1
|
Wang S, Zhu Y, Zhou Z, Luo Y, Huang Y, Liu Y, Xu T. Integrated Ultrasound-Enrichment and Machine Learning in Colorimetric Lateral Flow Assay for Accurate and Sensitive Clinical Alzheimer's Biomarker Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406196. [PMID: 39297315 PMCID: PMC11558096 DOI: 10.1002/advs.202406196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Indexed: 11/14/2024]
Abstract
The colloidal gold nanoparticle (AuNP)-based colorimetric lateral flow assay (LFA) is one of the most promising analytical tools for point-of-care disease diagnosis. However, the low sensitivity and insufficient accuracy still limit its clinical application. In this work, a machine learning (ML)-optimized colorimetric LFA with ultrasound enrichment is developed to achieve the sensitive and accurate detection of tau proteins for early screening of Alzheimer's disease (AD). The LFA device is integrated with a portable ultrasonic actuator to rapidly enrich microparticles using ultrasound, which is essential for sample pre-enrichment to improve the sensitivity, followed by ML algorithms to classify and predict the enhanced colorimetric signals. The results of the undiluted serum sample testing show that the protocol enables efficient classification and accurate quantification of the AD biomarker tau protein concentration with an average classification accuracy of 98.11% and an average prediction accuracy of 99.99%, achieving a limit of detection (LOD) as sensitive as 10.30 pg mL-1. Further point-of-care testing (POCT) of human plasma samples demonstrates the potential use of LFA in clinical trials. Such a reliable lateral flow immunosensor with high precision and superb sensing performance is expected to put LFA in perspective as an AD clinical diagnostic platform.
Collapse
Affiliation(s)
- Shuqing Wang
- School of Biomedical EngineeringCollege of Chemistry and Environmental EngineeringThe Institute for Advanced Study (IAS)Shenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Yan Zhu
- School of Biomedical EngineeringCollege of Chemistry and Environmental EngineeringThe Institute for Advanced Study (IAS)Shenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Zhongzeng Zhou
- School of Biomedical EngineeringCollege of Chemistry and Environmental EngineeringThe Institute for Advanced Study (IAS)Shenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Yong Luo
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Yan Huang
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Yibiao Liu
- Longgang District Central Hospital of ShenzhenShenzhenGuangdong518116P. R. China
| | - Tailin Xu
- School of Biomedical EngineeringCollege of Chemistry and Environmental EngineeringThe Institute for Advanced Study (IAS)Shenzhen UniversityShenzhenGuangdong518060P. R. China
| |
Collapse
|
2
|
Yang W, Guan F, Yang L, Shou G, Zhu F, Xu Y, Meng Y, Li M, Dong W. Highly sensitive blood-based biomarkers detection of beta-amyloid and phosphorylated-tau181 for Alzheimer's disease. Front Neurol 2024; 15:1445479. [PMID: 39286809 PMCID: PMC11402670 DOI: 10.3389/fneur.2024.1445479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background Plasma biomarker has the potential to be the reliable and propagable approach in the early stage diagnosis of Alzheimer's disease (AD). However, conventional methods appear powerless in the detection of these biomarkers at low concentrations in plasma. Here, we determined plasma biomarker concentrations of patients across the AD spectrum by an improved digital enzyme-linked immunosorbent assay (ELISA) technique. Confirms the predictive and diagnostic value of this method for AD patients and study the relationships between these biomarkers and cognitive status. Methods Plasma concentrations of amyloid-beta 40 (Aβ40), amyloid-beta 42 (Aβ42) and plasma phosphorylated tau at threonine 181 (p-tau181) were determined in 43 AD patients, 33 mild cognitive impairment (MCI) patients and 40 normal cognition (NC) subjects as healthy controls using the improved digital ELISA technique. In addition, all subjects were required to receive neuropsychological assessments. Results Plasma p-tau181 level showed certain discrepancies between NC and MCI (p < 0.05), AD (p < 0.01) groups. The level of plasma Aβ42 (p < 0.05) and Aβ40 (p < 0.01) was significantly different between AD and NC group. The p-tau181 level was able to distinguish AD (AUC = 0.8768) and MCI (AUC = 0.7932) from NC with higher accuracy than Aβ42/Aβ40 ratio (AUC = 0.8343, AUC = 0.6569). Both p-tau181 (CDR: r = 0.388 p < 0.001; MMSE: r = -0.394 p < 0.001) and Aβ42/Aβ40 ratio (CDR: r = -0.413 p < 0.001; MMSE: r = 0.358 p < 0.001) showed stronger positive correlation with clinical dementia rating (CDR) and mini mental state examination (MMSE) scores than Aβ42 (CDR: r = -0.280 p = 0.003; MMSE: r = 0.266 p = 0.005) or Aβ40 (CDR: r = 0.373 p < 0.001; MMSE: r = -0.288 p = 0.002) alone. Conclusion Plasma p-tau181 level and Aβ42/Aβ40 ratio showed promising values in diagnosis of AD and MCI. Our results indicate that this improved digital ELISA diagnosis approach can facilitate early recognition and management of AD and pre-AD patients.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fulin Guan
- Department of Neurology, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Lihui Yang
- Department of Neurology, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Guangli Shou
- Department of Neurology, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fangfang Zhu
- Department of Neurology, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuanyuan Xu
- Department of Neurology, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ying Meng
- Department of Neurology, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Min Li
- Department of Neurology, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wanli Dong
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Zhang L, Cao K, Xie J, Liang X, Gong H, Luo Q, Luo H. Aβ 42 and ROS dual-targeted multifunctional nanocomposite for combination therapy of Alzheimer's disease. J Nanobiotechnology 2024; 22:278. [PMID: 38783363 PMCID: PMC11112798 DOI: 10.1186/s12951-024-02543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Amyloid-β (Aβ) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aβ aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer's disease pathology. Based on the previously developed antibody 1F12 that targets all forms of Aβ42, we developed an Aβ42 and ROS dual-targeting nanocomposite using biodegradable mesoporous silica nanoparticles as carriers to load ultra-small cerium oxide nanocrystals (bMSNs@Ce-1F12). By modifying the brain-targeted rabies virus glycoprotein 29 (RVG29-bMSNs@Ce-1F12), this intelligent nanocomposite can efficiently target brain Aβ-rich regions. Combined with peripheral and central nervous system treatments, RVG29-bMSNs@Ce-1F12 can significantly alleviate AD symptoms by inhibiting Aβ42 misfolding, accelerating Aβ42 clearance, and scavenging ROS. Furthermore, this synergistic effect of ROS scavenging and Aβ clearance exhibited by this Aβ42 and ROS dual-targeted strategy also reduced the burden of hyperphosphorylated tau, alleviated glial cell activation, and ultimately improved cognitive function in APP/PS1 mice. Our findings indicate that RVG29-bMSNs@Ce-1F12 is a promising nanodrug that can facilitate multi-target treatment of AD.
Collapse
Affiliation(s)
- Liding Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Xie
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| | - Haiming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| |
Collapse
|
4
|
Zhang Z, Wang J, Teng H, Liu M, Li Y, Ru S. Highly sensitive lateral flow immunoassays based on Ag@Au nanoflowers with marine medaka (Oryzias melastigm) vitellogenin as a target analyte. MARINE POLLUTION BULLETIN 2023; 194:115248. [PMID: 37572429 DOI: 10.1016/j.marpolbul.2023.115248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 08/14/2023]
Abstract
In order to improve the sensitivity of lateral flow immunoassays (LFIAs) for the detection of piscine vitellogenin (Vtg), a well-established biomarker for environmental estrogens, Au coated Ag nanoflowers (Ag@Au NFs) were used as labeling probes to develop a LFIA for marine medaka Vtg. The synthesized Ag@Au NFs with good monodispersity had an average diameter of 44.1 nm and absorbance peak of 524 nm. When the concentration of goat anti-mouse IgG and anti-Vtg polyclonal antibody (anti-Vtg PAbs) were 1.3 and 0.4 mg/mL, respectively, the detection range of the LFIA was 0.19-25 ng/mL, and the visual detection limit was 0.1 ng/mL, which was approximately 80 times lower than that of LFIAs based on other nanoparticles (Au NPs, Ag NPs, Au NFs, and FM). After evaluation of its specificity and robustness, the usefulness of Ag@Au NFs labeled LFIA was validated by measuring Vtg induction in the plasma of marine medaka exposed to bisphenol A, a weak estrogenic chemical. This highly sensitive lateral flow immunoassay could detect Vtg biomarker within 15 min without the need of expensive and complicated instruments, and thus offered an ultrasensitive and robust on-site detection method for estrogenic activity in field environment.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hayan Teng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Minhao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Wu J, Huang Y, Ding X, Kang L, Wang X, Li D, Cheng W, Liu G, Xue J, Ding S. CPA-Cas12a-based lateral flow strip for portable assay of Methicillin-resistant Staphylococcus aureus in clinical sample. J Nanobiotechnology 2023; 21:234. [PMID: 37481551 PMCID: PMC10362775 DOI: 10.1186/s12951-023-02002-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023] Open
Abstract
The rapid and accurate identification of methicillin-resistant Staphylococcus aureus at an early antibiotic therapy stage would be benefit to disease diagnosis and antibiotic selection. Herein, we integrated cross-priming amplification (CPA) and CRISPR/Cas 12a (designated as CPA-Cas 12a) systems to establish a sensitive and efficient lateral flow assay to detect methicillin-resistant Staphylococcus aureus. This assay relies on the CPA isothermal nucleic acid amplification strategy which can amplify the DNA extracted from Staphylococcus aureus and accompanying the indiscriminately trans-cleavage process of Cas 12a/CrRNA duplex after recognizing specific sequence. Taking the advantage of reporter and high turnover Cas 12a activity, a dramatic change in response was achieved to produce a significant increase in the analytical sensitivity. The signal conversion and output were realized using a lateral flow strip to achieve field-deployable detection. Furthermore, this bioassay was accommodated with a microfluidic device to realize automatically portable detection. This proposed assay completed within 30 min with the detection limit of 5 CFU mL-1, was verified by testing bacterial suspension and 202 clinical samples. Given the high sensitivity, specificity and efficiency, this colorimetric readout assay through strip could be further promoted to the clinical diagnosis, clinical medication of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jiangling Wu
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Yu Huang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Xiaojuan Ding
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Lina Kang
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Xiaoliang Wang
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Dandan Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Gang Liu
- Department of Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| | - Jianjiang Xue
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), college of laboratory medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
6
|
Luo Y, Luo H, Zou S, Jiang J, Duan D, Chen L, Gao L. An In Situ Study on Nanozyme Performance to Optimize Nanozyme-Strip for Aβ Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:3414. [PMID: 37050473 PMCID: PMC10098967 DOI: 10.3390/s23073414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The nanozyme-strip is a novel POCT technology which is different from the conventional colloidal gold strip. It primarily utilizes the catalytic activity of nanozyme to achieve a high-sensitivity detection of target by amplifying the detection signal. However, previous research has chiefly focused on optimizing nanozyme-strip from the perspective of increasing nanozyme activity, little is known about other physicochemical factors. In this work, three sizes of Fe3O4 nanozyme and three sizes of CoFe2O4 nanozyme were used to investigate the key factors of nanozyme-strip for optimizing and improving its detection performance. We found that three sizes of Fe3O4 nanozyme all gather at the bottom of the nitrocellulose (NC) membrane, and three sizes of CoFe2O4 nanozyme migrate smoothly on the NC membrane, respectively. After color development, the surface of NC membranes distributed with CoFe2O4 peroxidase nanozymes had significant color change. Experimental results show that CoFe2O4 nanozymes had better dispersity than Fe3O4 nanozymes in an aqueous solution. We observed that CoFe2O4 nanozymes with smaller particle size migrated to the middle of the NC membrane with a higher number of particles. According to the results above, 55 ± 6 nm CoFe2O4 nanozyme was selected to prepare the nanozyme probe and achieved a highly sensitive detection of Aβ42Os on the nanozyme-strip. These results suggest that nanozyme should be comprehensively evaluated in its dispersity, the migration on NC membrane, and the peroxidase-like activity to determine whether it can be applied to nanozyme-strip.
Collapse
Affiliation(s)
- Yaying Luo
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiming Luo
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sijia Zou
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Demin Duan
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Zhang L, Su Y, Liang X, Cao K, Luo Q, Luo H. Ultrasensitive and point-of-care detection of plasma phosphorylated tau in Alzheimer's disease using colorimetric and surface-enhanced Raman scattering dual-readout lateral flow assay. NANO RESEARCH 2023; 16:7459-7469. [PMID: 37223429 PMCID: PMC9971675 DOI: 10.1007/s12274-022-5354-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 05/25/2023]
Abstract
Phosphorylation of tau at Ser (396, 404) (p-tau396,404) is one of the earliest phosphorylation events, and plasma p-tau396,404 level appears to be a potentially promising biomarker of Alzheimer's disease (AD). The low abundance and easy degradation of p-tau in the plasma make the lateral flow assay (LFA) a suitable choice for point-of-care detection of plasma p-tau396,404 levels. Herein, based on our screening of a pair of p-tau396,404-specific antibodies, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-readout LFA for the rapid, highly sensitive, and robust detection of plasma p-tau396,404 levels. This LFA realized a detection limit of 60 pg/mL by the naked eye or 3.8 pg/mL by SERS without cross-reacting with other tau species. More importantly, LFA rapidly and accurately differentiated AD patients from healthy controls, suggesting that it has the potential for clinical point-of-care application in AD diagnosis. This dual-readout LFA has the advantages of simple operation, rapid, and ultra-sensitive detection, providing a new way for early AD diagnosis and intervention, especially in primary and community AD screening. Electronic Supplementary Material Supplementary material (characterization of AuNPs and 4-MBA@AuNP probe; the optimal 4-MBA load for AuNPs; the optimal K2CO3 volumes for 4-MBA@AuNP-3G5 conjugates; the optimal 3G5 load for 4-MBA@AuNP conjugates; effect of NaCl concentration on 4-MBA@AuNP-3G5 stability; the linear curve of T-line color and SERS intensity versus different p-tau396,404 concentrations; the comparison of colorimetric-based LFA test results and the diagnosis results; Raman intensities and antibody activity of 4-MBA@AuNP-3G5 before and after storage; colorimetric intensity of dual-readout LFA detecting different concentrations of p-tau396,404 protein; sequence of synthesized peptides used in this study; information of the participants in this study; the information of antibodies used in this study) is available in the online version of this article at 10.1007/s12274-022-5354-4.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, 215123 China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, 215123 China
| |
Collapse
|
8
|
Gumus E, Bingol H, Zor E. Lateral flow assays for detection of disease biomarkers. J Pharm Biomed Anal 2023; 225:115206. [PMID: 36586382 DOI: 10.1016/j.jpba.2022.115206] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Early diagnosis saves lives in many diseases. In this sense, monitoring of biomarkers is crucial for the diagnosis of diseases. Lateral flow assays (LFAs) have attracted great attention among paper-based point-of-care testing (POCT) due to their low cost, user-friendliness, and time-saving advantages. Developments in the field of health have led to an increase of interest in these rapid tests. LFAs are used in the diagnosis and monitoring of many diseases, thanks to biomarkers that can be observed in body fluids. This review covers the recent advances dealing with the design and strategies for the development of LFA for the detection of biomarkers used in clinical applications in the last 5 years. We focus on various strategies such as choosing the nanoparticle type, single or multiple test approaches, and equipment for signal transducing for the detection of the most common biomarkers in different diseases such as cancer, cardiovascular, infectious, and others including Parkinson's and Alzheimer's diseases. We expect that this study will contribute to the different approaches in LFA and pave the way for other clinical applications.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
9
|
Zhang L, Cao K, Su Y, Hu S, Liang X, Luo Q, Luo H. Colorimetric and surface-enhanced Raman scattering dual-mode magnetic immunosensor for ultrasensitive detection of blood phosphorylated tau in Alzheimer's disease. Biosens Bioelectron 2023; 222:114935. [PMID: 36463652 DOI: 10.1016/j.bios.2022.114935] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Phosphorylation of tau at Ser 396, 404 (p-tau396,404) is the earliest phosphorylation event and a promising biomarker for the early diagnosis of Alzheimer's disease (AD). However, the detection of blood p-tau is challenging because of its low abundance, easy degradation, and complex formation with various blood proteins or cells, often leading to the underestimation of p-tau levels in conventional plasma-based assays. Herein, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-mode magnetic immunosensor for highly sensitive, specific, and robust detection of p-tau396,404 in whole blood samples. The detection assay was based on an immunoreaction between p-tau396,404 proteins, wherein antibody-modified superparamagnetic iron oxide nanoparticles act as recognition elements to capture p-tau396,404 in blood, and then horseradish peroxidase- and Raman tags label the corresponding paired antibody as a reporter to provide high signal-to-noise ratios for the immunosensor. This dual-mode immunosensor achieved identified as low as 1.5 pg/mL of p-tau396,404 in the blood in SERS mode and 24 pg/mL in colorimetric mode by the naked eye. More importantly, this immunosensor rapidly and accurately distinguished AD patients from healthy individuals based on blood p-tau396,404 levels, and also had the potential to distinguish AD patients of different severities. Therefore, the dual-mode immunosensor is promising for rapid clinical diagnosis of AD, especially in large-scale AD screening.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Shun Hu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China; Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China; Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| |
Collapse
|
10
|
Qu W, Zhang L, Liang X, Yu Z, Huang H, Zhao J, Guo Y, Zhou X, Xu S, Luo H, Luo X. Elevated Plasma Oligomeric Amyloid β-42 Is Associated with Cognitive Impairments in Cerebral Small Vessel Disease. BIOSENSORS 2023; 13:bios13010110. [PMID: 36671945 PMCID: PMC9855662 DOI: 10.3390/bios13010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 05/31/2023]
Abstract
Due to the heterogeneity of amyloid β-42 (Aβ42) species, the potential correlation between plasma oligomeric Aβ42 (oAβ42) and cognitive impairments in cerebral small vessel disease (CSVD) remains unclear. Herein, a sandwich ELISA for the specific detection of Aβ42 oligomers (oAβ42) and total Aβ42 (tAβ42) was developed based on sequence- and conformation-specific antibody pairs for the evaluation of plasma samples from a Chinese CSVD community cohort. After age and gender matching, 3-Tesla magnetic resonance imaging and multidimensional cognitive assessment were conducted in 134 CSVD patients and equal controls. The results showed that plasma tAβ42 and oAβ42 levels were significantly elevated in CSVD patients. By regression analysis, these elevations were correlated with the presence of CSVD and its imaging markers (i.e., white matter hyperintensities). Plasma Aβ42 tests further strengthened the predictive power of vascular risk factors for the presence of CSVD. Relative to tAβ42, oAβ42 showed a closer correlation with memory domains evaluated by neuropsychological tests. In conclusion, this sensitive ELISA protocol facilitated the detection of plasma Aβ42; Aβ42, especially its oligomeric form, can serve as a biosensor for the presence of CSVD and associated cognitive impairments represented by memory domains.
Collapse
Affiliation(s)
- Wensheng Qu
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430070, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430070, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Zhiyuan Yu
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Huang
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhao
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinping Guo
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xirui Zhou
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shabei Xu
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430070, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Xiang Luo
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Hauser J, Dale M, Beck O, Schwenk JM, Stemme G, Fredolini C, Roxhed N. Microfluidic Device for Patient-Centric Multiplexed Assays with Readout in Centralized Laboratories. Anal Chem 2022; 95:1350-1358. [PMID: 36548393 PMCID: PMC9850402 DOI: 10.1021/acs.analchem.2c04318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patient-centric sampling strategies, where the patient performs self-sampling and ships the sample to a centralized laboratory for readout, are on the verge of widespread adaptation. However, the key to a successful patient-centric workflow is user-friendliness, with few noncritical user interactions, and simple, ideally biohazard-free shipment. Here, we present a capillary-driven microfluidic device designed to perform the critical biomarker capturing step of a multiplexed immunoassay at the time of sample collection. On-chip sample drying enables biohazard-free shipment and allows us to make use of advanced analytics of specialized laboratories that offer the needed analytical sensitivity, reliability, and affordability. Using C-Reactive Protein, MCP1, S100B, IGFBP1, and IL6 as model blood biomarkers, we demonstrate the multiplexing capability and applicability of the device to a patient-centric workflow. The presented quantification of a biomarker panel opens up new possibilities for e-doctor and e-health applications.
Collapse
Affiliation(s)
- Janosch Hauser
- KTH
Royal Institute of Technology, Micro and Nanosystems, 10044 Stockholm, Sweden
| | - Matilda Dale
- KTH
Royal Institute of Technology, Affinity Proteomics, Science for Life
Laboratory, 17165 Solna, Sweden
| | - Olof Beck
- Karolinska
Institutet, Clinical Neuroscience, 17177 Stockholm, Sweden
| | - Jochen M. Schwenk
- KTH
Royal Institute of Technology, Affinity Proteomics, Science for Life
Laboratory, 17165 Solna, Sweden
| | - Göran Stemme
- KTH
Royal Institute of Technology, Micro and Nanosystems, 10044 Stockholm, Sweden
| | - Claudia Fredolini
- KTH
Royal Institute of Technology, Affinity Proteomics, Science for Life
Laboratory, 17165 Solna, Sweden,
| | - Niclas Roxhed
- KTH
Royal Institute of Technology, Micro and Nanosystems, 10044 Stockholm, Sweden,MedTechLabs,
BioClinicum, Karolinska University Hospital, 17164 Solna, Sweden,
| |
Collapse
|
12
|
Current trends in blood biomarker detection and imaging for Alzheimer’s disease. Biosens Bioelectron 2022; 210:114278. [DOI: 10.1016/j.bios.2022.114278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022]
|
13
|
Hu S, Yang C, Li Y, Luo Q, Luo H. Nanozyme sensor array based on manganese dioxide for the distinction between multiple amyloid β peptides and their dynamic aggregation process. Biosens Bioelectron 2021; 199:113881. [PMID: 34915216 DOI: 10.1016/j.bios.2021.113881] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
The determination of the amyloid β (Aβ) peptide and its aggregation intermediates helps to understand the pathological mechanism of Alzheimer's disease (AD) caused by toxic amyloid fragments. Because of the transient and heterogeneous properties of Aβ aggregates, it is very difficult to dynamically detect Aβ and its aggregation intermediates. Herein, we successfully constructed a two-dimensional manganese dioxide (MnO2) nanozyme sensor array by modulating the peroxidase-mimicking activity using various Aβ species and accurately distinguished among six types of Aβ within 1 h through linear discriminant analysis (LDA), with a dynamic detection range of 0.01-500 nmol/L and a detection limit of 0.44 pmol/L. Subsequently, 30 unknown blind samples were used to verify the practicability of the sensor array, and all unknown samples were identified with 100% accuracy. It is worth noting that the sensor array successfully distinguished healthy individuals from AD patients using clinical blood samples. This study provides a convenient and reliable nanozyme biosensing system for detecting Aβ species and their related aggregation processes.
Collapse
Affiliation(s)
- Shun Hu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Changwen Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China; School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|