1
|
Su H, Chen Y, Tang B, Xiao F, Sun Y, Chen J, Deng L, He A, Li G, Luo Y, Li H. Natural and bio-engineered stem cell-derived extracellular vesicles for spinal cord injury repair: A meta-analysis with trial sequential analysis. Neuroscience 2024; 562:135-147. [PMID: 39490519 DOI: 10.1016/j.neuroscience.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Stem-cell derived extracellular vesicles (EVs) have shown promise in preclinical spinal cord injury (SCI) models but lack a comprehensive literature review for clinical translation guidance. METHODS This meta-analysis with trial sequential analysis systematically search PubMed, Web of Science, Embase, and Cochrane Library databases. Prespecified inclusion criteria were studies reporting on measurable outcomes relevant to SCI repair. Risk of bias and quality of reporting were assessed. Random-effects meta-analyses and subgroup analyses comparing natural and bio-engineered EVs were performed. The study was registered with PROSPERO (CRD42024512122). FINDINGS The search identified 3935 records, of which 39 studies were included, totaling 1801 animals. Administration of EVs significantly improved locomotor function as measured by Basso-Beattie-Bresnahan or Basso-Mouse-Scale scores at 1 week (natural EVs: SMD 1.50, 95 % CI 1.06-1.95; bio-engineered EVs: SMD 1.93, 95 % CI 1.34-2.52) and 3 weeks (natural EVs: SMD 2.57, 95 % CI 1.96-3.17; bio-engineered EVs: SMD 3.16, 95 % CI 2.29-4.02) post-injury. Subgroup analyses indicated surface modification approaches were most effective among bio-engineered EV strategies. EVs also promoted nerve growth (SMD 2.95, 95 % CI 2.12-3.78), enhanced neuron conductivity (MD 0.75, 95 %CI 0.59-0.90), alleviated inflammation (SMD -3.12, 95 % CI -4.15--2.10), and reduced lesion size (SMD -2.90, 95 % CI -3.87--1.93). CONCLUSIONS Both natural and bio-engineered EVs improve functional and pathological outcomes in animal models of SCI. The enhanced benefits observed with bio-engineered EVs, particularly those utilizing surface modification approaches, highlight the importance of continued exploration into bio-engineering techniques to optimize EVs' therapeutic efficacy for SCI repair. Protocol Registration CRD42024512122.
Collapse
Affiliation(s)
- Hankun Su
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yixin Chen
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boya Tang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fen Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuanyuan Sun
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China
| | - Jingjing Chen
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China
| | - Li Deng
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China
| | - Aihua He
- Department of Reproductive Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ge Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China
| | - Yan Luo
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China
| | - Hui Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China.
| |
Collapse
|
2
|
Li S, Dan X, Chen H, Li T, Liu B, Ju Y, Li Y, Lei L, Fan X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact Mater 2024; 40:597-623. [PMID: 39239261 PMCID: PMC11375146 DOI: 10.1016/j.bioactmat.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Tissue engineering technology has advanced rapidly in recent years, offering opportunities to construct biologically active tissues or organ substitutes to repair or even enhance the functions of diseased tissues and organs. Tissue-engineered scaffolds rebuild the extracellular microenvironment by mimicking the extracellular matrix. Fibrin-based scaffolds possess numerous advantages, including hemostasis, high biocompatibility, and good degradability. Fibrin scaffolds provide an initial matrix that facilitates cell migration, differentiation, proliferation, and adhesion, and also play a critical role in cell-matrix interactions. Fibrin scaffolds are now widely recognized as a key component in tissue engineering, where they can facilitate tissue and organ defect repair. This review introduces the properties of fibrin, including its composition, structure, and biology. In addition, the modification and cross-linking modes of fibrin are discussed, along with various forms commonly used in tissue engineering. We also describe the biofunctionalization of fibrin. This review provides a detailed overview of the use and applications of fibrin in skin, bone, and nervous tissues, and provides novel insights into future research directions for clinical treatment.
Collapse
Affiliation(s)
- Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tong Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
3
|
Cuevas-Tapia OA, Gutiérrez-Sánchez M, Pozos-Guillén A, Cauich-Rodríguez JV, Escobar-García DM. Biocompatibility and expression of transcription factors of a type B gelatin-Extracellular Matrix of Porcin Urinary Blader scaffold. J Biomater Appl 2024; 39:288-297. [PMID: 39073096 DOI: 10.1177/08853282241267867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
OBJECTIVE to evaluate a membrane based on type B gelatin (G) and porcine urinary bladder extracellular matrix (PUB-EM), highlighting the potential effect of the combination evaluated by biocompatibility and regulation of the expression of transcription factors involved in tissue regeneration. G-PUB-EM membranes were prepared at 12.5, 25, and 50% w/v, and evaluated for biocompatibility with Fibroblast. Chemical characterization by FTIR-ATR showed complex spectra during crosslinking process with glutaraldehyde. Physical tests were performed in deionized water and PBS for 48 h. A significant increase in swelling was observed during the first 2 h. Biocompatibility testing (MTS) and evaluation of the expression profile of genes involved in the cell cycle (Cyclin-D1 VEGF, TNF and NF-κ-B) by PCR showed an increase in viability in a PUB-EM content-dependent way, except for 50% PUB-EM membrane which showed cytotoxic effects with a decrease in cell viability below 70%. The membranes showed an increase in the expression of some factors of cell cycle, as well as inflammatory processes that could promote tissue repair. 12.5 and 25% gelatin type B/porcine urinary bladder extracellular matrix (G/PUB-EM) based membranes have potential for tissue regeneration applications. IMPACT STATEMENT The use of membranes based on type B gelatin and porcine urinary bladder for tissue engineering represents a novel strategy. Biocompatibility and signaling pathways play a primary role in tissue repair and wound recovery. Transcription factors that mediate signaling, cell division and vascularization are part of molecules that intervene in the regenerative potential of cells. These techniques will have a significant impact on tissue repair and regeneration and thus stop depending on tissue donors or other surgical sites from the same patient, as is the case with burn patients.
Collapse
Affiliation(s)
- Olivia Abril Cuevas-Tapia
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| | - Mariana Gutiérrez-Sánchez
- Endodontics Posgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| | - Amaury Pozos-Guillén
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| | | | - Diana María Escobar-García
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| |
Collapse
|
4
|
Zhang X, Yang M, Chen X, Lu M. Research progress on the therapeutic application of extracellular vesicles in erectile dysfunction. Sex Med Rev 2024; 12:652-658. [PMID: 38629860 DOI: 10.1093/sxmrev/qeae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 10/02/2024]
Abstract
Erectile dysfunction (ED) is one of the most common male sexual dysfunctions and is related to many pathogenic factors. However, first-line treatment, represented by phosphodiesterase 5 inhibitors, is unable to maintain long-term efficacy. Extracellular vesicles (EVs) have recently attracted the attention of researchers in the fields of cardiovascular disease, neurologic disease, and regenerative medicine and may become a treatment for ED. This article reviews recent applications of EVs in the treatment of ED from the aspects of the source, the therapeutic mechanism, and the strategies to enhance therapeutic efficacy. These research advances lay the foundation for further research and provide references for in-depth understanding of the therapeutic mechanism and possible clinical application of EVs in ED.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Mengbo Yang
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Xinda Chen
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Mujun Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| |
Collapse
|
5
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
6
|
Nouri Z, Barfar A, Perseh S, Motasadizadeh H, Maghsoudian S, Fatahi Y, Nouri K, Yektakasmaei MP, Dinarvand R, Atyabi F. Exosomes as therapeutic and drug delivery vehicle for neurodegenerative diseases. J Nanobiotechnology 2024; 22:463. [PMID: 39095888 PMCID: PMC11297769 DOI: 10.1186/s12951-024-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024] Open
Abstract
Neurodegenerative disorders are complex, progressive, and life-threatening. They cause mortality and disability for millions of people worldwide. Appropriate treatment for neurodegenerative diseases (NDs) is still clinically lacking due to the presence of the blood-brain barrier (BBB). Developing an effective transport system that can cross the BBB and enhance the therapeutic effect of neuroprotective agents has been a major challenge for NDs. Exosomes are endogenous nano-sized vesicles that naturally carry biomolecular cargoes. Many studies have indicated that exosome content, particularly microRNAs (miRNAs), possess biological activities by targeting several signaling pathways involved in apoptosis, inflammation, autophagy, and oxidative stress. Exosome content can influence cellular function in healthy or pathological ways. Furthermore, since exosomes reflect the features of the parental cells, their cargoes offer opportunities for early diagnosis and therapeutic intervention of diseases. Exosomes have unique characteristics that make them ideal for delivering drugs directly to the brain. These characteristics include the ability to pass through the BBB, biocompatibility, stability, and innate targeting properties. This review emphasizes the role of exosomes in alleviating NDs and discusses the associated signaling pathways and molecular mechanisms. Furthermore, the unique biological features of exosomes, making them a promising natural transporter for delivering various medications to the brain to combat several NDs, are also discussed.
Collapse
Affiliation(s)
- Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Barfar
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahra Perseh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Nouri
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Wang D, Zhang L, He D, Zhang Y, Zhao L, Miao Z, Cheng W, Zhu C, Shao Y, Ge G, Zhu H, Jin H, Zhang W, Pan H. A natural hydrogel complex improves intervertebral disc degeneration by correcting fatty acid metabolism and inhibiting nucleus pulposus cell pyroptosis. Mater Today Bio 2024; 26:101081. [PMID: 38741924 PMCID: PMC11089368 DOI: 10.1016/j.mtbio.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The degeneration of intervertebral discs is strongly associated with the occurrence of pyroptosis in nucleus pulposus (NP) cells. This pyroptosis is characterized by abnormal metabolism of fatty acids in the degenerative pathological state, which is further exacerbated by the inflammatory microenvironment and degradation of the extracellular matrix. In order to address this issue, we have developed a fibrin hydrogel complex (FG@PEV). This intricate formulation amalgamates the beneficial attributes of platelet extravasation vesicles, contributing to tissue repair and regeneration. Furthermore, this complex showcases exceptional stability, gradual-release capabilities, and a high degree of biocompatibility. In order to substantiate the biological significance of FG@PEV in intervertebral disc degeneration (IVDD), we conducted a comprehensive investigation into its potential mechanism of action through the integration of RNA-seq sequencing and metabolomics analysis. Furthermore, these findings were subsequently validated through experimentation in both in vivo and in vitro models. The experimental results revealed that the FG@PEV intervention possesses the capability to reshape the inflammatory microenvironment within the disc. It also addresses the irregularities in fatty acid metabolism of nucleus pulposus cells, consequently hindering cellular pyroptosis and slowing down disc degeneration through the regulation of extracellular matrix synthesis and degradation. As a result, this injectable gel system represents a promising and innovative therapeutic approach for mitigating disc degeneration.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Lan Zhao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - HongTing Jin
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| |
Collapse
|
8
|
Yuan T, Wang T, Zhang J, Ye F, Gu Z, Li Y, Xu J. Functional Polyphenol-Based Nanoparticles Boosted the Neuroprotective Effect of Riluzole for Acute Spinal Cord Injury. Biomacromolecules 2024; 25:2607-2620. [PMID: 38530873 DOI: 10.1021/acs.biomac.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Riluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects. The resulting NPs demonstrated good biocompatibility, excellent antioxidative properties, and promising regulation effects from the M1 to M2 macrophages. Furthermore, an in vivo SCI model was successfully established, and NPs could be obviously aggregated at the SCI site. More interestingly, excellent neuroprotective properties of NPs through regulating the levels of oxidative stress, inflammation, and ion channels could be fully demonstrated in vivo by RNA sequencing and sophisticated biochemistry evaluations. Together, the work provided new opportunities toward the design and fabrication of robust and multifunctional NPs for oxidative stress and inflammation-related diseases via biological integration of natural polyphenols and small-molecule drugs.
Collapse
Affiliation(s)
- Taoyang Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Ye
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Su H, Luo H, Wang Y, Zhao Q, Zhang Q, Zhu Y, Pan L, Liu Y, Yang C, Yin Y, Tan B. Myelin repair of spinal cord injury in adult mice induced by treadmill training upregulated peroxisome proliferator-activated receptor gamma coactivator 1 alpha. Glia 2024; 72:607-624. [PMID: 38031815 DOI: 10.1002/glia.24493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Growing evidence has proven the efficacy of physical exercise in remyelination and motor function performance after spinal cord injury (SCI). However, the molecular mechanisms of treadmill training on myelin repair and functional recovery after SCI have not yet been fully studied. Here, we explored the effect of treadmill training on upregulating peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α)-mediated myelin repair and functional recovery in a mouse model of thoracic T10 contusion injury. A 4-week treadmill training scheme was conducted on mice with SCI. The expression levels of oligodendrogenesis-related protein and PGC1α were detected by immunofluorescence, RNA fluorescence in situ hybridization and western blotting. Transmission electron microscopy (TEM) was used to observe myelin structure. The Basso Mouse Scale (BMS) and CatWalk automated gait analysis system were used for motor function recovery evaluation. Motor evoked potentials (MEPs) were also identified. In addition, adeno-associated virus (AAV)-mediated PGC1α knockdown in OLs was used to further unravel the role of PGC1α in exercise-induced remyelination. We found that treadmill training boosts oligodendrocyte precursor cells (OPCs) proliferation, potentiates oligodendrocytes (OLs) maturation, and increases myelin-related protein and myelin sheath thickness, thus impelling myelin repair and hindlimb functional performance as well as the speed and amplitude of nerve conduction after SCI. Additionally, downregulating PGC1α through AAV attenuated these positive effects of treadmill training. Collectively, our results suggest that treadmill training enhances remyelination and functional recovery by upregulating PGC1α, which should provide a step forward in the understanding of the effects of physical exercise on myelin repair.
Collapse
Affiliation(s)
- Hong Su
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haodong Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhang Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Zhu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of Special Environment War Wound Prevention and Treatment, Institute of Surgery Research, Army Medical Center of PLA, Chongqing, China
| | - Lu Pan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of Special Environment War Wound Prevention and Treatment, Institute of Surgery Research, Army Medical Center of PLA, Chongqing, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of Special Environment War Wound Prevention and Treatment, Institute of Surgery Research, Army Medical Center of PLA, Chongqing, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Li M, Shi L, Chen X, Yi D, Ding Y, Chen J, Xing G, Chen S, Wang L, Zhang Y, Zhu Y, Wang Y. In-situ gelation of fibrin gel encapsulating platelet-rich plasma-derived exosomes promotes rotator cuff healing. Commun Biol 2024; 7:205. [PMID: 38374439 PMCID: PMC10876555 DOI: 10.1038/s42003-024-05882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Although platelet-rich plasma-derived exosomes (PRP-Exos) hold significant repair potential, their efficacy in treating rotator cuff tear (RCT) remains unknown. In light of the potential for clinical translation of fibrin gel and PRP-Exos, we evaluated their combined impact on RCT healing and explored suitable gel implantation techniques. In vitro experiments demonstrated that PRP-Exos effectively enhanced key phenotypes changes in tendon stem/progenitor cells. Multi-modality imaging, including conventional ultrasound, shear wave elastography ultrasound, and micro-computed tomography, and histopathological assessments were performed to collectively evaluate the regenerative effects on RCT. The regenerated tendons exhibited a well-ordered structure, while bone and cartilage regeneration were significantly improved. PRP-Exos participated in the healing process of RCT. In-situ gelation of fibrin gel-encapsulated PRP-Exos at the bone-tendon interface during surgery proved to be a feasible gel implantation method that benefits the healing outcome. Comprehensive multi-modality postoperative evaluations were necessary, providing a reliable foundation for post-injury repair.
Collapse
Affiliation(s)
- Molin Li
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Lin Shi
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xianghui Chen
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dan Yi
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yufei Ding
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guanghui Xing
- Department of Ultrasound, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siming Chen
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li Wang
- Medical School of Chinese PLA, Beijing, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, China
- No. 962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Yaqiong Zhu
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yuexiang Wang
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
11
|
Morishima Y, Kawabori M, Yamazaki K, Takamiya S, Yamaguchi S, Nakahara Y, Senjo H, Hashimoto D, Masuda S, Fujioka Y, Ohba Y, Mizuno Y, Kuge Y, Fujimura M. Intravenous Administration of Mesenchymal Stem Cell-Derived Exosome Alleviates Spinal Cord Injury by Regulating Neutrophil Extracellular Trap Formation through Exosomal miR-125a-3p. Int J Mol Sci 2024; 25:2406. [PMID: 38397083 PMCID: PMC10889446 DOI: 10.3390/ijms25042406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Spinal cord injury (SCI) leads to devastating sequelae, demanding effective treatments. Recent advancements have unveiled the role of neutrophil extracellular traps (NETs) produced by infiltrated neutrophils in exacerbating secondary inflammation after SCI, making it a potential target for treatment intervention. Previous research has established that intravenous administration of stem cell-derived exosomes can mitigate injuries. While stem cell-derived exosomes have demonstrated the ability to modulate microglial reactions and enhance blood-brain barrier integrity, their impact on neutrophil deactivation, especially in the context of NETs, remains poorly understood. This study aims to investigate the effects of intravenous administration of MSC-derived exosomes, with a specific focus on NET formation, and to elucidate the associated molecular mechanisms. Exosomes were isolated from the cell supernatants of amnion-derived mesenchymal stem cells using the ultracentrifugation method. Spinal cord injuries were induced in Sprague-Dawley rats (9 weeks old) using a clip injury model, and 100 μg of exosomes in 1 mL of PBS or PBS alone were intravenously administered 24 h post-injury. Motor function was assessed serially for up to 28 days following the injury. On Day 3 and Day 28, spinal cord specimens were analyzed to evaluate the extent of injury and the formation of NETs. Flow cytometry was employed to examine the formation of circulating neutrophil NETs. Exogenous miRNA was electroporated into neutrophil to evaluate the effect of inflammatory NET formation. Finally, the biodistribution of exosomes was assessed using 64Cu-labeled exosomes in animal positron emission tomography (PET). Rats treated with exosomes exhibited a substantial improvement in motor function recovery and a reduction in injury size. Notably, there was a significant decrease in neutrophil infiltration and NET formation within the spinal cord, as well as a reduction in neutrophils forming NETs in the circulation. In vitro investigations indicated that exosomes accumulated in the vicinity of the nuclei of activated neutrophils, and neutrophils electroporated with the miR-125a-3p mimic exhibited a significantly diminished NET formation, while miR-125a-3p inhibitor reversed the effect. PET studies revealed that, although the majority of the transplanted exosomes were sequestered in the liver and spleen, a notably high quantity of exosomes was detected in the damaged spinal cord when compared to normal rats. MSC-derived exosomes play a pivotal role in alleviating spinal cord injury, in part through the deactivation of NET formation via miR-125a-3p.
Collapse
Affiliation(s)
- Yutaka Morishima
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| | - Kazuyoshi Yamazaki
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| | - Soichiro Takamiya
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| | - Sho Yamaguchi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe 650-0047, Hyogo, Japan
| | - Yo Nakahara
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| | - Hajime Senjo
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Daigo Hashimoto
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Sakiko Masuda
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan;
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Yuki Mizuno
- Central Institute of Isotope Science, Hokkaido University, Sapporo 060-0815, Hokkaido, Japan; (Y.M.)
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo 060-0815, Hokkaido, Japan; (Y.M.)
| | - Miki Fujimura
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| |
Collapse
|
12
|
Wang T, Huang G, Yi Z, Dai S, Zhuang W, Guo S. Advances in extracellular vesicle-based combination therapies for spinal cord injury. Neural Regen Res 2024; 19:369-374. [PMID: 37488892 PMCID: PMC10503620 DOI: 10.4103/1673-5374.377413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 04/15/2023] [Indexed: 07/26/2023] Open
Abstract
Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits. The currently available treatments involve surgical, medical, and rehabilitative strategies. However, none of these techniques can markedly reverse neurological deficits. Recently, extracellular vesicles from various cell sources have been applied to different models of spinal cord injury, thereby generating new cell-free therapies for the treatment of spinal cord injury. However, the use of extracellular vesicles alone is still associated with some notable shortcomings, such as their uncertainty in targeting damaged spinal cord tissues and inability to provide structural support to damaged axons. Therefore, this paper reviews the latest combined strategies for the use of extracellular vesicle-based technology for spinal cord injury, including the combination of extracellular vesicles with nanoparticles, exogenous drugs and/or biological scaffold materials, which facilitate the targeting ability of extracellular vesicles and the combinatorial effects with extracellular vesicles. We also highlight issues relating to the clinical transformation of these extracellular vesicle-based combination strategies for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guohao Huang
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zhiheng Yi
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Sihan Dai
- Department of Biomedical Engineering, Shantou University, Shantou, Guangdong Province, China
| | - Weiduan Zhuang
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Shaowei Guo
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
13
|
Yang C, Xue Y, Duan Y, Mao C, Wan M. Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J Control Release 2024; 365:1089-1123. [PMID: 38065416 DOI: 10.1016/j.jconrel.2023.11.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.
Collapse
Affiliation(s)
- Chunhao Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Duan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
14
|
Nazerian Y, Nazerian A, Mohamadi-Jahani F, Sodeifi P, Jafarian M, Javadi SAH. Hydrogel-encapsulated extracellular vesicles for the regeneration of spinal cord injury. Front Neurosci 2023; 17:1309172. [PMID: 38156267 PMCID: PMC10752990 DOI: 10.3389/fnins.2023.1309172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Spinal cord injury (SCI) is a critical neurological condition that may impair motor, sensory, and autonomous functions. At the cellular level, inflammation, impairment of axonal regeneration, and neuronal death are responsible for SCI-related complications. Regarding the high mortality and morbidity rates associated with SCI, there is a need for effective treatment. Despite advances in SCI repair, an optimal treatment for complete recovery after SCI has not been found so far. Therefore, an effective strategy is needed to promote neuronal regeneration and repair after SCI. In recent years, regenerative treatments have become a potential option for achieving improved functional recovery after SCI by promoting the growth of new neurons, protecting surviving neurons, and preventing additional damage to the spinal cord. Transplantation of cells and cells-derived extracellular vesicles (EVs) can be effective for SCI recovery. However, there are some limitations and challenges related to cell-based strategies. Ethical concerns and limited efficacy due to the low survival rate, immune rejection, and tumor formation are limitations of cell-based therapies. Using EVs is a helpful strategy to overcome these limitations. It should be considered that short half-life, poor accumulation, rapid clearance, and difficulty in targeting specific tissues are limitations of EVs-based therapies. Hydrogel-encapsulated exosomes have overcome these limitations by enhancing the efficacy of exosomes through maintaining their bioactivity, protecting EVs from rapid clearance, and facilitating the sustained release of EVs at the target site. These hydrogel-encapsulated EVs can promote neuroregeneration through improving functional recovery, reducing inflammation, and enhancing neuronal regeneration after SCI. This review aims to provide an overview of the current research status, challenges, and future clinical opportunities of hydrogel-encapsulated EVs in the treatment of SCI.
Collapse
Affiliation(s)
- Yasaman Nazerian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Sodeifi
- School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Li Q, Fu X, Kou Y, Han N. Engineering strategies and optimized delivery of exosomes for theranostic application in nerve tissue. Theranostics 2023; 13:4266-4286. [PMID: 37554270 PMCID: PMC10405842 DOI: 10.7150/thno.84971] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
Severe injuries or diseases affecting the peripheral and central nervous systems can result in impaired organ function and permanent paralysis. Conventional interventions, such as drug administration and cell-based therapy, exhibit limited effectiveness due to their inability to preserve post-implantation cell survival and impede the deterioration of adjacent tissues. Exosomes have recently emerged as powerful tools for tissue repair owing to their proteins and nucleic acids, as well as their unique phospholipid properties, which facilitate targeted delivery to recipient cells. Engineering exosomes, obtained by manipulating the parental cells or directly functionalizing exosomes, play critical roles in enhancing regenerative repair, reducing inflammation, and maintaining physiological homeostasis. Furthermore, exosomes have been shown to restore neurological function when used in combination with biomaterials. This paper primarily focuses on the engineering strategies and delivery routes of exosomes related to neural research and emphasizes the theranostic application of optimized exosomes in peripheral nerve, traumatic spinal cord, and brain injuries. Finally, the prospects of exosomes development and their combination with other approaches will be discussed to enhance our knowledge on their theranostic effectiveness in neurological diseases.
Collapse
Affiliation(s)
- Qicheng Li
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100000, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing 100000, China
| | - Xiaoyang Fu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100000, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing 100000, China
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100000, China
| | - Yuhui Kou
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100000, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing 100000, China
- National Center for Trauma Medicine, Beijing 100000, China
| | - Na Han
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100000, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing 100000, China
- National Center for Trauma Medicine, Beijing 100000, China
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100000, China
| |
Collapse
|
16
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
17
|
Zhang F, He X, Dong K, Yang L, Ma B, Liu Y, Liu Z, Chen B, Zhu R, Cheng L. Combination therapy with ultrasound and 2D nanomaterials promotes recovery after spinal cord injury via Piezo1 downregulation. J Nanobiotechnology 2023; 21:91. [PMID: 36922816 PMCID: PMC10018903 DOI: 10.1186/s12951-023-01853-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Spinal cord injury (SCI) causes severe neurological dysfunction and currently has no effective treatment. Due to the complex pathophysiological processes associated with SCI and the limited efficacy of single strategies, the need for combined strategies for effective SCI therapy is becoming increasingly apparent. In this study, we evaluated the combined effects of layered double hydroxide-coupled NT3 (MgFe-LDH/NT3) nanoparticles (NPs) and ultrasound (US) both in vitro and in vivo. Combined treatment promoted neural stem cell (NSC) differentiation into neurons and exerted anti-inflammatory effects in vitro. Furthermore, combined therapy promoted behavioural and electrophysiological performance at eight weeks in a completely transected murine thoracic SCI model. Additional RNA sequencing revealed that ultrasonic-induced Piezo1 downregulation is the core mechanism by which combined therapy promotes neurogenesis and inhibits inflammation, and the Piezo1/NF-κB pathways were identified. Hence, the findings of this study demonstrated that the combination of ultrasound and functional NPs may be a promising novel strategy for repairing SCI.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Orthopaedics, School of Medicine, Tongji Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200065, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Xiaolie He
- Department of Orthopaedics, School of Medicine, Tongji Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200065, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China.,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| | - Kun Dong
- Department of Orthopaedics, School of Medicine, Tongji Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200065, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China.,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| | - Li Yang
- Department of Orthopaedics, School of Medicine, Tongji Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200065, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China.,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| | - Bei Ma
- Department of Orthopaedics, School of Medicine, Tongji Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200065, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Yuchen Liu
- Department of Orthopaedics, School of Medicine, Tongji Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200065, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Zhibo Liu
- Department of Orthopaedics, School of Medicine, Tongji Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200065, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Bairu Chen
- Department of Orthopaedics, School of Medicine, Tongji Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200065, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Department of Orthopaedics, School of Medicine, Tongji Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200065, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China. .,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China.
| | - Liming Cheng
- Department of Orthopaedics, School of Medicine, Tongji Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200065, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China. .,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
18
|
Lu X, Xu G, Lin Z, Zou F, Liu S, Zhang Y, Fu W, Jiang J, Ma X, Song J. Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis. Biomater Res 2023; 27:3. [PMID: 36647161 PMCID: PMC9843879 DOI: 10.1186/s40824-023-00339-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) brings a heavy burden to individuals and society, and there is no effective treatment at present. Exosomes (EX) are cell secreted vesicles containing molecules such as nucleic acids and proteins, which hold promise for the treatment of SCI. Netrin-1 is an axon guidance factor that regulates neuronal growth. We investigated the effects of engineered EX enriched in netrin-1 chemically synthetic modified message RNA (modRNA) in treating SCI in an attempt to find a novel therapeutic approach for SCI. METHODS Netrin-1 modRNA was transfected into bone marrow mesenchymal stem cells to obtain EX enriched with netrin-1 (EX-netrin1). We built an inflammatory model in vitro with lipopolysaccharide (LPS) in vitro to study the therapeutic effect of EX-netrin1 on SCI. For experiments in vitro, ELISA, CCK-8 assay, immunofluorescence staining, lactate dehydrogenase release experiments test, real-time quantitative polymerase chain reaction, and western blot were conducted. At the same time, we constructed a rat model of SCI. MRI, hematoxylin-eosin and Nissl staining were used to assess the extent of SCI in rats. RESULTS In vitro experiments showed that EX had no effect on the viability of oligodendrocytes and PC12 cells. EX-netrin1 could attenuate LPS-induced inflammation and pyroptosis and accelerate axonal/dentritic growth in PC12 cells/oligodendrocytes. In addition, netrin-1 could activate the PI3K/AKT/mTOR signalling pathway upon binding to its receptor unc5b. When Unc5b and PI3K were inhibited, the effect of EX-netrin1 was weakened, which could be reversed by PI3K or mTOR activator. Our in vivo experiments indicated that EX-netrin1 could promote recovery in rats with SCI. CONCLUSION We found that EX-netrin1 regulated inflammation, pyroptosis and axon growth in SCI via the Unc5b/PI3K/AKT/mTOR pathway, which provides a new strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Zhidi Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
19
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
20
|
Pan Y, Tang L, Dong S, Xu M, Li Q, Zhu G. Exosomes from Hair Follicle Epidermal Neural Crest Stem Cells Promote Acellular Nerve Allografts to Bridge Rat Facial Nerve Defects. Stem Cells Dev 2023; 32:1-11. [PMID: 36453239 DOI: 10.1089/scd.2022.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Previous studies showed that acellular nerve allografts (ANAs) have been successfully utilized in repairing peripheral nerve defects, and exosomes produced by stem cells are useful in supporting axon regrowth after peripheral nerve injury. In this study, exosomes from hair follicle epidermal neural crest stem cells (EPI-NCSCs-Exos) combined with ANAs were used to bridge facial nerve defects. EPI-NCSCs-Exos were isolated by ultracentrifuge, and were identified. After coculture, EPI-NCSCs-Exos were internalized into dorsal root ganglions (DRGs) and schwann cells (SCs) in vitro, respectively. EPI-NCSCs-Exos elongate the length of axons and dendrites of DRGs, and accelerated the proliferation and migration of SCs, and increased neurotrophic factor expression of SCs as well. The next step was to assign 24 Sprague Dawley male rats randomly and equally into three groups: the autograft group, the ANA group, and the ANA + EPI-NCSCs-Exos group. Each rat manufactured a 5-mm gap of facial nerve defect and immediately bridged by the corresponding transplants, respectively. After surgery, behavioral changes and electrophysiological testing of each rat were observed and assessed. At 90 days postoperatively, the retrogradely fluorescent tracer-labeled neurons were successfully observed on the injured side in the three groups. Morphological changes of facial nerve regeneration were evaluated by transmission electron microscopy and semithin toluidine blue staining. The results showed that nerve fiber density, nerve fiber diameter, and myelin sheath thickness in the ANA group were significantly worse than those in the other two groups (P < 0.05). No significant difference in nerve fiber density and myelin sheath thickness was observed between the autograft group and the ANA + EPI-NCSCs-Exos group (P = 0.14; P = 0.23). Our data indicated that EPI-NCSCs-Exos facilitate ANAs to bridge facial nerve defects and have the potential to replace autograft therapy in clinic.
Collapse
Affiliation(s)
- Yao Pan
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Li Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Shuxian Dong
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Mengjie Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Nantong University Affiliated Wuxi Clinical College, Wuxi, Jiangsu, China
| | - Qiong Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Guochen Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Nantong University Affiliated Wuxi Clinical College, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022; 11:cells11182851. [PMID: 36139426 PMCID: PMC9497093 DOI: 10.3390/cells11182851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.
Collapse
Affiliation(s)
- Kasey S. Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lyndon F. Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|