1
|
Hang L, Li H, Li M, Sun Y, Wu W, Fang L, Diao Y, Qu H, Zhang T, Li S, Jiang G. Lactoferrin docking NIR-II cyanine dye as a potentiated phototheranostic for synchronous multimodal bioimaging and tumor photo-immunotherapy. Theranostics 2024; 14:6671-6691. [PMID: 39479444 PMCID: PMC11519796 DOI: 10.7150/thno.102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: A promising dye for phototheranostics, IR-1048 is a near-infrared region II (NIR-II) cyanine dye that exhibits exceptional optical characteristics in NIR-II spectrum. Unfortunately, the biological applications of IR-1048 are challenged by its hydrophobic nature, the formation of face-to-face stacked dimeric aggregates (H-aggregates) that result in pronounced spectral blue shifts, and issues related to fluorescence quenching. Method: We present a novel docking strategy involving bovine serum albumin (BSA) and lactoferrin (Lf) to construct BSA@IR-1048 and Lf@IR-1048 nanoprobes. The NIR-II optical characteristics of these nanoprobes have been thoroughly investigated through both theoretical and experimental approaches. In addition, we conducted in vitro and in vivo evaluations of their NIR-II photothermal and photodynamic properties, multimodal imaging capabilities, and effectiveness in photoimmunotherapy. Results: Following the protein docking process, both BSA@IR-1048 and Lf@IR-1048 probes exhibited a red-shifted absorbance peak and an "ON" state in NIR-II fluorescence. Theoretical analyses alongside experimental results indicate that Lf@IR-1048, which has a higher docking binding energy of -10.83 kcal/mol, significantly enhances optical characteristics in the NIR-II region. Notably, when utilizing a single NIR-II light source, Lf@IR-1048 was effective in producing single-linear state oxygen and converting photons into heat energy, achieving a photo-thermal conversion efficiency of 41.9%. The overexpression of transferrin receptors in tumor cells also improved tumor-targeting and enrichment capabilities of Lf@IR-1048, as demonstrated vitro and in vivo studies. Comparatively, Lf@IR-1048 facilitated multimodal imaging-guided NIR-II phototherapy, showing an impressive tumor development inhibition rate of 94.8%. Furthermore, in bilateral CT26 tumor-bearing mice, the Lf@IR-1048-based photo-immunotherapy exhibited significant antitumor activity, attributed to enhanced dendritic cell maturation and infiltration of cytotoxic T lymphocytes. Conclusion: Lf@IR-1048 displays a powerful combination of photothermal therapy, photodynamic therapy, and tumor-targeting potential for effective multimodal imaging-guided NIR-II phototherapy, leading to substantial inhibition of tumor growth.
Collapse
Affiliation(s)
- Lifeng Hang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 518037, P. R. China
| | - Haijian Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 518037, P. R. China
| | - Meng Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 518037, P. R. China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wenjiao Wu
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 518037, P. R. China
| | - Laiping Fang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 518037, P. R. China
| | - Yanzhao Diao
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Hong Qu
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Tao Zhang
- School of Physical and Mathematical sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shumei Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 518037, P. R. China
| | - Guihua Jiang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 518037, P. R. China
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
2
|
Wang R, Kumar P, Reda M, Wallstrum AG, Crumrine NA, Ngamcherdtrakul W, Yantasee W. Nanotechnology Applications in Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308639. [PMID: 38126905 PMCID: PMC11493329 DOI: 10.1002/smll.202308639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Next-generation cancer treatments are expected not only to target cancer cells but also to simultaneously train immune cells to combat cancer while modulating the immune-suppressive environment of tumors and hosts to ensure a robust and lasting response. Achieving this requires carriers that can codeliver multiple therapeutics to the right cancer and/or immune cells while ensuring patient safety. Nanotechnology holds great potential for addressing these challenges. This article highlights the recent advances in nanoimmunotherapeutic development, with a focus on breast cancer. While immune checkpoint inhibitors (ICIs) have achieved remarkable success and lead to cures in some cancers, their response rate in breast cancer is low. The poor response rate in solid tumors is often associated with the low infiltration of anti-cancer T cells and an immunosuppressive tumor microenvironment (TME). To enhance anti-cancer T-cell responses, nanoparticles are employed to deliver ICIs, bispecific antibodies, cytokines, and agents that induce immunogenic cancer cell death (ICD). Additionally, nanoparticles are used to manipulate various components of the TME, such as immunosuppressive myeloid cells, macrophages, dendritic cells, and fibroblasts to improve T-cell activities. Finally, this article discusses the outlook, challenges, and future directions of nanoimmunotherapeutics.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Pramod Kumar
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Noah A. Crumrine
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| |
Collapse
|
3
|
Yang S, Hu X, Yong Z, Dou Q, Quan C, Cheng HB, Zhang M, Wang J. GSH-responsive bithiophene Aza-BODIPY@HMON nanoplatform for achieving triple-synergistic photoimmunotherapy. Colloids Surf B Biointerfaces 2024; 242:114109. [PMID: 39047644 DOI: 10.1016/j.colsurfb.2024.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Photoimmunotherapy represents an innovative approach to enhancing the efficiency of immunotherapy in cancer treatment. This approach involves the fusion of immunotherapy and phototherapy (encompassing techniques like photodynamic therapy (PDT) and photothermal therapy (PTT)). Boron-dipyrromethene (BODIPY) has the potential to trigger immunotherapy owing to its excellent PD and PT efficiency. However, the improvements in water solubility, bioavailability, PD/PT combined efficiency, and tumor tissue targeting of BODIPY require introduction of suitable carriers for potential practical application. Herein, a disulfide bond-based hollow mesoporous organosilica (HMON) with excellent biocompatibility and GSH-responsive degradation properties was used as a carrier to load a bithiophene Aza-BODIPY dye (B5), constructing a sample chemotherapy reagent-free B5@HMON nanoplatform achieving triple-synergistic photoimmunotherapy. HMON, involving disulfide bond, is utilized to improve water solubility, tumor tissue targeting, and PD efficiency by depleting GSH and enhancing host-guest interaction between B5 and HMO. The study reveals that HMON's large specific surface area and porous properties significantly enhance the light collection and oxygen adsorption capacity. The HMON's rich mesoporous structure and internal cavity achieved a loading rate of B5 at 11 %. It was found that the triple-synergistic nanoplatform triggered a stronger anti-tumor immune response, including tumor invasion, cytokine production, calreticulin translocation, and dendritic cell maturation, eliciting specific tumor-specific immunological responses in vivo and in vitro. The BALB/c mouse model with 4T1 tumors was used to assess tumor suppression efficiency in vivo, showing that almost all tumors in the B5@HMON group disappeared after 14 days. Such a simple chemotherapy reagent-free B5@HMON nanoplatform achieved triple-synergistic photoimmunotherapy.
Collapse
Affiliation(s)
- Siao Yang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhengze Yong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China
| | - Qingqing Dou
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Cuilu Quan
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China; Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China.
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
4
|
Wang C, Zhong W, Sun X, Guo J, Chen Y, Zhao Y, Han J, Zhao Y. NIR-Activable Charge Transfer Agents for Synergistic Photoimmunotherapy. Angew Chem Int Ed Engl 2024:e202416828. [PMID: 39319629 DOI: 10.1002/anie.202416828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has become an attractive tumor treatment modality, yet the facile design of photoimmunotheranostic agents with efficient near infrared (NIR) light-absorbing and immune-activating capabilities remains a tremendous challenge. Herein, we developed a NIR-activable organic charge transfer complex (CTC), with perylene (PER) as the electron donor and 4,5,9,10-tetrabromoisochromeno [6,5,4-def]isochromene-1,3,6,8-tetraone (Br4NDI) as the electron acceptor. Through further supramolecular assembly, the PER-Br4NDI nanoparticle (PBND NP) for spatiotemporally controlled photoimmunotherapy was constructed. The PBND NP exhibits superb NIR absorption, robust intermolecular charge transfer, and enhanced intersystem crossing. Upon NIR photoirradiation, the PBND NP effectively exerts photothermal and photodynamic effects with a remarkable photothermal conversion efficiency of 63.5 % and a high reactive oxygen species generation capability, which not only directly ablates primary tumors, but also dramatically suppresses distant tumor growth via promoted immunogenic cell death. Moreover, programmed cell death protein 1 antibody acts synergistically to block immune evasion and ultimately enhances cancer treatment efficacy. This work therefore sheds light on the design of organic CTCs for synergistic photoimmunotherapy.
Collapse
Affiliation(s)
- Chu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
5
|
Kim SJ, Park HB, An EK, Ryu D, Zhang W, Pack CG, Kim H, Kwak M, Im W, Ryu JH, Lee PCW, Jin JO. Lipid-coated gold nanorods for photoimmunotherapy of primary breast cancer and the prevention of metastasis. J Control Release 2024; 373:105-116. [PMID: 38992622 DOI: 10.1016/j.jconrel.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Nanomedicines hold promise for the treatment of various diseases. However, treating cancer metastasis remains highly challenging. In this study, we synthesized gold nanorods (AuNRs) containing (α-GC), an immune stimulator, for the treatment of primary cancer, metastasis, and recurrence of the cancer. Therefore, the AuNR were coated with lipid bilayers loaded with α-GC (α-LA). Upon irradiation with 808 nm light, α-LA showed a temperature increase. Intra-tumoral injection of α-LA in mice and local irradiation of the 4T1 breast cancer tumor effectively eliminated tumor growth. We found that the presence of α-GC in α-LA activated dendritic cells and T cells in the spleen, which completely blocked the development of lung metastasis. In mice injected with α-LA for primary breast cancer treatment, we observed antigen-specific T cell responses and increased cytotoxicity against 4T1 cells. We conclude that α-LA is promising for the treatment of both primary breast cancer and its metastasis.
Collapse
Affiliation(s)
- So-Jung Kim
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 200437, China
| | - Chan-Gi Pack
- Department of Biomedical Engineering, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - HyunCheol Kim
- Department of Chemical and Biomolecular Engineering Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
6
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
7
|
Aebisher D, Przygórzewska A, Bartusik-Aebisher D. The Latest Look at PDT and Immune Checkpoints. Curr Issues Mol Biol 2024; 46:7239-7257. [PMID: 39057071 PMCID: PMC11275601 DOI: 10.3390/cimb46070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) can not only directly eliminate cancer cells, but can also stimulate antitumor immune responses. It also affects the expression of immune checkpoints. The purpose of this review is to collect, analyze, and summarize recent news about PDT and immune checkpoints, along with their inhibitors, and to identify future research directions that may enhance the effectiveness of this approach. A search for research articles published between January 2023 and March 2024 was conducted in PubMed/MEDLINE. Eligibility criteria were as follows: (1) papers describing PDT and immune checkpoints, (2) only original research papers, (3) only papers describing new reports in the field of PDT and immune checkpoints, and (4) both in vitro and in vivo papers. Exclusion criteria included (1) papers written in a language other than Polish or English, (2) review papers, and (3) papers published before January 2023. 24 papers describing new data on PDT and immune checkpoints have been published since January 2023. These included information on the effects of PDT on immune checkpoints, and attempts to associate PDT with ICI and with other molecules to modulate immune checkpoints, improve the immunosuppressive environment of the tumor, and resolve PDT-related problems. They also focused on the development of new nanoparticles that can improve the delivery of photosensitizers and drugs selectively to the tumor. The effect of PDT on the level of immune checkpoints and the associated activity of the immune system has not been fully elucidated further, and reports in this area are divergent, indicating the complexity of the interaction between PDT and the immune system. PDT-based strategies have been shown to have a beneficial effect on the delivery of ICI to the tumor. The utility of PDT in enhancing the induction of the antitumor response by participating in the triggering of immunogenic cell death, the exposure of tumor antigens, and the release of various alarm signals that together promote the activation of dendritic cells and other components of the immune system has also been demonstrated, with the result that PDT can enhance the antitumor immune response induced by ICI therapy. PDT also enables multifaceted regulation of the tumor's immunosuppressive environment, as a result of which ICI therapy has the potential to achieve better antitumor efficacy. The current review has presented evidence of PDT's ability to modulate the level of immune checkpoints and the effectiveness of the association of PDT with ICIs and other molecules in inducing an effective immune response against cancer cells. However, these studies are at an early stage and many more observations need to be made to confirm their efficacy. The new research directions indicated may contribute to the development of further strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-025 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
8
|
Li H, Wang Z, Chu X, Zhao Y, He G, Hu Y, Liu Y, Wang ZL, Jiang P. Free Radicals Generated in Perfluorocarbon-Water (Liquid-Liquid) Interfacial Contact Electrification and Their Application in Cancer Therapy. J Am Chem Soc 2024; 146:12087-12099. [PMID: 38647488 DOI: 10.1021/jacs.4c02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electron transfer during solid-liquid contact electrification has been demonstrated to produce reactive oxygen species (ROS) such as hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). Here, we show that such a process also occurs in liquid-liquid contact electrification. By preparing perfluorocarbon nanoemulsions to construct a perfluorocarbon-water "liquid-liquid" interface, we confirmed that electrons were transferred from water to perfluorocarbon in ultrasonication-induced high-frequency liquid-liquid contact to produce •OH and •O2-. The produced ROS could be applied to ablate tumors by triggering large-scale immunogenic cell death in tumor cells, promoting dendritic cell maturation and macrophage polarization, ultimately activating T cell-mediated antitumor immune response. Importantly, the raw material for producing •OH is water, so the tumor therapy is not limited by the endogenous substances (O2, H2O2, etc.) in the tumor microenvironment. This work provides new perspectives for elucidating the mechanism of generation of free radicals in liquid-liquid contact and provides an excellent tumor therapeutic modality.
Collapse
Affiliation(s)
- Haimei Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430072, China
| | - Zichen Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xu Chu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yi Zhao
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Guangqin He
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yulin Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Zhang MR, Fang LL, Guo Y, Wang Q, Li YJ, Sun HF, Xie SY, Liang Y. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy. Int J Nanomedicine 2024; 19:3387-3404. [PMID: 38617801 PMCID: PMC11012697 DOI: 10.2147/ijn.s454004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Meng-Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Department of Clinical Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Lin-Lin Fang
- RemeGen Co., Ltd, YanTai, ShanDong, 264000, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|
10
|
Gowsalya K, Rithisa B, Haldorai Y, Shanthi K, Vivek R. Engineered photonic near-infrared light activated photothermal theranostic nanovaccine induced targeted remodeling of tumor microenvironment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102738. [PMID: 38341011 DOI: 10.1016/j.nano.2024.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Tumor recurrence, which happens as a result of persisting tumor cells and minor lesions after treatments like surgery and chemotherapy, is a major problem in oncology. Herein, a strategy to combat this issue by utilize a theranostic nanovaccine composed of photonic HCuS. This nanovaccine aims to eradicate cancer cells and their traces while also preventing tumor recurrence via optimizing the photothermal immune impact. Successful membrane targeting allows for the introduction of new therapeutic agents into the tumor cells. Together with co-encapsulated Toll-Like Receptors (TLR7/8) agonist R848 for activating T cells and maturing DCs, the combined effects of HCuS and ICG function as photothermal agents that generate heat in the presence of NIR light. Photothermal-mediated immunotherapy with therapeutic modalities proved successful in killing tumor cells. By activating the immune system, this new photonic nanovaccine greatly increases immunogenic cell death (ICD), kills tumor cells, and prevents their recurrence.
Collapse
Affiliation(s)
- Karunanidhi Gowsalya
- Bio-Nano Theranostic Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Babu Rithisa
- Department of Chemistry, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu 641048, India
| | - Yuvaraj Haldorai
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeonbuk 38541, Republic of Korea
| | - Krishnamurthy Shanthi
- Department of Biochemistry, Kalinga University, Nava Raipur 492101, Chhattisgarh, India
| | - Raju Vivek
- Bio-Nano Theranostic Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
11
|
Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Recent Advances in Reprogramming Strategy of Tumor Microenvironment for Rejuvenating Photosensitizers-Mediated Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305708. [PMID: 38018311 DOI: 10.1002/smll.202305708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Indexed: 11/30/2023]
Abstract
Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
12
|
Dudzik T, Domański I, Makuch S. The impact of photodynamic therapy on immune system in cancer - an update. Front Immunol 2024; 15:1335920. [PMID: 38481994 PMCID: PMC10933008 DOI: 10.3389/fimmu.2024.1335920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic approach that has gained significant attention in recent years with its promising impact on the immune system. Recent studies have shown that PDT can modulate both the innate and adaptive arms of the immune system. Currently, numerous clinical trials are underway to investigate the effectiveness of this method in treating various types of cancer, as well as to evaluate the impact of PDT on immune system in cancer treatment. Notably, clinical studies have demonstrated the recruitment and activation of immune cells, including neutrophils, macrophages, and dendritic cells, at the treatment site following PDT. Moreover, combination approaches involving PDT and immunotherapy have also been explored in clinical trials. Despite significant advancements in its technological and clinical development, further studies are needed to fully uncover the mechanisms underlying immune activation by PDT. The main objective of this review is to comprehensively summarize and discuss both ongoing and completed studies that evaluate the impact of PDT of cancer on immune response.
Collapse
Affiliation(s)
- Tomasz Dudzik
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Igor Domański
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
13
|
Liu X, Lu Y, Li X, Luo L, You J. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. J Control Release 2024; 365:1058-1073. [PMID: 38056695 DOI: 10.1016/j.jconrel.2023.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
As an efficient, non-invasive, low-side-effect, and highly selective cancer therapy, photodynamic therapy (PDT) is used to treat various malignant tumors. However, the inefficiency of dealing with deep tumors and metastatic lesions highly limits the use of PDT. Immunogenic cell death (ICD) is a particular form of tumor cell death that could elicit a tumor-special immune response, leading to a systemic anti-tumor effect and providing therapeutic benefits for metastatic lesions. In this regard, it is crucial to enhance the ability of PDT to induce ICD. Luckily, advanced nanotechnology created many promising ways to improve the immunogenicity of PDT and achieve photoimmunotherapy. This review summarizes the emerging strategies for triggering immunogenic cell death via nanoplatform-enhanced PDT, with particular emphasis on their advantages in photoimmunotherapy. We highlight the nanoplatforms classified according to the basic principles of photodynamic therapy and immunogenic cell death, which provides a valuable reference for the design of nanoplatform for photoimmunotherapy. In addition, we also discuss the current situation and prospect of nano-based photoimmunotherapy in clinical studies.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| |
Collapse
|
14
|
Xu W, Liu W, Yang J, Lu J, Zhang H, Ye D. Stimuli-responsive nanodelivery systems for amplifying immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:181-198. [PMID: 37403660 DOI: 10.1111/imr.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Wangrui Liu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Yang
- Department of Surgery, ShangNan Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahe Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| |
Collapse
|
15
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
16
|
Qu H, Li L, Chen H, Tang M, Cheng W, Lin TY, Li L, Li B, Xue X. Drug-drug conjugates self-assembled nanomedicines triggered photo-/immuno- therapy for synergistic cancer treatments. J Control Release 2023; 363:361-375. [PMID: 37751826 PMCID: PMC11165424 DOI: 10.1016/j.jconrel.2023.09.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Although immunotherapies have made progress in cancer treatment, their clinical response rates vary widely and are typically low due to sparse immune cell infiltration (immune "cold") and suppressive tumor immune microenvironment (TIME). A simple yet effective approach that integrates a variety of immune-stimulating and TIME-modulating functions could potentially address this clinical challenge. Herein, we conjugate two small molecules, including a photosensitizer (pyropheophorbide-a, PA) and a Toll-like receptor 7/8 agonist (resiquimod, R848), into prodrug (PA-R848) that self-assembles into PA-R848 esterase responsive nanoparticles (PARE NPs) with 100% drug composition and synergistic photo-/immune- therapeutic effects. In PARE NPs, PA exhibits strong phototherapeutic effects which ablate the primary tumor directly and elicits immunogenic cell death (ICD) to promote the immune response. R848 effectively polarizes the M2-type tumor-associated macrophage (TAM) to M1-type TAM, consequently reversing the "cold" and suppressive TIME when working together with phototherapy. The PARE NPs can efficiently pare down the tumor development by two synergisms, including i) synergistic immunotherapy between ICD and TAM polarization; ii) and the antitumor effects between phototherapy and immunotherapy. On a head-neck squamous cell carcinoma mouse model, PARE NPs combined with PD-1 antibody eliminate primary tumors, and significantly inhibit the progress of distant tumors thanks to the robust antitumor immunity enhanced by the PARE NPs.
Collapse
Affiliation(s)
- Haijing Qu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longmeng Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Han Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Menghuan Tang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Wei Cheng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tzu-Yin Lin
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Lingyan Li
- Alphacait AI Biotech ch., LTD, No.10, Xixi Wetland, Wuchang Ave, Hangzhou, Zhejiang 310023, China
| | - Bin Li
- Alphacait AI Biotech ch., LTD, No.10, Xixi Wetland, Wuchang Ave, Hangzhou, Zhejiang 310023, China.
| | - Xiangdong Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Yang Y, Zhu Y, Wang K, Miao Y, Zhang Y, Gao J, Qin H, Zhang Y. Activation of autophagy by in situ Zn 2+ chelation reaction for enhanced tumor chemoimmunotherapy. Bioact Mater 2023; 29:116-131. [PMID: 37456582 PMCID: PMC10345225 DOI: 10.1016/j.bioactmat.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Chemotherapy can induce a robust T cell antitumor immune response by triggering immunogenic cell death (ICD), a process in which tumor cells convert from nonimmunogenic to immunogenic forms. However, the antitumor immune response of ICD remains limited due to the low immunogenicity of tumor cells and the immunosuppressive tumor microenvironment. Although autophagy is involved in activating tumor immunity, the synergistic role of autophagy in ICD remains elusive and challenging. Herein, we report an autophagy amplification strategy using an ion-chelation reaction to augment chemoimmunotherapy in cancer treatments based on zinc ion (Zn2+)-doped, disulfiram (DSF)-loaded mesoporous silica nanoparticles (DSF@Zn-DMSNs). Upon pH-sensitive biodegradation of DSF@Zn-DMSNs, Zn2+ and DSF are coreleased in the mildly acidic tumor microenvironment, leading to the formation of toxic Zn2+ chelate through an in situ chelation reaction. Consequently, this chelate not only significantly stimulates cellular apoptosis and generates damage-associated molecular patterns (DAMPs) but also activates autophagy, which mediates the amplified release of DAMPs to enhance ICD. In vivo results demonstrated that DSF@Zn-DMSNs exhibit strong therapeutic efficacy via in situ ion chelation and possess the ability to activate autophagy, thus enhancing immunotherapy by promoting the infiltration of T cells. This study provides a smart in situ chelation strategy with tumor microenvironment-responsive autophagy amplification to achieve high tumor chemoimmunotherapy efficacy and biosafety.
Collapse
Affiliation(s)
- Yang Yang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Yefei Zhu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Kairuo Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yunqiu Miao
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, PR China
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
18
|
Karthikeyan L, Rithisa B, Vivek R. The dynamic therapeutic effect of a targeted photothermal nanovaccine incorporating toll-like receptor 7 agonist enhanced cancer immunotherapy. J Mater Chem B 2023; 11:9005-9018. [PMID: 37712149 DOI: 10.1039/d3tb01345f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Photothermal therapy (PTT) is a noninvasive and effective thermal therapeutic approach. Near-infrared (NIR) light responsive organic nanoparticles (NPs) have been shown to enhance the efficacy of cancer PTT. However, photothermal ablation induced NPs are currently more effective in treating primary and metastatic cancer. Herein, we designed a NIR light responsive theranostic nanosystem that combines PTT with immunotherapy. The caffeic acid doped polyaniline NPs (CA-PANi) were explored for their potential as PTT agents and their ability to mediate immunogenic cell death (ICD). The nano-theranostic agent of CA-PANi functionalized with the RGD (Arg-Gly-Asp) peptide plays a functional role in targeting integrin receptor overexpressed cancer cells. Furthermore, to enhance the immune response in the immune suppressive tumor microenvironment (iTME), imiquimod (R837) a Toll-like receptor 7 agonist that can promote dendritic cell (DC) maturation greatly inhibits tumor growth and tumor recurrence by initiating a strong antitumor immune response. Therefore, combination of PTT and immunotherapy involving CA-PANi-R837-RGD (denoted as CPRR) to improve the therapeutic effect will provide a nanovaccine strategy for targeted antitumor therapy.
Collapse
Affiliation(s)
- Laxmanan Karthikeyan
- Bio-Nano Theranostics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University, Coimbatore-641 046, TN, India.
| | - Babu Rithisa
- Department of Chemistry, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu-641048, India
| | - Raju Vivek
- Bio-Nano Theranostics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University, Coimbatore-641 046, TN, India.
| |
Collapse
|
19
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
20
|
Zhang Y, Doan BT, Gasser G. Metal-Based Photosensitizers as Inducers of Regulated Cell Death Mechanisms. Chem Rev 2023; 123:10135-10155. [PMID: 37534710 DOI: 10.1021/acs.chemrev.3c00161] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Over the last few decades, various forms of regulated cell death (RCD) have been discovered and were found to improve cancer treatment. Although there are several reviews on RCD induced by photodynamic therapy (PDT), a comprehensive summary covering metal-based photosensitizers (PSs) as RCD inducers has not yet been presented. In this review, we systematically summarize the works on metal-based PSs that induce different types of RCD, including ferroptosis, immunogenic cell death (ICD), and pyroptosis. The characteristics and mechanisms of each RCD are explained. At the end of each section, a summary of the reported commonalities between different metal-based PSs inducing the same RCD is emphasized, and future perspectives on metal-based PSs inducing novel forms of RCD are discussed at the end of the review. Considering the essential roles of metal-based PSs and RCD in cancer therapy, we hope that this review will provide the stage for future advances in metal-based PSs as RCD inducers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| | - Bich-Thuy Doan
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory of Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| |
Collapse
|
21
|
Wang Y, Li W, Lin B, Yuan Y, Ning P, Tao X, Lv R. NIR-II imaging-guided photothermal cancer therapy combined with enhanced immunogenic death. Biomater Sci 2023. [PMID: 37334508 DOI: 10.1039/d3bm00700f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Photothermal therapy has a remarkable effect on the destruction of tumors. It kills tumor cells by photothermal ablation and induces immunogenic cell death by activating the immune response in tumor tissues. However, inhibition of the tumor immune microenvironment suppresses PTT-induced body-specific anti-tumor immunity. In this study, we designed the GdOF@PDA-HA-R837-hydrogel complex to achieve NIR-II imaging-guided photothermal ablation and enhanced immune response. Due to the doping of Yb and Er elements and the presence of a polydopamine coating, the synthesized nanoparticles enable NIR-II and photoacoustic imaging of tumor tissues, which will help in the integration of multimodal tumor imaging for diagnosis and treatment. Polydopamine is used as a photothermal agent and drug carrier because of its excellent photothermal ability and high drug loading capacity under 808 nm near infrared light. Hyaluronic acid can bind to specific receptors on the surface of cancer cells, allowing nanoparticles to aggregate around the tumor, thus enhancing the targeting ability of nanoparticles. In addition, imiquimod (R837) has been used as an immune response modulator to enhance the immunotherapeutic effect. The presence of a hydrogel enhanced the retention effect of nanoparticles in the tumor. We demonstrate that the combination of photothermal therapy with immune adjuvants effectively induces ICD, which in turn stimulates the activation of specific anti-tumor immunity and enhances the effect of photothermal therapy in vivo.
Collapse
Affiliation(s)
- Yukun Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Ying Yuan
- Department of Medical Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China.
| | - Pengbo Ning
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Xiaofeng Tao
- Department of Medical Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
- Interdisciplinary Research Center of Smart Sensor, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| |
Collapse
|
22
|
Li H, Yang X, Wang Z, She W, Liu Y, Huang L, Jiang P. A Near-Infrared-II Fluorescent Nanocatalyst for Enhanced CAR T Cell Therapy against Solid Tumor by Immune Reprogramming. ACS NANO 2023. [PMID: 37319120 DOI: 10.1021/acsnano.3c02592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy holds great promise in the treatment of hematological malignancies but performs poorly in solid tumors due to the tumor immunosuppressive microenvironment. Herein, a multifunctional nanocatalyst (APHA@CM) was prepared by encapsulating horseradish peroxidase (HRP)-loaded Au/polydopamine nanoparticles (Au/PDA NPs) and Ag2S quantum dots with CAR T cell membranes to improve the CAR T cell therapy in solid tumors. The APHA@CM has excellent multimodal imaging capability to precisely guide the scope and time window for nanocatalyst-induced tumor microenvironment regulation and CAR T cell therapy. The oxidase-like activity of Au NPs inhibited the glycolytic metabolism of tumor cells, reducing lactate efflux, reprogramming tumor immunosuppression, and ultimately increasing CAR T cell activation within the tumors. Additionally, the hypoxia environment of tumors could be relieved by HRP to enhance the Au/PDA NPs-induced synergistic sonodynamic/photothermal therapy (SDT/PTT), thereby promoting the immunogenic cell death of NALM 6 cells and enhancing CAR T cell-mediated immune microenvironment reprogramming. When this strategy was utilized to treat NALM 6 solid tumors, it not only completely eliminated tumors but also formed a long-term immune memory effect to inhibit tumor metastasis and recurrence. This work offers a strategy for CAR T cell therapy in solid tumor.
Collapse
Affiliation(s)
- Haimei Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Xiuxiu Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenyan She
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| |
Collapse
|
23
|
Zhang JY, Gao WD, Lin JY, Xu S, Zhang LJ, Lu XC, Luan X, Peng JQ, Chen Y. Nanotechnology-based photo-immunotherapy: a new hope for inhibition of melanoma growth and metastasis. J Drug Target 2023:1-14. [PMID: 37216425 DOI: 10.1080/1061186x.2023.2216402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Melanoma is the most aggressive form of skin cancer and there is a need for the development of effective anti-melanoma therapies as it shows high metastatic ability and low response rate. In addition, it has been identified that traditional phototherapy could trigger immunogenic cell death (ICD) to activate antitumor immune response, which could not only effectively arrest primary tumor growth, but also exhibit superior effects in terms of anti-metastasis, anti-recurrence for metastatic melanoma treatment However, the limited tumor accumulation of photosensitizers/photothermal agents and immunosuppressive tumor microenvironment severely weaken the immune effects. The application of nanotechnology facilitates a higher accumulation of photosensitizers/photothermal agents at the tumor site, which can thus improve the antitumor effects of photo-immunotherapy (PIT). In this review, we summarize the basic principles of nanotechnology-based PIT and highlight novel nanotechnologies that are expected to enhance the antitumor immune response for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Ji-Yuan Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Dong Gao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Chen Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Qing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
24
|
Kang MS, Cho E, Choi HE, Amri C, Lee JH, Kim KS. Molecularly imprinted polymers (MIPs): emerging biomaterials for cancer theragnostic applications. Biomater Res 2023; 27:45. [PMID: 37173721 PMCID: PMC10182667 DOI: 10.1186/s40824-023-00388-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a disease caused by abnormal cell growth that spreads through other parts of the body and threatens life by destroying healthy tissues. Therefore, numerous techniques have been employed not only to diagnose and monitor the progress of cancer in a precise manner but also to develop appropriate therapeutic agents with enhanced efficacy and safety profiles. In this regard, molecularly imprinted polymers (MIPs), synthetic receptors that recognize targeted molecules with high affinity and selectivity, have been intensively investigated as one of the most attractive biomaterials for theragnostic approaches. This review describes diverse synthesis strategies to provide the rationale behind these synthetic antibodies and provides a selective overview of the recent progress in the in vitro and in vivo targeting of cancer biomarkers for diagnosis and therapeutic applications. Taken together, the topics discussed in this review provide concise guidelines for the development of novel MIP-based systems to diagnose cancer more precisely and promote successful treatment. Molecularly imprinted polymers (MIPs), synthetic receptors that recognize targeted molecules with high affinity and selectivity, have been intensively investigated as one of the most attractive biomaterials for cancer theragnostic approaches. This review describes diverse synthesis strategies to provide the rationale behind these synthetic antibodies and provides a selective overview of the recent progress in the in vitro and in vivo targeting of cancer biomarkers for diagnosis and therapeutic applications. The topics discussed in this review aim to provide concise guidelines for the development of novel MIP-based systems to diagnose cancer more precisely and promote successful treatment.
Collapse
Affiliation(s)
- Min Seok Kang
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea
| | - Euni Cho
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea
| | - Chaima Amri
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
- Department of Organic Material Science & Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
25
|
Valerio TI, Furrer CL, Sadeghipour N, Patrock SJX, Tillery SA, Hoover AR, Liu K, Chen WR. Immune modulations of the tumor microenvironment in response to phototherapy. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2023; 16:2330007. [PMID: 38550850 PMCID: PMC10976517 DOI: 10.1142/s1793545823300070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The tumor microenvironment (TME) promotes pro-tumor and anti-inflammatory metabolisms and suppresses the host immune system. It prevents immune cells from fighting against cancer effectively, resulting in limited efficacy of many current cancer treatment modalities. Different therapies aim to overcome the immunosuppressive TME by combining various approaches to synergize their effects for enhanced anti-tumor activity and augmented stimulation of the immune system. Immunotherapy has become a major therapeutic strategy because it unleashes the power of the immune system by activating, enhancing, and directing immune responses to prevent, control, and eliminate cancer. Phototherapy uses light irradiation to induce tumor cell death through photothermal, photochemical, and photo-immunological interactions. Phototherapy induces tumor immunogenic cell death, which is a precursor and enhancer for anti-tumor immunity. However, phototherapy alone has limited effects on long-term and systemic anti-tumor immune responses. Phototherapy can be combined with immunotherapy to improve the tumoricidal effect by killing target tumor cells, enhancing immune cell infiltration in tumors, and rewiring pathways in the TME from anti-inflammatory to pro-inflammatory. Phototherapy-enhanced immunotherapy triggers effective cooperation between innate and adaptive immunities, specifically targeting the tumor cells, whether they are localized or distant. Herein, the successes and limitations of phototherapy combined with other cancer treatment modalities will be discussed. Specifically, we will review the synergistic effects of phototherapy combined with different cancer therapies on tumor elimination and remodeling of the immunosuppressive TME. Overall, phototherapy, in combination with other therapeutic modalities, can establish anti-tumor pro-inflammatory phenotypes in activated tumor-infiltrating T cells and B cells and activate systemic anti-tumor immune responses.
Collapse
Affiliation(s)
- Trisha I. Valerio
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Coline L. Furrer
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Negar Sadeghipour
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
- School of Electrical and Computer Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Sophia-Joy X. Patrock
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Sayre A. Tillery
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ashley R. Hoover
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Kaili Liu
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
26
|
Xiong K, Wei F, Chen Y, Ji L, Chao H. Recent Progress in Photodynamic Immunotherapy with Metal-Based Photosensitizers. SMALL METHODS 2023; 7:e2201403. [PMID: 36549671 DOI: 10.1002/smtd.202201403] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Indexed: 05/17/2023]
Abstract
Cancer ranks as a leading cause of death. There is an urgent need to develop minimally invasive methods to eradicate tumors and prevent their recurrence. As a light-driven modality, photodynamic therapy takes advantage of high tumor selectivity and low normal tissue damage. However, it shows poor potential for preventing tumor recurrence. Immunotherapy is currently being used as an alternative treatment for the control of malignant diseases. Although immunotherapy can establish long-time immune memory and efficiently protects treated patients from cancer relapse, its clinical efficacy is limited by the minority of patients' responding rate. Recently, photodynamic immunotherapy, which utilizes photosensitizers as an immunotherapy trigger to exert synergistic effects of photodynamic therapy and tumor immunotherapy, has attracted considerable interest. Like all the newly proposed treatments, there is still room for improvement. In this mini review, the progress in photodynamic immunotherapy with metal-based photosensitizers is summarized. It is hoped that this review can give a broad update on photodynamic immunotherapy and inspire readers.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
27
|
Fernandes PD, Magalhães FD, Pereira RF, Pinto AM. Metal-Organic Frameworks Applications in Synergistic Cancer Photo-Immunotherapy. Polymers (Basel) 2023; 15:polym15061490. [PMID: 36987269 PMCID: PMC10053741 DOI: 10.3390/polym15061490] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Conventional cancer therapies, such as radiotherapy and chemotherapy, can have long-term side effects. Phototherapy has significant potential as a non-invasive alternative treatment with excellent selectivity. Nevertheless, its applicability is restricted by the availability of effective photosensitizers and photothermal agents, and its low efficacy when it comes to avoiding metastasis and tumor recurrence. Immunotherapy can promote systemic antitumoral immune responses, acting against metastasis and recurrence; however, it lacks the selectivity displayed by phototherapy, sometimes leading to adverse immune events. The use of metal-organic frameworks (MOFs) in the biomedical field has grown significantly in recent years. Due to their distinct properties, including their porous structure, large surface area, and inherent photo-responsive properties, MOFs can be particularly useful in the fields of cancer phototherapy and immunotherapy. MOF nanoplatforms have successfully demonstrated their ability to address several drawbacks associated with cancer phototherapy and immunotherapy, enabling an effective and low-side-effect combinatorial synergistical treatment for cancer. In the coming years, new advancements in MOFs, particularly regarding the development of highly stable multi-function MOF nanocomposites, may revolutionize the field of oncology.
Collapse
Affiliation(s)
- Pedro D. Fernandes
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
28
|
Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C, Zhou Y. Hybrid Nanomaterials for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204932. [PMID: 36567305 PMCID: PMC9951325 DOI: 10.1002/advs.202204932] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Nano-immunotherapy has been recognized as a highly promising strategy for cancer treatment in recent decades, which combines nanotechnology and immunotherapy to combat against tumors. Hybrid nanomaterials consisting of at least two constituents with distinct compositions and properties, usually organic and inorganic, have been engineered with integrated functions and enormous potential in boosting cancer immunotherapy. This review provides a summary of hybrid nanomaterials reported for cancer immunotherapy, including nanoscale metal-organic frameworks, metal-phenolic networks, mesoporous organosilica nanoparticles, metallofullerene nanomaterials, polymer-lipid, and biomacromolecule-based hybrid nanomaterials. The combination of immunotherapy with chemotherapy, chemodynamic therapy, radiotherapy, radiodynamic therapy, photothermal therapy, photodynamic therapy, and sonodynamic therapy based on hybrid nanomaterials is also discussed. Finally, the current challenges and the prospects for designing hybrid nanomaterials and their application in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Jianing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Wanyue Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yannan Yang
- Institute of OptoelectronicsFudan UniversityShanghai200433China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Ruiqing Xiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| |
Collapse
|
29
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
30
|
Biomaterial-assisted photoimmunotherapy for synergistic suppression of cancer progression. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022; 10:1031811. [PMID: 36277335 PMCID: PMC9585221 DOI: 10.3389/fchem.2022.1031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body’s antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Hongqian Chu,
| |
Collapse
|
32
|
Meng Z, Fang X, Fu B, Qian C, Yang Z, Bai Y, Tao X, Huang H, Ma C, Miao W, Ren H, Wang A, Li X. Tumor immunotherapy boosted by R837 nanocrystals through combining chemotherapy and mild hyperthermia. J Control Release 2022; 350:841-856. [PMID: 36096366 DOI: 10.1016/j.jconrel.2022.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 12/07/2022]
Abstract
Melanoma is a malignant skin cancer that is prone to metastasis in the early stage and has a poor prognosis. Immunomodulatory therapy for melanoma has been a hot research topic in recent years. However, low immune cell infiltration and loss of tumor immunogenicity may occur in tumors, resulting in low response rates to immunotherapy. Thus, immunomodulatory therapy is usually used in combination with chemotherapy and radiotherapy. Development of combined therapeutic strategies with low systemic toxicity, high immune responsiveness and long-term inhibition of metastasis and recurrence of melanoma is the goal of current research. In this study, the insoluble immune adjuvant imiquimod (R837) was prepared as nanocrystals and coated with polydopamine (PDA) to form R837@PDA, which was then loaded into chitosan hydrogel (CGP) to form the drug-loaded gel system, R837@PDA@CGP (RPC), to combine immunomodulation effects, induction of immunogenic cell death (ICD) effects and immune-enhancement effects. After treatment with RPC, ICD in melanoma was induced, and the infiltration rate of cytotoxic T cells (CTLs) in melanoma was also significantly enhanced, which turned the tumor itself into an in situ vaccine and boosted the cancer-immunity cycle at the tumor site. Therefore, melanoma growth, metastasis and recurrence were notably inhibited.
Collapse
Affiliation(s)
- Zhengjie Meng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xue Fang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bowen Fu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zheng Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yunhao Bai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xinyue Tao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Haixiao Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Hao Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xueming Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
33
|
How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022; 14:pharmaceutics14091817. [PMID: 36145569 PMCID: PMC9504126 DOI: 10.3390/pharmaceutics14091817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer, the incidence and mortality of which are increasing worldwide. Its extensive degree of heterogeneity has limited its response to existing therapies. For many years the therapeutic strategies were limited to surgery, radiotherapy, and chemotherapy. Fortunately, advances in knowledge have allowed the development of new therapeutic strategies. Despite the undoubted progress, alternative therapies are still under research. In this context, nanotechnology is also positioned as a strong and promising tool to develop nanosystems that act as drug carriers and/or light absorbents to potentially improve photothermal and photodynamic therapies outcomes. This review describes the latest advances in nanotechnology field in the treatment of melanoma from 2011 to 2022. The challenges in the translation of nanotechnology-based therapies to clinical applications are also discussed. To sum up, great progress has been made in the field of nanotechnology-based therapies, and our understanding in this field has greatly improved. Although few therapies based on nanoparticulate systems have advanced to clinical trials, it is expected that a large number will come into clinical use in the near future. With its high sensitivity, specificity, and multiplexed measurement capacity, it provides great opportunities to improve melanoma treatment, which will ultimately lead to enhanced patient survival rates.
Collapse
|
34
|
Wu H, Wang MD, Zhu JQ, Li ZL, Wang WY, Gu LH, Shen F, Yang T. Mesoporous Nanoparticles for Diagnosis and Treatment of Liver Cancer in the Era of Precise Medicine. Pharmaceutics 2022; 14:1760. [PMID: 36145508 PMCID: PMC9500788 DOI: 10.3390/pharmaceutics14091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancer is the seventh-most-common cancer worldwide and the fourth-leading cause of cancer mortality. In the current era of precision medicine, the diagnosis and management of liver cancer are full of challenges and prospects. Mesoporous nanoparticles are often designed as specific carriers of drugs and imaging agents because of their special morphology and physical and chemical properties. In recent years, the design of the elemental composition and morphology of mesoporous nanoparticles have greatly improved their drug-loading efficiency, biocompatibility and biodegradability. Especially in the field of primary liver cancer, mesoporous nanoparticles have been modified as highly tumor-specific imaging contrast agents and targeting therapeutic medicine. Various generations of complexes and structures have been determined for the complicated clinical management requirements. In this review, we summarize these advanced mesoporous designs in the different diagnostic and therapeutic fields of liver cancer and discuss the relevant advantages and disadvantages of transforming applications. By comparing the material properties, drug-delivery characteristics and application methods of different kinds of mesoporous materials in liver cancer, we try to help determine the most suitable drug carriers and information media for future clinical trials. We hope to improve the fabrication of biomedical mesoporous nanoparticles and provide direct evidence for specific cancer management.
Collapse
Affiliation(s)
- Han Wu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Jia-Qi Zhu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
| | - Zhen-Li Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Wan-Yin Wang
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Li-Hui Gu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Tian Yang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| |
Collapse
|