1
|
Sun J, Shen H, Dong J, Zhang J, Yue T, Zhang R. Melanin-Deferoxamine Nanoparticles Targeting Ferroptosis Mitigate Acute Kidney Injury via RONS Scavenging and Iron Ion Chelation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:282-296. [PMID: 39705095 DOI: 10.1021/acsami.4c14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Rhabdomyolysis (RM)-induced acute kidney injury (AKI) involves the release of large amounts of iron ions from excess myoglobin in the kidneys, which mediates the overproduction of reactive species with the onset of iron overload via the Fenton reaction, thus inducing ferroptosis and leading to renal dysfunction. Unfortunately, there are no effective treatments for AKI other than supportive care. Herein, we developed a multifunctional nanoplatform (MPD) by covalently bonding melanin nanoparticles (MP NPs) to deferoxamine. The nanoplatform has good dispersion and physiological stability, excellent chelating performance to iron ions, and broad-spectrum reactive species scavenging activity. Furthermore, cellular experiments showed that the NPs possessed high biocompatibility, antiapoptotic activity, antioxidant properties, and strong scavenging capacity of Fe2+ to mitigate iron overload, protecting the intracellular mitochondria from oxidative stress. Meanwhile, the intrinsic photoacoustic imaging capability of melanin allows the real-time monitoring of MPD NPs' target uptake and metabolic behavior in healthy and AKI mice. Most importantly, MPD NPs led to downregulation of the antioxidant pathway by targeting ferroptosis, thus effectively rescuing renal function in vivo, mitigating oxidative stress and inflammatory responses, and inhibiting renal tubular cell apoptosis. The nanoplatform offers a novel therapeutic strategy for RM-induced AKI.
Collapse
Affiliation(s)
- Jinghua Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Hao Shen
- Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan 030001, China
| | - Jin Zhang
- Shanxi Medical University, Taiyuan 030001, China
| | - Tao Yue
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
2
|
Zhang J, Han S, Zhao Z, Zhou C, Chen H, Hou J, Wu J. Ultrasmall Black Phosphorus Quantum Dots with Robust Antioxidative Properties for Acute Kidney and Liver Injury Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407543. [PMID: 39513198 DOI: 10.1002/smll.202407543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Acute organ injuries, such as acute kidney injury (AKI) and acute liver injury (ALI), usually present high morbidity and mortality in patients. However, the current clinical treatments remain limited, especially the lack of effective drug-based treatment. Since these acute injuries are often associated with reactive oxygen species (ROS) overproduction, it is a promising strategy to develop therapeutic agents with potent ROS scavenging ability and excellent biocompatibility for efficient antioxidation therapy. Black phosphorus quantum dots (BPQDs), low-dimensional nanomaterials prepared through a straightforward one-step method and capable of complete controllable biodegradation, offer significant potential. This study comprehensively explores the extensive free-radical scavenging capabilities of BPQDs, underscoring their immense potential in treating ROS-related organ injuries. BPQDs could simultaneously achieve radical scavenging of DPPH, ABTS·, OH·, and O2 -· and exhibit excellent cytoprotective effects against ROS-mediated damage even at extremely low dosages. Besides, the ultrasmall size of BPQDs (≈3-5 nm) allows them to effectively penetrate the glomerular filtration barrier (≈6 nm), significantly improving the symptoms of AKI and ALI in vivo. The therapeutic efficacy and great biocompatibility of BPQDs facilitate the clinical management of ROS-related diseases, which will broaden the applications of QDs in the field of biomedicine.
Collapse
Affiliation(s)
- Jingyang Zhang
- Department of Nephrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Smart Manufacturing Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
| | - Shuyan Han
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zixuan Zhao
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
| | - Chufan Zhou
- School of Life Sciences and Bio-Pharmaceutics, Guangdong Pharmaceutics University, Guangzhou, 510006, China
| | - Haolin Chen
- Department of Anesthesiology, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou, 510010, China
| | - Jingtao Hou
- Department of Nephrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Nie Y, Wang L, Liu S, Dai C, Cui T, Lei Y, You X, Wang X, Wu J, Zheng Z. Natural ursolic acid based self-therapeutic polymer as nanocarrier to deliver natural resveratrol for natural therapy of acute kidney injury. J Nanobiotechnology 2023; 21:484. [PMID: 38105186 PMCID: PMC10726514 DOI: 10.1186/s12951-023-02254-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Acute kidney injury (AKI) is a common kidney disease associated with excessive reactive oxygen species (ROS). Unfortunately, due to the low kidney targeting and undesired side effects, the existing antioxidant and anti-inflammatory drugs are unavailable for AKI management in clinic. Therefore, it's essential to develop effective nanodrugs with high renal targeting and biocompatibility for AKI treatment. Herein, we reported a novel nanodrug for AKI treatment, utilizing poly(ursolic acid) (PUA) as a bioactive nanocarrier and resveratrol (RES) as a model drug. The PUA polymer was synthesized form ursolic acid with intrinsic antioxidant and anti-inflammatory activities, and successfully encapsulated RES through a nanoprecipitation method. Subsequently, we systemically investigated the therapeutic potential of RES-loaded PUA nanoparticles (PUA NPs@RES) against AKI. In vitro results demonstrated that PUA NPs@RES effectively scavenged ROS and provided substantial protection against H2O2-induced cellular damage. In vivo studies revealed that PUA NPs significantly improved drug accumulation in the kidneys and exhibited favorable biocompatibility. Furthermore, PUA NPs alone exhibited additional anti-inflammatory and antioxidant effect, synergistically enhancing therapeutic efficacy in AKI mouse models when combined with RES. Overall, our study successfully developed an effective nanodrug using self-therapeutic nanocarriers, presenting a promising option for the treatment of AKI.
Collapse
Affiliation(s)
- Yuanpeng Nie
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Liying Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shengbo Liu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Chunlei Dai
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Tianjiao Cui
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
5
|
Yang Y, Nan Y, Chen Q, Xiao Z, Zhang Y, Zhang H, Huang Q, Ai K. Antioxidative 0-dimensional nanodrugs overcome obstacles in AKI antioxidant therapy. J Mater Chem B 2023; 11:8081-8095. [PMID: 37540219 DOI: 10.1039/d3tb00970j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Acute kidney injury (AKI) is a commonly encountered syndrome associated with various aetiologies and pathophysiological processes leading to enormous health risks and economic losses. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. The revelation of the pathology opens new horizons for antioxidant therapy in the treatment of AKI. However, small molecule antioxidant drugs and common nanozymes have failed to challenge AKI due to their unsatisfactory drug properties and renal physiological barriers. 0-Dimensional (0D) antioxidant nanodrugs stand out at this time thanks to their small size and high performance. Recently, a number of research studies have been carried out around 0D nanodrugs for alleviating AKI, and their multi-antioxidant enzyme mimetic activities, smooth glomerular filtration barrier permeability and excellent biocompatibility have been investigated. Here, we comprehensively summarize recent advances in 0D nanodrugs for AKI antioxidant therapy. We classify these representative studies into three categories according to the characteristics of 0D nanomaterials, namely ultra-small metal nanodots, inorganic non-metallic quantum dots and polymer nanodots. We focus on the antioxidant mechanisms and their distribution in vivo in each inspiring work, and the purpose and ingenuity of each design are rigorously captured and described. Finally, we provide our reflections and prospects for 0D antioxidant nanodrugs in AKI treatment. This mini review provides unique insights and valuable clues in the design of 0D nanodrugs and other kidney absorbable drugs.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yuntao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Huanan Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
6
|
Li H, Fan R, Zou B, Yan J, Shi Q, Guo G. Roles of MXenes in biomedical applications: recent developments and prospects. J Nanobiotechnology 2023; 21:73. [PMID: 36859311 PMCID: PMC9979438 DOI: 10.1186/s12951-023-01809-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
....With the development of nanomedical technology, the application of various novel nanomaterials in the biomedical field has been greatly developed in recent years. MXenes, which are new inorganic nanomaterials with ultrathin atomic thickness, consist of layered transition metal carbides and nitrides or carbonitrides and have the general structural formula Mn+1XnTx (n = 1-3). Based on the unique structural features of MXenes, such as ultrathin atomic thickness and high specific surface area, and their excellent physicochemical properties, such as high photothermal conversion efficiency and antibacterial properties, MXenes have been widely applied in the biomedical field. This review systematically summarizes the application of MXene-based materials in biomedicine. The first section is a brief summary of their synthesis methods and surface modification strategies, which is followed by a focused overview and analysis of MXenes applications in biosensors, diagnosis, therapy, antibacterial agents, and implants, among other areas. We also review two popular research areas: wearable devices and immunotherapy. Finally, the difficulties and research progress in the clinical translation of MXene-based materials in biomedical applications are briefly discussed.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiazhen Yan
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiwu Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Zhang S, Wang L, Kang Y, Wu J, Zhang Z. Nanomaterial-based Reactive Oxygen Species Scavengers for Osteoarthritis Therapy. Acta Biomater 2023; 162:1-19. [PMID: 36967052 DOI: 10.1016/j.actbio.2023.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Reactive oxygen species (ROS) play distinct but important roles in physiological and pathophysiological processes. Recent studies on osteoarthritis (OA) have suggested that ROS plays a crucial role in its development and progression, serving as key mediators in the degradation of the extracellular matrix, mitochondrial dysfunction, chondrocyte apoptosis, and OA progression. With the continuous development of nanomaterial technology, the ROS-scavenging ability and antioxidant effects of nanomaterials are being explored, with promising results already achieved in OA treatment. However, current research on nanomaterials as ROS scavengers for OA is relatively non-uniform and includes both inorganic and functionalized organic nanomaterials. Although the therapeutic efficacy of nanomaterials has been reported to be conclusive, there is still no uniformity in the timing and potential of their use in clinical practice. This paper reviews the nanomaterials currently used as ROS scavengers for OA treatment, along with their mechanisms of action, with the aim of providing a reference and direction for similar studies, and ultimately promoting the early clinical use of nanomaterials for OA treatment. STATEMENT OF SIGNIFICANCE: Reactive oxygen species (ROS) play an important role in the pathogenesis of osteoarthritis (OA). Nanomaterials serving as promising ROS scavengers have gained increasing attention in recent years. This review provides a comprehensive overview of ROS production and regulation, as well as their role in OA pathogenesis. Furthermore, this review highlights the applications of various types of nanomaterials as ROS scavengers in OA treatment and their mechanisms of action. Finally, the challenges and future prospects of nanomaterial-based ROS scavengers in OA therapy are discussed.
Collapse
|