1
|
Li K, Guo B, Gu J, Ta N, Gu J, Yu H, Sun M, Han T. Emerging advances in drug delivery systems (DDSs) for optimizing cancer complications. Mater Today Bio 2025; 30:101375. [PMID: 39759851 PMCID: PMC11699619 DOI: 10.1016/j.mtbio.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
The management and treatment of tumor complications pose continuous challenges due to the inherent complexity. However, the advent of drug delivery systems (DDSs) brings promising opportunities to address the tumor complications using innovative technological approaches. This review focuses on common oncological complications, including cancer thrombosis, malignant serous effusion, tumor-associated infections, cancer pain, and treatment-related complications. Emphasis was placed on the application and potential of DDSs in mitigating and treating these tumor complications, and we delved into the underlying mechanisms of common cancer-associated complications, discussed the limitations of conventional treatments, and outlined the current status and potential development of DDSs for various complications in this review. Moreover, we have discussed the existing challenges in DDSs research, underscoring the need for addressing issues related to biocompatibility and targeting of DDSs, optimizing drug delivery routes, and enhancing delivery efficiency and precision. In conclusion, DDSs offer promising avenues for treating cancer complications, offering the potential for the development of more effective and safer drug delivery strategies, thereby improving the quality of life and survival rates of cancer patients.
Collapse
Affiliation(s)
- Kerui Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Bei Guo
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110001, China
| | - Junmou Gu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Na Ta
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hao Yu
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110001, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Fan Y, Zhang R, Shi J, Tian F, Zhang Y, Zhang L, Liao G, Yang M. Mild near-infrared laser-triggered photo-immunotherapy potentiates immune checkpoint blockade via an all-in-one theranostic nanoplatform. J Colloid Interface Sci 2025; 678:1088-1103. [PMID: 39276517 DOI: 10.1016/j.jcis.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
One of the primary challenges for immune checkpoint blockade (ICB)-based therapy is the limited infiltration of T lymphocytes (T cells) into tumors, often referred to as immunologically "cold" tumors. A promising strategy to enhance the anti-tumor efficacy of ICB is to increase antigen exposure, thereby enhancing T cell activation and converting "cold" tumors into "hot" ones. Herein, we present an innovative all-in-one therapeutic nanoplatform to realize local mild photothermal- and photodynamic-triggered antigen exposure, thereby improving the anti-tumor efficacy of ICB. This nanoplatform involves conjugating programmed death-ligand 1 antibody (aPD-L1) with gadolinium-doped near-infrared (NIR)-emitting carbon dots (aPD-L1@GdCDs), which displays negligible cytotoxicity in the absence of light. But under controlled NIR laser irradiation, the GdCDs produce combined photothermal and photodynamic effects. This not only results in tumor ablation but also induces immunogenic cell death (ICD), facilitating enhanced infiltration of CD8+ T cells in the tumor area. Importantly, the combination of aPD-L1 with photothermal and photodynamic therapies via aPD-L1@GdCDs significantly boosts CD8+ T cell infiltration, reduces tumor size, and improves anti-metastasis effects compared to either GdCDs-based phototherapy or aPD-L1 alone. In addition, the whole treatment process can be monitored by multi-modal fluorescence/photoacoustic/magnetic resonance imaging (FLI/PAI/MRI). Our study highlights a promising nanoplatform for cancer diagnosis and therapy, as well as paves the way to promote the efficacy of ICB therapy through mild photothermal- and photodynamic-triggered immunotherapy.
Collapse
Affiliation(s)
- Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ruolin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Feng Tian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Li Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Guangfu Liao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
3
|
He Y, Zhang S, She Y, Liu Z, Zhu Y, Cheng Q, Ji X. Innovative utilization of cell membrane-coated nanoparticles in precision cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230164. [PMID: 39713200 PMCID: PMC11655310 DOI: 10.1002/exp.20230164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/03/2024] [Indexed: 12/24/2024]
Abstract
Cell membrane-coated nanoparticles (CMNPs) have recently emerged as a promising platform for cancer therapy. By encapsulating therapeutic agents within a cell membrane-derived coating, these nanoparticles combine the advantages of synthetic nanoparticles and natural cell membranes. This review provides a comprehensive overview of the recent advancements in utilizing CMNPs as effective drug delivery vehicles for cancer therapy. The synthesis and fabrication methods of CMNPs are comprehensively discussed. Various techniques, such as extrusion, sonication, and self-assembly, are employed to coat synthetic nanoparticles with cell membranes derived from different cell types. The cell membrane coating enables biocompatibility, reducing the risk of an immune response and enhancing the stability of the nanoparticles in the bloodstream. Moreover, functionalization strategies for CMNPs, primarily chemical modification, genetic engineering, and external stimuli, are highlighted. The presence of specific cell surface markers on the coated membrane allows targeted drug delivery to cancer cells and maximizes therapeutic efficacy. Preclinical studies utilizing CMNPs for cancer therapy demonstrated the successful delivery of various therapeutic agents, such as chemotherapeutic drugs, nucleic acids, and immunotherapeutic agents, using CMNPs. Furthermore, the article explores the future directions and challenges of this technology while offering insights into its clinical potential.
Collapse
Affiliation(s)
- Yiling He
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Shuquan Zhang
- Department of OrthopedicsIntegrated Chinese and Western Medicine HospitalTianjin UniversityTianjinChina
- Department of OrthopedicsTianjin Nankai HospitalTianjinChina
- Department of OrthopedicsTianjin Hospital of Integrated Chinese and Western MedicineTianjinChina
| | - Yaoguang She
- Department of General SurgeryFirst Medical CenterChinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Zhaoshan Liu
- Laboratory of Immune Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Yalan Zhu
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Qinzhen Cheng
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjinChina
| |
Collapse
|
4
|
Zhao C, Tang X, Chen X, Jiang Z. Multifaceted Carbonized Metal-Organic Frameworks Synergize with Immune Checkpoint Inhibitors for Precision and Augmented Cuproptosis Cancer Therapy. ACS NANO 2024; 18:17852-17868. [PMID: 38939981 DOI: 10.1021/acsnano.4c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The discovery of cuproptosis, a copper-dependent mechanism of programmed cell death, has provided a way for cancer treatment. However, cuproptosis has inherent limitations, including potential cellular harm, the lack of targeting, and insufficient efficacy as a standalone treatment. Therefore, exogenously controlled combination treatments have emerged as key strategies for cuproptosis-based oncotherapy. In this study, a Cu2-xSe@cMOF nanoplatform was constructed for combined sonodynamic/cuproptosis/gas therapy. This platform enabled precise cancer cotreatment, with external control allowing the selective induction of cuproptosis in cancer cells. This approach effectively prevented cancer metastasis and recurrence. Furthermore, Cu2-xSe@cMOF was combined with the antiprogrammed cell death protein ligand-1 antibody (aPD-L1), and this combination maximized the advantages of cuproptosis and immune checkpoint therapy. Additionally, under ultrasound irradiation, the H2Se gas generated from Cu2-xSe@cMOF induced cytotoxicity in cancer cells. Further, it generated reactive oxygen species, which hindered cell survival and proliferation. This study reports an externally controlled system for cuproptosis induction that combines a carbonized metal-organic framework with aPD-L1 to enhance cancer treatment. This precision and reinforced cuproptosis cancer therapy platform could be valuable as an effective therapeutic agent to reduce cancer mortality and morbidity in the future.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Rahmat JN, Liu J, Chen T, Li Z, Zhang Y. Engineered biological nanoparticles as nanotherapeutics for tumor immunomodulation. Chem Soc Rev 2024; 53:5862-5903. [PMID: 38716589 DOI: 10.1039/d3cs00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biological nanoparticles, or bionanoparticles, are small molecules manufactured in living systems with complex production and assembly machinery. The products of the assembly systems can be further engineered to generate functionalities for specific purposes. These bionanoparticles have demonstrated advantages such as immune system evasion, minimal toxicity, biocompatibility, and biological clearance. Hence, bionanoparticles are considered the new paradigm in nanoscience research for fabricating safe and effective nanoformulations for therapeutic purposes. Harnessing the power of the immune system to recognize and eradicate malignancies is a viable strategy to achieve better therapeutic outcomes with long-term protection from disease recurrence. However, cancerous tissues have evolved to become invisible to immune recognition and to transform the tumor microenvironment into an immunosuppressive dwelling, thwarting the immune defense systems and creating a hospitable atmosphere for cancer growth and progression. Thus, it is pertinent that efforts in fabricating nanoformulations for immunomodulation are mindful of the tumor-induced immune aberrations that could render cancer nanotherapy inoperable. This review systematically categorizes the immunosuppression mechanisms, the regulatory immunosuppressive cellular players, and critical suppressive molecules currently targeted as breakthrough therapies in the clinic. Finally, this review will summarize the engineering strategies for affording immune moderating functions to bionanoparticles that tip the tumor microenvironment (TME) balance toward cancer elimination, a field still in the nascent stage.
Collapse
Affiliation(s)
- Juwita N Rahmat
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117585, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yong Zhang
- Department of Biomedical Engineering, College of Engineering, The City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
6
|
Song M, Wang L, Jiang S, Liang J, Li W, Rao W, Du Q, Liu G, Meng H, Tang L, Li Z, Yang Y, Zhang L, Zhang B. Pathogenic Th17 cell-mediated liver fibrosis contributes to resistance to PD-L1 antibody immunotherapy in hepatocellular carcinoma. Int Immunopharmacol 2024; 129:111601. [PMID: 38350354 DOI: 10.1016/j.intimp.2024.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
Understanding the mechanisms of resistance of hepatocellular carcinoma (HCC) to targeted therapies and immune checkpoint blockade is critical for the development of new combination therapies and improving patient survival. Here, we found that in HCC, anti-programmed cell death 1 ligand 1 (PD-L1) therapy reduces liver cancer growth, but the tumors eventually become resistant to continued therapy. Experimental analyses shows that the infiltration of pathogenic T helper 17 (pTh17) cells increases in drug-resistant HCC, and pTh17 cells secrete interleukin-17A (IL-17A), which promotes the expression of PD-L1 on the surface of HCC cells and produces resistance to anti-PD-L1 therapy. Anti-IL-17A combined with PD-L1 blockade significantly increased the infiltration of cytotoxic CD8+ T cells expressing high levels of interferon-γ and reduced treatment resistance in HCC. These results support the combination of anti-PD-L1 and anti-IL-17A as a novel strategy to induce effective T cell-mediated anti-tumor immune responses.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Rao
- Division of Hepatology, Liver Disease Center, Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Zhifei Li
- Department of Clinical Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
7
|
Mei S, Peng S, Vong EG, Zhan J. A dual-functional oncolytic adenovirus ZD55-aPD-L1 scFv armed with PD-L1 inhibitor potentiates its antitumor activity. Int Immunopharmacol 2024; 128:111579. [PMID: 38278066 DOI: 10.1016/j.intimp.2024.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Clinical data indicate that a substantial portion of cancer patients, though eligible for immune checkpoint inhibitor (ICI) therapy, cannot fully benefit from ICI monotherapy due to the poor immunogenicity of tumors and lack of tumor-infiltrating lymphocytes within the 'cold' tumor microenvironment (TME). In addition to poor antibody penetrance into the TME, systemic delivery of ICIs is associated with immune-related adverse events (irAEs) among recipients, some of which are life-threatening. Oncolytic virotherapy is a potentially viable approach to improving the efficacy of ICI therapy because of their ability to selectively replicate and lyse tumor cells, release tumor-associated antigens (TAAs), induce inflammatory response and promote lymphocyte infiltration in tumors. METHODS A recombinant oncolytic adenoviruses (OAd), denoted ZD55-aPD-L1 scFv, which carried the expression cassette for anti-PD-L1 scFv was constructed by molecular cloning. Western blot and ELISA assay were performed to detect aPD-L1 scFv expression. Flow cytometry were used to analyse PD-L1 expression and count tumor cells. Co-culture assay of human peripheral blood mononuclear cells (PBMCs) with tumor cells in vitro and triple-negative breast cancer (TNBC) MDA-MB-231 tumor-bearing model in vivo were evaluated the antitumor effects of recombinant oncolytic adenoviruses ZD55-aPD-L1 scFv. RESULTS We found that cells infected with recombinant oncolytic adenovirus ZD55-aPD-L1 scFv can effectively express aPD-L1 scFv, which function similarly to its full-length anti-PD-L1 antibody. PBMCs have inherently very limited killing effect on tumor cells even with administration of anti-PD-L1 antibody as observed from our in vitro co-cultures. Treatment consisting of ZD55 alone or ZD55 combined with anti-PD-L1 antibody yielded mediocre antitumor efficacy in subsequent in vitro and in vivo investigations, but were all substantially surpassed by the synergistic antitumor effects observed with ZD55-aPD-L1 scFv treatment. We show that the concomitant direct oncolysis by the recombinant OAd and localized autocrine/paracrine interception of PD-1:PD-L1 checkpoint interaction mediated by ZD55-aPD-L1 scFv-infected cells is exceedingly superior to co-administration of ZD55 and anti-PD-L1 antibody in the human TNBC mice model. CONCLUSIONS Our results provided evidence for the development of novel strategies, in this case an anti-PD-L1 scFv-armed OAd, to bolster immune responses to 'cold' tumors and to improve therapeutic responsiveness to ICIs.
Collapse
Affiliation(s)
- Shengsheng Mei
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Shanshan Peng
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Eu Gene Vong
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinbiao Zhan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomater Sci 2024; 12:863-895. [PMID: 38230669 DOI: 10.1039/d3bm01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As the second-leading cause of human death, cancer has drawn attention in the area of biomedical research and therapy from all around the world. Certainly, the development of nanotechnology has made it possible for nanoparticles (NPs) to be used as a carrier for delivery systems in the treatment of tumors. This is a biomimetic approach established to craft remedial strategies comprising NPs cloaked with membrane obtained from various natural cells like blood cells, bacterial cells, cancer cells, etc. Here we conduct an in-depth exploration of cell membrane-coated NPs (CMNPs) and their extensive array of applications including drug delivery, vaccination, phototherapy, immunotherapy, MRI imaging, PET imaging, multimodal imaging, gene therapy and a combination of photothermal and chemotherapy. This review article provides a thorough summary of the most recent developments in the use of CMNPs for the diagnosis and treatment of cancer. It critically assesses the state of research while recognizing significant accomplishments and innovations. Additionally, it indicates ongoing problems in clinical translation and associated queries that warrant deeper research. By doing so, this study encourages creative thinking for future projects in the field of tumor therapy using CMNPs while also educating academics on the present status of CMNP research.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
9
|
Li J, Zhu C, Zhang Z, Zheng X, Wang C, Zhang H. Paeoniflorin increases the anti-tumor efficacy of sorafenib in tumor-bearing mice with liver cancer via suppressing the NF-κb/PD-l1 axis. Heliyon 2024; 10:e24461. [PMID: 38312647 PMCID: PMC10835185 DOI: 10.1016/j.heliyon.2024.e24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Background Sorafenib (Sor) represents a first-line therapy for hepatocellular carcinoma (HCC); however, its efficacy is constrained by secondary failure, which limits its clinical use. Recent studies have indicated that the suppression of Programmed cell death-Ligand 1 (PD-L1) may potentiate Sor's anti-liver cancer effects; furthermore, PD-L1 expression is known to be regulated by NF-κB. Previous research has demonstrated that paeoniflorin (PF) downregulates the NF-κB axis, nevertheless, current research has not yet determined whether PF can synergistically enhance the efficacy of Sor against HCC by modulating the NF-κB/PD-L1 pathway. Methods The study employed a H22 hepatoma-bearing mouse model, which was treated with PF, Sor, and their combination over a period of 12 days. The impact of PF and Sor on tumor growth, proliferation, apoptosis, T-cell subsets, IL-2 and IFN-γ production, and NF-κB and PD-L1 expression was assessed. Moreover, Splenic lymphocyte from normal mice and tumor cells from model mice were co-cultured in vitro, and the tumor-specific cytotoxic T lymphocyte activity was analyzed. In the final phase of the study, Huh-7 cells were stimulated with PF in combination with an NF-κB activator or inhibitor, and the subsequent production of NF-κB and PD-L1 was investigated. Results PF and Sor exhibit a synergistic anti-tumor effect, compared to the use of Sor alone, the combined use of PF and Sor significantly increased the number of CD4+ and CD8+ T cells in tumor tissue, markedly enhanced the cytotoxic activity of tumor-specific cytotoxic T lymphocytes, and reversed the depletion of interleukin-2 and the increase in PD-L1 expression following Sor intervention. This combination also further reduced the level of IFN-γ in peripheral blood and the expression of NF-κB and PD-L1 in tumor tissue. Additionally, in vitro experiments confirmed that PF reduces the expression of PD-L1 in Huh-7 liver cancer cells by inhibiting NF-κB. Conclusions PF plays a synergistic role of Sor inhibiting HCC progression by regulating the NF-κB/PD-L1 pathway.
Collapse
Affiliation(s)
- Junfei Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Chenghui Zhu
- Wannan Medical College, Wuhu, Anhui, 241000, China
| | - Zengyu Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Xiaorong Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Chunlei Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hongyan Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
10
|
Li J, Zeng H, Li L, Yang Q, He L, Dong M. Advanced Generation Therapeutics: Biomimetic Nanodelivery System for Tumor Immunotherapy. ACS NANO 2023; 17:24593-24618. [PMID: 38055350 DOI: 10.1021/acsnano.3c10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Tumor immunotherapy is a safe and effective strategy for precision medicine. However, immunotherapy for most cancer cases still ends in failure, with the root causes of the immunosuppressive and extraordinary heterogeneity of the solid tumors microenvironment. The emerging biomimetic nanodelivery system provides a promising tactic to improve the immunotherapy effect while reducing the adverse reactions on nontarget cells. Herein, we summarize the relationship between tumor occurrence and tumor immune microenvironment, mechanism of tumor immune escape, immunotherapy classification (including adoptive cellular therapy, cytokines, cancer vaccines, and immune checkpoint inhibitors) and recommend target cells for immunotherapy first, and then emphatically introduce the recent advances and applications of the latest biomimetic nanodelivery systems (e.g., immune cells, erythrocytes, tumor cells, platelets, bacteria) in tumor immunotherapy. Meanwhile, we separately summarize the application of tumor vaccines. Finally, the predictable challenges and perspectives in a forward exploration of biomimetic nanodelivery systems for tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
- Jie Li
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
- Cancer Prevention and Institute of Chengdu, Department of Oncology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Huamin Zeng
- Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical Colloge, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Luwei Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
| | - Lang He
- Cancer Prevention and Institute of Chengdu, Department of Oncology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
| |
Collapse
|
11
|
An X, Zeng Y, Liu C, Liu G. Cellular-Membrane-Derived Vesicles for Cancer Immunotherapy. Pharmaceutics 2023; 16:22. [PMID: 38258033 PMCID: PMC10820497 DOI: 10.3390/pharmaceutics16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The medical community is constantly searching for new and innovative ways to treat cancer, and cellular-membrane-derived artificial vesicles are emerging as a promising avenue for cancer immunotherapy. These vesicles, which are derived from mammal and bacteria cell membranes, offer a range of benefits, including compatibility with living organisms, minimal immune response, and prolonged circulation. By modifying their surface, manipulating their genes, combining them with other substances, stimulating them externally, and even enclosing drugs within them, cellular vesicles have the potential to be a powerful tool in fighting cancer. The ability to merge drugs with diverse compositions and functionalities in a localized area is particularly exciting, as it offers a way to combine different immunotherapy treatments for maximum impact. This review contains information on the various sources of these vesicles and discusses some recent developments in cancer immunotherapy using this promising technology. While there are still obstacles to overcome, the possibilities for cellular vesicles in cancer treatment are truly exciting.
Collapse
Affiliation(s)
- Xiaoyu An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Chao Liu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
12
|
Guo X, Li L, Jia W, Zhang C, Ren W, Liu C, Tang Y. Composite Nanomaterials of Conjugated Polymers and Upconversion Nanoparticles for NIR-Triggered Photodynamic/Photothermal Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37975246 DOI: 10.1021/acsami.3c12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Phototherapies such as photodynamic therapy (PDT) and photothermal therapy (PTT) have attracted great attention in the field of cancer treatment. However, the individual PDT or PTT makes it difficult to achieve optimal antitumor effects compared to the PDT/PTT combined therapy. Also, the effect of PDT is usually limited by the penetration depth of the UV-vis light source. Herein, we designed and synthesized novel composite nanoparticles UCNPs-CPs, which are constructed from two conjugated polymers and upconversion nanoparticles β-NaYF4:Yb,Tm (UCNPs) via a coordination reaction. By virtue of the excellent spectral overlap between absorption of conjugated polymers and emission of UCNPs, the UCNPs can absorb NIR light and effectively excite conjugated polymers by energy transfer to produce massive reactive oxygen species under 980 nm excitation and heat energy under 808 nm laser irradiation, achieving photodynamic/photothermal synergistic therapy. The in vitro cellular investigation proves that the dual modal phototherapy exhibits enhanced antitumor ability compared to single PDT or PTT. Furthermore, UCNPs-CPs inhibit tumor growth 100% in a 4T1 breast tumor mice model with both NIR laser irradiation, indicating that UCNPs-CPs is an excellent platform for synergistic PDT/PTT treatment. Thus, this study provides a promising strategy for NIR-triggered dual modal phototherapy.
Collapse
Affiliation(s)
- Xueyuan Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ling Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Wenhua Jia
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Chen Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Wei Ren
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Chenghui Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
13
|
Han R, Ling C, Wang Y, Lu L. Enhancing HCC Treatment: innovatively combining HDAC2 inhibitor with PD-1/PD-L1 inhibition. Cancer Cell Int 2023; 23:203. [PMID: 37716965 PMCID: PMC10504701 DOI: 10.1186/s12935-023-03051-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with high morbidity and mortality but lacks effective treatments thus far. Although the emergence of immune checkpoint inhibitors in recent years has shed light on the treatment of HCC, a considerable number of patients are still unable to achieve durable and ideal clinical benefits. Therefore, refining the combination of immune checkpoint inhibitors (ICIs) to enhance the therapeutic effect has become a global research hotspot. Several histone deacetylase 2 inhibitors have shown advantages in ICIs in many solid cancers, except for HCC. Additionally, the latest evidence has shown that histone deacetylase 2 inhibition can regulate PD-L1 acetylation, thereby blocking the nuclear translocation of PD-L1 and consequently enhancing the efficacy of PD-1/PD-L1 inhibitors and improving anti-cancer immunity. Moreover, our team has recently discovered a novel HDAC2 inhibitor (HDAC2i), valetric acid (VA), that possesses great potential in HCC treatment as a monotherapy. Thus, a new combination strategy, combining HDAC2 inhibitors with ICIs, has emerged with significant development value. This perspective aims to ignite enthusiasm for exploring the application of ideal HDAC2 inhibitors with solid anti-tumor efficacy in combination with immunotherapy for HCC.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China.
- Department of Chinese Medicine, Naval Medical University, Shanghai, 200433, P. R. China.
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA.
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA.
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA.
| | - Changquan Ling
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Department of Chinese Medicine, Naval Medical University, Shanghai, 200433, P. R. China
| | - Yuqian Wang
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Department of Chinese Medicine, Naval Medical University, Shanghai, 200433, P. R. China
| | - Lingeng Lu
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA
| |
Collapse
|
14
|
Cheng Q, Kang Y, Yao B, Dong J, Zhu Y, He Y, Ji X. Genetically Engineered-Cell-Membrane Nanovesicles for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302131. [PMID: 37409429 PMCID: PMC10502869 DOI: 10.1002/advs.202302131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Indexed: 07/07/2023]
Abstract
The advent of immunotherapy has marked a new era in cancer treatment, offering significant clinical benefits. Cell membrane as drug delivery materials has played a crucial role in enhancing cancer therapy because of their inherent biocompatibility and negligible immunogenicity. Different cell membranes are prepared into cell membrane nanovesicles (CMNs), but CMNs have limitations such as inefficient targeting ability, low efficacy, and unpredictable side effects. Genetic engineering has deepened the critical role of CMNs in cancer immunotherapy, enabling genetically engineered-CMN (GCMN)-based therapeutics. To date, CMNs that are surface modified by various functional proteins have been developed through genetic engineering. Herein, a brief overview of surface engineering strategies for CMNs and the features of various membrane sources is discussed, followed by a description of GCMN preparation methods. The application of GCMNs in cancer immunotherapy directed at different immune targets is addressed as are the challenges and prospects of GCMNs in clinical translation.
Collapse
Affiliation(s)
| | - Yong Kang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yalan Zhu
- Jinhua Municipal Central HospitalJinhua321000China
| | - Yiling He
- Jinhua Municipal Central HospitalJinhua321000China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
- Medical CollegeLinyi UniversityLinyi276000China
| |
Collapse
|
15
|
Firth J, Sun J, George V, Huang JD, Bajaj-Elliott M, Gustafsson K. Bacterial outer-membrane vesicles promote Vγ9Vδ2 T cell oncolytic activity. Front Immunol 2023; 14:1198996. [PMID: 37529036 PMCID: PMC10388717 DOI: 10.3389/fimmu.2023.1198996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Background Increasing evidence suggests the immune activation elicited by bacterial outer-membrane vesicles (OMVs) can initiate a potent anti-tumor immunity, facilitating the recognition and destruction of malignant cells. At present the pathways underlying this response remain poorly understood, though a role for innate-like cells such as γδ T cells has been suggested. Methods Peripheral blood mononuclear cells (PBMCs) from healthy donors were co-cultured with E. coli MG1655 Δpal ΔlpxM OMVs and corresponding immune activation studied by cell marker expression and cytokine production. OMV-activated γδ T cells were co-cultured with cancer cell lines to determine cytotoxicity. Results The vesicles induced a broad inflammatory response with γδ T cells observed as the predominant cell type to proliferate post-OMV challenge. Notably, the majority of γδ T cells were of the Vγ9Vδ2 type, known to respond to both bacterial metabolites and stress markers present on tumor cells. We observed robust cytolytic activity of Vγ9Vδ2 T cells against both breast and leukaemia cell lines (SkBr3 and Nalm6 respectively) after OMV-mediated expansion. Conclusions Our findings identify for the first time, that OMV-challenge stimulates the expansion of Vγ9Vδ2 T cells which subsequently present anti-tumor capabilities. We propose that OMV-mediated immune activation leverages the anti-microbial/anti-tumor capacity of Vγ9Vδ2 T cells, an axis amenable for improved future therapeutics.
Collapse
Affiliation(s)
- Jack Firth
- Department of Biochemical Engineering University College London, London, United Kingdom
| | - Jingjing Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Vaques George
- Department of Biochemical Engineering University College London, London, United Kingdom
| | - Jian-Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mona Bajaj-Elliott
- Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
| | - Kenth Gustafsson
- Department of Biochemical Engineering University College London, London, United Kingdom
| |
Collapse
|
16
|
Zhao C, Pan Y, Yu G, Zhao XZ, Chen X, Rao L. Vesicular Antibodies: Shedding Light on Antibody Therapeutics with Cell Membrane Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207875. [PMID: 36721058 DOI: 10.1002/adma.202207875] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Indexed: 06/18/2023]
Abstract
The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody-based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody-based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular-antibody-based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane-coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next-generation antibodies for enhanced therapeutics.
Collapse
Affiliation(s)
- Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xing-Zhong Zhao
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Centre for Translational Medicine, Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
17
|
Li K, Yang D, Liu D. Targeted Nanophotoimmunotherapy Potentiates Cancer Treatment by Enhancing Tumor Immunogenicity and Improving the Immunosuppressive Tumor Microenvironment. Bioconjug Chem 2023; 34:283-301. [PMID: 36648963 DOI: 10.1021/acs.bioconjchem.2c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cancer immunotherapy, such as immune checkpoint blockade, chimeric antigen receptor, and cytokine therapy, has emerged as a robust therapeutic strategy activating the host immune system to inhibit primary and metastatic lesions. However, low tumor immunogenicity (LTI) and immunosuppressive tumor microenvironment (ITM) severely compromise the killing effect of immune cells on tumor cells, which fail to evoke a strong and effective immune response. As an exogenous stimulation therapy, phototherapy can induce immunogenic cell death (ICD), enhancing the therapeutic effect of tumor immunotherapy. However, the lack of tumor targeting and the occurrence of immune escape significantly reduce its efficacy in vivo, thus limiting its clinical application. Nanophotoimmunotherapy (nano-PIT) is a precision-targeted tumor treatment that co-loaded phototherapeutic agents and various immunotherapeutic agents by specifically targeted nanoparticles (NPs) to improve the effectiveness of phototherapy, reduce its phototoxicity, enhance tumor immunogenicity, and reverse the ITM. This review will focus on the theme of nano-PIT, introduce the current research status of nano-PIT on converting "cold" tumors to "hot" tumors to improve immune efficacy according to the classification of immunotherapy targets, and discuss the challenges, opportunities, and prospects.
Collapse
Affiliation(s)
- Kunwei Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Dan Yang
- Department of Pharmaceutical Sciences, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, China
| | - Dechun Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
18
|
Yu Y, Yu R, Wang N, Bai Y, Shi Q, Maswikiti EP, Chen H. Photodynamic therapy in combination with immune checkpoint inhibitors plus chemotherapy for first-line treatment in advanced or metastatic gastric or gastroesophageal junction cancer: A phase 2-3 clinical trial protocol. Front Pharmacol 2023; 14:1063775. [PMID: 36778024 PMCID: PMC9908746 DOI: 10.3389/fphar.2023.1063775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: The immune checkpoint inhibitor (ICI) has been approved as the first-line therapy for metastatic gastric cancer in China. The treatment response of immune checkpoint inhibitor is highly dependent on the immune condition within the tumor microenvironment. Photodynamic therapy (PDT) has a long history in cancer treatment, and recent studies showed it had an immunomodulatory effect on the tumor. Here we will conduct a trial to assess whether or not a combination with Photodynamic therapy will improve the outcomes of immune checkpoint inhibitor-based treatment in patients with advanced or metastatic gastric cancer. Methods: This study is a single-center, open-label, randomized controlled, phase 2-3 trial. Patients (18-65 years old) with untreated gastric or gastroesophageal junction adenocarcinoma will be eligible for this trial. Sixty participants will be enrolled and randomly divided into the test group (n = 30) and control group (n = 30) to receive photodynamic therapy in combination with immune checkpoint inhibitor plus chemotherapy and immune checkpoint inhibitor plus chemotherapy, respectively. The primary is progression-free survival (PFS). The secondary outcomes include objective response rates (ORRs) and the occurrence of adverse events. In addition, we will also assess the changes in peripheral blood mononuclear cells (PBMCs) and tumor microenvironment after photodynamic therapy treatment in the test group. Evaluation of the tumor response will be performed every two cycles for a maximum of eight cycles. Discussion: Photodynamic therapy has an immunomodulatory effect on the tumor microenvironment; however, this has not been demonstrated for gastric cancer in a clinical trial. Based on our experience of photodynamic therapy treatment in digestive tract tumors, we plan to conduct a randomized controlled trial on this topic. This will be the first study to evaluate the synergistic effect of photodynamic therapy with immunochemotherapy for patients with advanced gastric cancer. Ethics and dissemination: It was approved by the Institutional Research Ethics Committee of Lanzhou University Second Hospital (No. 2022A-491). When this trial is completed, it will be shared at conferences and submitted for a potential publication in a peer-reviewed journal. Clinical Trial Registration: http://www.chictr.org.cn/, identifier ChiCTR2200064280.
Collapse
Affiliation(s)
- Yang Yu
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Rong Yu
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Na Wang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuping Bai
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Qianling Shi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ewetse Paul Maswikiti
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Chen
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China,*Correspondence: Hao Chen,
| |
Collapse
|
19
|
Wu Q, Xia Y, Xiong X, Duan X, Pang X, Zhang F, Tang S, Su J, Wen S, Mei L, Cannon RD, Ji P, Ou Z. Focused ultrasound-mediated small-molecule delivery to potentiate immune checkpoint blockade in solid tumors. Front Pharmacol 2023; 14:1169608. [PMID: 37180717 PMCID: PMC10173311 DOI: 10.3389/fphar.2023.1169608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, immune checkpoint blockade (ICB) has revolutionized the standard of treatment for solid tumors. Despite success in several immunogenic tumor types evidenced by improved survival, ICB remains largely unresponsive, especially in "cold tumors" with poor lymphocyte infiltration. In addition, side effects such as immune-related adverse events (irAEs) are also obstacles for the clinical translation of ICB. Recent studies have shown that focused ultrasound (FUS), a non-invasive technology proven to be effective and safe for tumor treatment in clinical settings, could boost the therapeutic effect of ICB while alleviating the potential side effects. Most importantly, the application of FUS to ultrasound-sensitive small particles, such as microbubbles (MBs) or nanoparticles (NPs), allows for precise delivery and release of genetic materials, catalysts and chemotherapeutic agents to tumor sites, thus enhancing the anti-tumor effects of ICB while minimizing toxicity. In this review, we provide an updated overview of the progress made in recent years concerning ICB therapy assisted by FUS-controlled small-molecule delivery systems. We highlight the value of different FUS-augmented small-molecules delivery systems to ICB and describe the synergetic effects and underlying mechanisms of these combination strategies. Furthermore, we discuss the limitations of the current strategies and the possible ways that FUS-mediated small-molecule delivery systems could boost novel personalized ICB treatments for solid tumors.
Collapse
Affiliation(s)
- Qiuyu Wu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuanhang Xia
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaohe Xiong
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xinxing Duan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fugui Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Song Tang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Junlei Su
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Shuqiong Wen
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| | - Zhanpeng Ou
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| |
Collapse
|
20
|
Ma J, Jiang L, Liu G. Cell membrane-coated nanoparticles for the treatment of bacterial infection. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1825. [PMID: 35725897 DOI: 10.1002/wnan.1825] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Despite the enormous success of antibiotics in antimicrobial therapy, the rapid emergence of antibiotic resistance and the complexity of the bacterial infection microenvironment make traditional antibiotic therapy face critical challenges against resistant bacteria, antitoxin, and intracellular infections. Consequently, there is a critical need to design antimicrobial agents that target infection microenvironment and alleviate antibiotic resistance. Cell membrane-coated nanoparticles (CMCNPs) are biomimetic materials that can be obtained by wrapping the cell membrane vesicles directly onto the surface of the nanoparticles (NPs) through physical means. Incorporating the biological functions of cell membrane vesicles and the superior physicochemical properties of NPs, CMCNPs have shown great promise in recent years for targeting infections, neutralizing bacterial toxins, and designing bacterial infection vaccines. This review highlights topics where CMCNPs present great value in advancing the treatment of bacterial infections, including drug delivery, detoxification, and vaccination. Lastly, we discuss the future hurdles and prospects of translating this technique into clinical practice, providing a comprehensive review of the technological developments of CMCNPs in the treatment of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Lai Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Chen H, Cheng H, Liang X, Cai S, Liu G. Immunosuppression Reversal Nanovaccines Substituting Dendritic Cells for Personalized Cancer Immunotherapy. Front Immunol 2022; 13:934259. [PMID: 35812415 PMCID: PMC9263089 DOI: 10.3389/fimmu.2022.934259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Although immunotherapy has paved a new avenue for cancer treatment, inadequate immune response often executes suboptimal therapeutic effects. In general, an effective immune response undergoes presentation of antigen by antigen-presenting cells, proliferation and differentiation of lymphocytes, and attack of cancer cells by cytotoxic T lymphocytes (CTLs). The antigen self-presentation and immunosuppression reversal (ASPIRE) nanovaccine derived from dendritic cells provides a simplified and immune deregulated procedure for immunotherapy profiting from its orientable peculiarity. By integrating major histocompatibility complex class I (MHC-I) molecules into present specific epitopes and co-delivering anti-PD-1 antibody and B7 costimulatory molecules through the programmed biomimetic synthesis, the ASPIRE nanovaccine demonstrates a milestone in personalized cancer immunotherapy.
Collapse
|
22
|
Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front Immunol 2022; 13:955920. [PMID: 36119019 PMCID: PMC9478587 DOI: 10.3389/fimmu.2022.955920] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has evolved as a revolutionized therapeutic modality to eradicate tumor cells by releasing the brake of the antitumor immune response. However, only a subset of patients could benefit from ICB treatment currently. Phototherapy usually includes photothermal therapy (PTT) and photodynamic therapy (PDT). PTT exerts a local therapeutic effect by using photothermal agents to generate heat upon laser irradiation. PDT utilizes irradiated photosensitizers with a laser to produce reactive oxygen species to kill the target cells. Both PTT and PDT can induce immunogenic cell death in tumors to activate antigen-presenting cells and promote T cell infiltration. Therefore, combining ICB treatment with PTT/PDT can enhance the antitumor immune response and prevent tumor metastases and recurrence. In this review, we summarized the mechanism of phototherapy in cancer immunotherapy and discussed the recent advances in the development of phototherapy combined with ICB therapy to treat malignant tumors. Moreover, we also outlined the significant progress of phototherapy combined with targeted therapy or chemotherapy to improve ICB in preclinical and clinical studies. Finally, we analyzed the current challenges of this novel combination treatment regimen. We believe that the next-generation technology breakthrough in cancer treatment may come from this combinational win-win strategy of photoimmunotherapy.
Collapse
Affiliation(s)
- Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Bai
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Wu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Guo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|