field increases annually. Beijing University of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, and Saveetha University in India are prominent research institutions in this domain. The Journal "International Journal of Nanomedicine" has the highest number of publications. The number of authors of these publications reached 8234, with Yan Zhao, Yue Zhang, and Huihua Qu being the most prolific authors and Yan Zhao being the most frequently cited author. "Traditional Chinese medicine," "drug delivery," and "green synthesis" are the main research focal points. Themes such as "green synthesis," "curcumin," "wound healing," "drug delivery," and "carbon dots" may represent emerging research areas. CONCLUSIONS Our study findings assist in identifying the latest research frontiers and hot topics, providing valuable references for scholars investigating the role of nanotechnology in herbal medicine.
Collapse
Affiliation(s)
- Sinan Ai
- China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayin Tao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China.
| | - Zhen Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Zhang Y, Yang J, Ji Y, Liang Z, Wang Y, Zhang J. Development of Osthole-Loaded Microemulsions as a Prospective Ocular Delivery System for the Treatment of Corneal Neovascularization: In Vitro and In Vivo Assessments. Pharmaceuticals (Basel) 2023; 16:1342. [PMID: 37895813 PMCID: PMC10610237 DOI: 10.3390/ph16101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Osthole (OST), a natural coumarin compound, has shown a significant inhibitory effect on corneal neovascularization (CNV). But, its effect on treating CNV is restricted by its water insolubility. To overcome this limitation, an OST-loaded microemulsion (OST-ME) was created to improve the drug's therapeutic effect on CNV after topical administration. The OST-ME formulation comprised Capryol-90 (CP-90), Cremophor® EL (EL-35), Transcutol-P (TSP) and water, and sodium hyaluronate (SH) was also included to increase viscosity. The OST-ME had a droplet size of 16.18 ± 0.02 nm and a low polydispersity index (0.09 ± 0.00). In vitro drug release from OST-ME fitted well to the Higuchi release kinetics model. Cytotoxicity assays demonstrated that OST-ME was not notably toxic to human corneal epithelial cells (HCECs), and the formulation had no irritation to rabbit eyes. Ocular pharmacokinetics studies showed that the areas under the concentration-time curves (AUC0-t) in the cornea and conjunctiva were 19.74 and 63.96 μg/g*min after the administration of OST-ME, both of which were 28.2- and 102.34-fold higher than those after the administration of OST suspension (OST-Susp). Moreover, OST-ME (0.1%) presented a similar therapeutic effect to commercially available dexamethasone eye drops (0.025%) on CNV in mouse models. In conclusion, the optimized OST-ME exhibited good tolerance and enhanced 28.2- and 102.34-fold bioavailability in the cornea and conjunctiva tissues compared with suspensions in rabbit eyes. The OST-ME is a potential ocular drug delivery for anti-CNV.
Collapse
Affiliation(s)
- Yali Zhang
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jingjing Yang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Yinjian Ji
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhen Liang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Yuwei Wang
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junjie Zhang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| |
Collapse
|
9
|
Zhang P, Wu P, Khan UZ, Zhou Z, Sui X, Li C, Dong K, Liu Y, Qing L, Tang J. Exosomes derived from LPS-preconditioned bone marrow-derived MSC modulate macrophage plasticity to promote allograft survival via the NF-κB/NLRP3 signaling pathway. J Nanobiotechnology 2023; 21:332. [PMID: 37716974 PMCID: PMC10504750 DOI: 10.1186/s12951-023-02087-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVES This study investigated whether exosomes from LPS pretreated bone marrow mesenchymal stem cells (LPS pre-MSCs) could prolong skin graft survival. METHODS The exosomes were isolated from the supernatant of MSCs pretreated with LPS. LPS pre-Exo and rapamycin were injected via the tail vein into C57BL/6 mice allografted with BALB/c skin; graft survival was observed and evaluated. The accumulation and polarization of macrophages were examined by immunohistochemistry. The differentiation of macrophages in the spleen was analyzed by flow cytometry. For in vitro, an inflammatory model was established. Specifically, bone marrow-derived macrophages (BMDMs) were isolated and cultured with LPS (100 ng/ml) for 3 h, and were further treated with LPS pre-Exo for 24 h or 48 h. The molecular signaling pathway responsible for modulating inflammation was examined by Western blotting. The expressions of downstream inflammatory cytokines were determined by Elisa, and the polarization of macrophages was analyzed by flow cytometry. RESULTS LPS pre-Exo could better ablate inflammation compared to untreated MSC-derived exosomes (BM-Exo). These loaded factors inhibited the expressions of inflammatory factors via a negative feedback mechanism. In vivo, LPS pre-Exo significantly attenuated inflammatory infiltration, thus improving the survival of allogeneic skin graft. Flow cytometric analysis of BMDMs showed that LPS pre-Exo were involved in the regulation of macrophage polarization and immune homeostasis during inflammation. Further investigation revealed that the NF-κB/NLRP3/procaspase-1/IL-1β signaling pathway played a key role in LPS pre-Exo-mediated regulation of macrophage polarization. Inhibiting NF-κB in BMDMs could abolish the LPS-induced activation of inflammatory pathways and the polarization of M1 macrophages while increasing the proportion of M2 cells. CONCLUSION LPS pre-Exo are able to switch the polarization of macrophages and enhance the resolution of inflammation. This type of exosomes provides an improved immunotherapeutic potential in prolonging graft survival.
Collapse
Affiliation(s)
- PeiYao Zhang
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Panfeng Wu
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Umar Zeb Khan
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Zekun Zhou
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Xinlei Sui
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Cheng Li
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Kangkang Dong
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Yongjun Liu
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Liming Qing
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China.
| | - Juyu Tang
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Shi J, Yang J, Xu H, Luo Q, Sun J, Zhang Y, Liang Z, Zhao N, Zhang J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front Pharmacol 2023; 14:1157084. [PMID: 37497104 PMCID: PMC10366539 DOI: 10.3389/fphar.2023.1157084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Corneal neovascularization (CNV) is a pathological condition that can disrupt corneal transparency, thus harming visual acuity. However, there is no effective drug to treat CNV. Sunitinib (STB), a small-molecule multiple receptor tyrosine kinase inhibitor, was shown to have an effect on CNV. The purpose of this study was to develop an STB microemulsion (STB-ME) eye drop to inhibit CNV by topical application. Methods: We successfully prepared an STB-ME by the phase inversion emulsification method, and the physicochemical properties of STB-MEs were investigated. The short-term storage stability, cytotoxicity to human corneal epithelial cells, drug release, ocular irritation, ocular pharmacokinetics and the inhibitory effect on CNV were evaluated in vitro and in vivo. Results: The optimal formulation of STB-ME is composed of oleic acid, CRH 40, Transcutol P, water and sodium hyaluronate (SH). It is a uniform spherical particle with a mean droplet size of 18.74 ± 0.09 nm and a polydispersity index of 0.196 ± 0.004. In the in vitro drug release results, STB-ME showed sustained release and was best fitted by a Korsmeyer-Peppas model (R 2 = 0.9960). The results of the ocular pharmacokinetics in rabbits showed that the formulation containing SH increased the bioavailability in the cornea (2.47-fold) and conjunctiva (2.14-fold). STB-ME (0.05% and 0.1%), administered topically, suppressed alkali burn-induced CNV in mice more effectively than saline, and high-dose (0.1%) STB-ME had similar efficacy to dexamethasone (0.025%). Conclusion: This study provides a promising formulation of STB-ME for the inhibition of CNV by topical administration, which has the excellent characteristics of effectiveness, sustained release and high ocular bioavailability.
Collapse
Affiliation(s)
- Jieran Shi
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qing Luo
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yali Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Geng X, Wang Y, Cui H, Li C, Cheng B, Cui B, Liu R, Zhang J, Zhu L, Li J, Shen J, Li Z. Carboxymethyl chitosan regulates macrophages polarization to inhibit early subconjunctival inflammation in conjunctival injury. Int J Biol Macromol 2023:125159. [PMID: 37268068 DOI: 10.1016/j.ijbiomac.2023.125159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Persistent subconjunctival inflammation leads to subconjunctival fibrosis and eventual visual impairment. There is an unmet need for how to effectively inhibit subconjunctival inflammation. Herein, the effect of carboxymethyl chitosan (CMCS) on subconjunctival inflammation was investigated and the mechanism was involved. The evaluation of cytocompatibility demonstrated that CMCS had good biocompatibility. The in vitro results showed that CMCS inhibited secretions of pro-inflammatory cytokines (IL-6, TNF-α, IL-8 and IFN-γ) and chemokines (MCP-1), and downregulated TLR4/MyD88/NF-κB pathway in M1. The in vivo results displayed that CMCS alleviated conjunctival edema and congestion, and improved conjunctival epithelial reconstruction significantly. Both in vitro and in vivo results demonstrated that CMCS inhibited the infiltration of macrophages and reduced the expressions of iNOS, IL-6, IL-8 and TNF-α in the conjunctiva. Given that CMCS indicated the activities of inhibiting M1 polarization, NF-κB pathway, and subconjunctival inflammation, which may be employed as a potent treatment for subconjunctival inflammation.
Collapse
Affiliation(s)
- Xingchen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yiwei Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Chengcheng Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Boyuan Cheng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Bingbing Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Jianliang Shen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
12
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
13
|
Liu R, Li J, Guo Z, Chu D, Li C, Shi L, Zhang J, Zhu L, Li Z. Celastrol Alleviates Corneal Stromal Fibrosis by Inhibiting TGF-β1/Smad2/3-YAP/TAZ Signaling After Descemet Stripping Endothelial Keratoplasty. Invest Ophthalmol Vis Sci 2023; 64:9. [PMID: 36867128 PMCID: PMC9988716 DOI: 10.1167/iovs.64.3.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose The purpose of this study was to investigate the effect of celastrol (CEL) on corneal stromal fibrosis after Descemet stripping endothelial keratoplasty (DSEK) and its associated mechanism. Methods Rabbit corneal fibroblasts (RCFs) were isolated, cultured, and identified. A CEL-loaded positive nanomedicine (CPNM) was developed to enhance corneal penetration. CCK-8 and scratch assays were performed to evaluate cytotoxicity and the effects of CEL on the migration of RCFs. The RCFs were activated by TGF-β1 with or without CEL treatment, and then the protein expression levels of TGFβRII, Smad2/3, YAP, TAZ, TEAD1, α-SMA, TGF-β1, FN, and COLI were assessed by immunofluorescence or Western blotting (WB). An in vivo DSEK model was established in New Zealand White rabbits. The corneas were stained using H&E, YAP, TAZ, TGF-β1, Smad2/3, TGFβRII, Masson, and COLI. H&E staining of the eyeball was performed to assess the tissue toxicity of CEL at 8 weeks after DSEK. Results In vitro CEL treatment inhibited the proliferation and migration of RCFs induced by TGF-β1. Immunofluorescence and WB showed that CEL significantly inhibited the protein expression of TGF-β1, Smad2/3, YAP, TAZ, TEAD1, α-SMA, TGF-βRII, FN, and COL1 induced by TGF-β1 in RCFs. In the rabbit DSEK model, CEL significantly reduced the levels of YAP, TAZ, TGF-β1, Smad2/3, TGFβRII, and collagen. No obvious tissue toxicity was observed in the CPNM group. Conclusions CEL effectively inhibited corneal stromal fibrosis after DSEK. The TGF-β1/Smad2/3-YAP/TAZ pathway may be involved in the mechanism by which CEL alleviates corneal fibrosis. The CPNM is a safe and effective treatment strategy for corneal stromal fibrosis after DSEK.
Collapse
Affiliation(s)
- Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengcheng Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Liuqi Shi
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Zhang Y, Liu R, Li C, Shi L, Guo Z, Zhu L, Li W, Li J, Li Z. Celastrol-based nanomedicine hydrogels eliminate posterior capsule opacification. Nanomedicine (Lond) 2022; 17:1449-1461. [PMID: 36205091 DOI: 10.2217/nnm-2022-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To formulate an injectable thermosensitive micelle-hydrogel hybrid system loaded with celastrol (celastrol-loaded micelle hydrogel: CMG) to prevent posterior capsule opacification (PCO). Materials & methods: Celastrol-loaded micelles were embedded in a thermosensitive hydrogel matrix to enable controlled on-demand celastrol delivery into the residual capsule. The efficacy and mechanisms of the system for eliminating PCO were evaluated in rabbits. Results: Celastrol-loaded micelles inhibited the migration and proliferation of lens epithelial cells induced by TGF-β1. Celastrol prevents epithelial-mesenchymal transition in lens epithelial cells induced by TGF-β1 through the TGF-β1/Smad2/3/TEAD1 signaling pathway. In vivo efficiency evaluations showed that CMG demonstrated an excellent inhibitory effect on PCO in rabbits and had no obvious tissue toxicity. Conclusion: Injectable CMG may represent a promising ophthalmic platform for preventing PCO. This versatile injectable micelle-hydrogel hybrid represents a clinically relevant platform to achieve localized therapy and controlled release of drugs in other disease therapies.
Collapse
Affiliation(s)
- Ying Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, PR China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, PR China
| | - Chengcheng Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, PR China
| | - Liuqi Shi
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, PR China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, PR China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, PR China
| | - Wen Li
- School of Materials Science & Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, PR China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, PR China
| |
Collapse
|
15
|
Liang Z, Zhang Z, Yang J, Lu P, Zhou T, Li J, Zhang J. Assessment to the Antifungal Effects in vitro and the Ocular Pharmacokinetics of Solid-Lipid Nanoparticle in Rabbits. Int J Nanomedicine 2021; 16:7847-7857. [PMID: 34876813 PMCID: PMC8643199 DOI: 10.2147/ijn.s340068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction Fungal keratitis (FK) remains a severe sight-threatening disease, and case management is difficult due to ocular intrinsic barriers and drug shortages. Econazole (ECZ), a broad-spectrum antifungal agent, is limited in ocular applications due to the poor water solubility and strong irritant property. Methods We successfully prepared solid-lipid nanoparticle-based ECZ eye drops (E-SLNs) by microemulsion method, and the physicochemical properties of E-SLNs were investigated. Corneal permeability, antifungal ability against Fusarium spp., irritation and bioavailability compared to ECZ Suspension (E-Susp) were evaluated in vitro and in vivo. Results E-SLNs were a uniform and stable system which had an average particle size of 19 nm and a spherical morphology. E-SLNs also exhibited controlled release, enhanced antifungal activity without irritation. The pharmacokinetic analysis in vivo confirmed that E-SLNs showed an improved ocular bioavailability and the drug concentration in the cornea were above minimum inhibitory concentration (MIC) for 3 h after single administration. Conclusion The E-SLNs colloid system is a promising therapeutic approach for fungal keratitis and could serve as a candidate strategy for other ocular diseases.
Collapse
Affiliation(s)
- Zhen Liang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhen Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jingjing Yang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ping Lu
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Tianyang Zhou
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|